
Information Security Group

1

Towards safer security APIs

Chris Mitchell
Information Security Group

Royal Holloway, University of London



Information Security Group

Agenda
1. Introduction
2. Security APIs – what is the problem?
3. New problems
4. Encryption and integrity – a case study
5. Rules for designing better APIs
6. Concluding remarks

2



Information Security Group

Basic (informal) model
• ‘Untrusted code’ has access to a security API (i.e. a 

set of commands), which is supported using a set of 
secrets.

• Goal is to design the set of commands so that 
untrusted code cannot access the secrets 
themselves, or perform any unintended actions 
using the secrets.

• Security APIs are sometimes referred to as crypto 
APIs.

• Clulow (2003) provides an excellent discussion of 
basic models for security APIs.

3



Information Security Group

Possible additional requirements
• Secure (integrity and confidentiality 

protected) storage of data and keys in 
untrusted environment.

• Key management functions (multilevel API 
and/or separate key management API?).

• Secure auditing (externally stored log).
• Enumeration of failed commands (e.g. 

indicative of exhaustion attacks on weak 
passwords). 4



Information Security Group

State issues
• General principle:  eliminate (minimise) 

need for command-related state.
• Enables support of API using multiple 

security modules with access to same set 
of secrets.

• This requirement conflicts (to some extent 
at least) with desire to count failed 
commands.

5



Information Security Group

Agenda
1. Introduction
2. Security APIs – what is the problem?
3. New problems
4. Encryption and integrity – a case study
5. Rules for designing better APIs
6. Concluding remarks

6



Information Security Group

Poorly designed APIs
• Designing robust security APIs appears to 

be a non-trivial problem.
• Many examples of attacks are known on 

poorly designed security APIs.
• Certainly need to find ways of addressing 

this problem.
• But what is the real problem?

7



Information Security Group

Established wisdom
• It is often suggested that problems arise 

because of unintended interactions 
between commands.

• Certainly this is a potential issue, and 
addressing this is a tough problem.

• However, is this where the known 
problems lie?

• To check this, we briefly look at some 
known attacks on security APIs … 8



Information Security Group

A brief survey of flaws  I
• PIN cracking attacks, e.g.

– Bond-Zielinski (2002);
– Clulow (2003);
– Berkman-Ostrovsky (2007);

such attacks seems to use only a very small set 
of PIN-specific commands.

• However, should note that two of the PIN 
formats were individually secure, but when an 
HSM supports both (and enables translation 
between them) attacks become possible.

9



Information Security Group

Survey of flaws  II
• Key management API problems, e.g.:

– Bond (2001), Clayton-Bond (2002) and 
Clulow (2003) – range of key management 
attacks;

– Bond-Anderson (2001) – attack on key-share 
use;

these attacks focus on small sets of very 
specific key management commands.

10



Information Security Group

Survey of flaws  III
• MAC command attacks:

– Brincat-Mitchell (2001) – attacks using 
intermediate MAC output values;

– Mitchell (2003) – attacks using variable 
truncation of MACs;

these attacks make use of specific MAC 
computation/verification commands.

11



Information Security Group

Known problems
• Historically, it would appear that problems have 

arisen with flaws in small sets of closely-related 
commands.

• That is, problems involving interactions between 
unrelated commands appear to be rare.

• That is, most known problems can be fixed by 
designing individual commands more carefully, 
rather than worrying about unintended 
interactions.

12



Information Security Group

What does this mean?
• Various possible interpretations of this 

observation.
– Is there a big problem after all – perhaps we just need 

to design individual commands more carefully?
– Pointers towards better design – get the individual 

commands right first!
– It may be helpful to define the notion of separation of 

small command sets (modularity), i.e. when designing 
APIs to specify small sets of commands with no 
significant interactions between sets.

13



Information Security Group

Agenda
1. Introduction
2. Security APIs – what is the problem?
3. New problems
4. Encryption and integrity – a case study
5. Rules for designing better APIs
6. Concluding remarks

14



Information Security Group

Where should we look next?
• Past experience suggests we should look 

vey carefully at the design of individual 
API commands (and small sets of related 
commands).

• This also suggests that, when looking for 
problems in existing APIs, we should first 
check for poorly designed individual 
commands (and/or closely related 
command subsets).

15



Information Security Group

Special purpose commands
• One area that has clearly caused problems in 

the past are commands designed for very 
specific functions (e.g. PIN verification).

• Specific applications (e.g. for banking) have very 
particular requirements.

• Meeting these requirements is an obvious 
source of vulnerabilities.

• Indeed, Mannan-van Oorschot (2008) suggest 
changing the way PINs are used to avoid the 
known problems with PIN cracking.

16



Information Security Group

Secure cryptographic primitives
• More generally, most security APIs include 

a set of basic cryptographic functions.
• The idea that these might give rise to 

problems is a little more surprising, since 
surely these are things we understand 
well?

17



Information Security Group

Possible crypto issues
• One source of possible problems is that the 

understanding of how to use simple cryptographic 
primitives has changed dramatically over the last 10-15 
years.

• This is at last partly as a result of the development of a 
complexity-based theory for cryptography.

• This theory has resulted in the use of RSA in slightly 
more complex ways (for both encryption and signature) 
and has also affected use of symmetric cryptography.

18



Information Security Group

Encryption without integrity
• One major change has been to view any kind of 

encryption without simultaneous integrity 
protection as highly dangerous.

• Combining encryption with integrity is not only 
required in order to achieve proofs of security, 
but over the last few years a wide range of 
attacks have been devised against schemes 
using just encryption (or poorly designed 
combinations of encryption and integrity).

19



Information Security Group

Error oracle attacks
• One general class of attacks on encryption without integrity 

is made up of error oracle attacks (see Proc. ISC 2005).
• If an attacker can manipulate ciphertext, and repeatedly 

insert manipulated ciphertext into a channel, then the 
presence or absence of error messages (e.g. whether 
decryption is successful, why decryption failed, or whether 
the plaintext causes errors) can reveal information about 
the plaintext.

• In general, this problem cannot be removed, since errors 
may arise in higher level protocols, completely 
independent of the layer at which encryption is performed. 

20



Information Security Group

Encryption functions in APIs
• In many cases, symmetric encryption and 

MACing are implemented as separate 
functions in a security API.

• This may allow a variety of possible 
attacks, even if the application using the 
API never uses encryption without integrity 
protection.

• (We return to this issue a little later).
21



Information Security Group

Order of cryptographic operations
• Another major change in view arising from developments in 

crypto theory has been regarding the order in which 
encryption and integrity protection are applied.

• Theory says that it is safer to encrypt first and then MAC 
protect (must verify MACs before attempting decryption, 
and do not attempt to decrypt if MAC verification fails).

• It is possible to achieve proofs of security for the ‘MAC then 
encrypt’ model, but such schemes are more complex and 
more at risk from side channel attacks (since decryption 
may fail prior to MAC verification, which could either trigger 
error messages or cause an early abort of processing).

22



Information Security Group

How is this relevant here  I?
• Error oracles (or other side channels) could arise in many 

ways from use of security APIs, e.g.:
– Security APIs often include ‘translation’ commands, where data 

is input encrypted under one key and output encrypted under 
another – it may be possible to use such a command as an 
error oracle.

– If encryption and MACing implemented separately, then, even if 
an attacker does not have direct access to the API, it may be 
possible to extract information from timing of events and/or error 
messages.

– For key management commands involving managing encrypted 
keys, even if encrypted keys are also MACed, if the MACing is 
done on plaintext keys, then error messages may provide a side 
channel. 23



Information Security Group

Relevance  II
• Given the limited data storage of many security modules, 

it may be necessary to make multiple calls to the API if 
performing a crypto-operation on a large data set.

• Such multiple calls are generally implemented using 
special purpose ‘partial’ computation commands (or 
options to a single command).

• Two solutions:
– temporary stored state inside the module (which can break 

design criteria);
– Export from module of ‘partial’ results (which can then be input 

with next call to the API, along with further data for processing) –
this type of solution is extremely hazardous as it breaks all 
assumptions about the cryptographic function. 24



Information Security Group

Relevance  III
• The issue of multiple calls also relates to a  long-standing issue 

with some APIs supporting signatures.
• In some past designs (and perhaps even now) the hashing 

process necessary to compute a signature has been performed 
externally to the API, and the API takes a hash-code as input.

• This is incredibly hazardous, as it means that part of the 
signature function is implemented externally to the secure 
environment, which breaks any security proof for the signature 
scheme.

• This issue can be mitigated by ‘double-hashing’, i.e. hashing the 
data externally to the module and then performing the complete 
signature function (including the hashing) internally to the 
module (not clear how widely such an approach is adopted).

25



Information Security Group

Relevance  IV
• Other ‘obvious’ measures should be taken 

to properly limit scope of commends 
(although not always taken in past), e.g.:
– MACs should be verified by recomputing the 

MAC and comparing internally to the module, 
and then outputting a ‘yes/no’ answer;

– triple DES should be implemented internally, 
and not as three calls to a single DES 
function;

26



Information Security Group

Agenda
1. Introduction
2. Security APIs – what is the problem?
3. New problems
4. Encryption and integrity – a case study
5. Rules for designing better APIs
6. Concluding remarks

27



Information Security Group

IPsec in encryption-only mode
• Paterson and Degabriele have recently 

described and demonstrated attacks on 
IPsec when used in encryption only mode.

• These attacks apply to widely used IPsec 
implementations which conform to the 
relevant IETF RFCs (see Proc. IEEE 
Security and Privacy 2007). 

28



Information Security Group

Why look at this example?
• This provides an example of the type of attack 

that is possible if an error oracle exists (and how 
error oracles can arise).

• It also illustrates the possible problems arising 
from the (complacent) belief that there is no 
need to follow crypto ‘best practice’.

• Such lessons almost certainly apply to many 
existing security APIs, which do not implement 
current best practice.

29



Information Security Group

Main ideas
• Extension of Vaudenay’s padding oracle attacks 

on CBC mode (Eurocrypt 2002) combined with 
Paterson-Yau techniques (Eurocrypt 2006).

• A padding oracle (a special type of error oracle): 
– attacker sends a ciphertext and learns only whether 

or not the underlying plaintext was correctly padded.
• Vaudenay showed that a padding oracle can be 

“leveraged” to build a decryption algorithm:
– for CBC mode encryption;
– for certain padding methods.

30



Information Security Group

31

Bit flipping in CBC mode
• Flipping bits in ciphertext block Ci-1 leads to 

controlled changes in plaintext block Pi.
• But block Pi-1 is randomised.

Ci-1 Ci

Pi-1 Pi

dK dK

Flipping bits here

Leads to bit flips hereAnd randomised block here



Information Security Group

32

Padding oracles – a toy example
• Suppose only requirement for correct padding is last byte be “01” (hex).
• Repeatedly flip bits in last byte of R and submit to padding oracle.
• Padding oracle says “yes” iff:

Last byte of R last byte of dK(Ctarget) = 01
• This reveals last byte of dK(Ctarget) and so last byte of the original Ptarget.

R Ctarget

? P’target

dK dK

Flipping bits here

Eventually gives correct padding here

⊕

Revealing byte 
here



Information Security Group

ESP
• ESP = Encapsulating Security Protocol.

– v1, v2, v3 in IETF RFCs 1827, 2406, 4303.
– IPsec’s “encryption workhorse”.

• ESP provides one or both of:
– Confidentiality for packet/payload (v1, v2, v3).
– Integrity protection for packet/payload (v2, v3).

• ESP uses symmetric encryption and MACs.
– Usually CBC mode of block cipher for encryption.
– HMAC-SHA1 and HMAC-MD5 for integrity protection.

33



Information Security Group

34

ESP in Tunnel Mode

Inner
IP header

Outer
IP header

Payload 
(e.g. TCP, UDP, ICMP)

ESP
trailer

ESP
auth

ESP header
SPI, seqno

MAC scope

Encryption scope

Original datagram



Information Security Group

ESP header and trailer
• ESP specifies header and trailer fields to be 

added to IP datagrams.
• Fields in header include:

– Security Parameters Index (SPI).
– Sequence number.

• Fields in trailer include:
– Any padding needed for encryption algorithm (may 

also be used to disguise payload length).
– Padding length.
– Next Header byte.
– MAC value (if integrity protection used). 35



Information Security Group

History of encryption in IPsec 
• ESPv1 (1995) provided no integrity protection.

– Reliant on separate AH protocol to provide this.
– Bellovin (95 and 96) sketched a series of attacks on ESPv1 

without AH.

• Bellovin-Wagner attack:
– Limited recovery of plaintext from TCP segments:
– Requires ciphertexts matching 224 chosen plaintexts.
– Requires receiver to ignore encryption padding format.

• attack fails if padding check carried out upon decryption.
– Recovers last byte of plaintext from TCP segments if byte length 

is equal to 1 modulo 8.
– Requirements can be reduced to 28 chosen plaintexts if variable 

length padding acceptable. 36



Information Security Group

Bellovin’s Attacks (continued)
• Bellovin’s paper presents a collection of 

attack sketches and ideas.
– Theoretically interesting, but no attacks 

demonstrated to work in practice.
– Drew attention to need for integrity protection 

along with encryption.
– Sufficiently serious to influence development 

of RFCs.

37



Information Security Group

Integrity protection and ESPv2
• IETF response to Bellovin’s attacks:

– ESPv2 (1998) recommends receiver should 
check format of encryption padding.

– Also includes integrity protection as an option.
– But implementations must still support 

“encryption-only” mode.
• ESPv2 represents a compromise between 

improving security and maintaining 
backwards-compatibility.

38



Information Security Group

39

Integrity protection and ESPv3
• ESPv3 (2005):

– still allows encryption-only ESP.
– but no longer requires support for encryption-only.
– gives strong warnings about Bellovin-Wagner attack 

and refers to theoretical cryptography literature to 
motivate need to use integrity protection.

– “ESP allows encryption-only … because this may 
offer considerably better performance and still provide 
adequate security, e.g., when higher layer 
authentication/integrity protection is offered 
independently.”



Information Security Group

IPsec in theory and practice
• The theoretical cryptography community is well aware of 

the need to carefully combine integrity protection with 
encryption to prevent active attacks against encryption.

• Plenty of high-profile, real-world examples:
– Kerberosv4, IEEE 802.11b, SSH, OpenSSL,… 

• It is also well-known amongst IPsec experts that 
encryption-only configurations should be avoided - clear 
warnings against their use in the RFCs.

• So is there really any problem?

40



Information Security Group

IPsec in theory and practice
• Developers are required by RFC 2406 to 

support encryption-only ESP.
• Developers rarely pass RFC warnings to end 

users.
• Developers don’t properly implement RFCs.
• End users don’t read RFCs or technical papers.
• End users might reasonably assume that 

encryption on its own gives confidentiality.
• Many on-line tutorials do not highlight the 

dangers of encryption-only IPsec. 41



Information Security Group

IPsec in theory and practice
• From the IPsec Tunnel Implementation 

administrator's guide of a well-known vendor:
– “If you require data confidentiality only in your IPSec 

tunnel implementation, you should use ESP without 
authentication. By leaving off the authentication 
service, you gain some performance speed but lose 
the authentication service.”

http://www.cisco.com/en/US/docs/security/security_man
agement/vms/router_mc/1.3.x/user/guide/U13_bldg.ht
ml#wp1068306 (last accessed 28/1/2008).

42



Information Security Group

43

ESP trailer format
• Append a byte pattern of the form:

01 02 … y
• Append the PL byte (y again).
• Append the NH byte (04 in tunnel mode).
• So valid ESP trailer formats are:

00 04, 
01 01 04, 
01 02 02 04, 
01 02 03 03 04, …



Information Security Group

ESP trailer oracles
• An ESP trailer oracle could be exploited to 

perform decryption.
– This is an oracle telling the attacker if a 

trailer’s format is valid or invalid.
– Initial 2-byte pattern “00 04” implies 216 calls to 

the oracle are needed to extract first 2 bytes.
– 28 calls per byte for remaining bytes of each 

block.
• To make this work, we need to find a 

reliable ESP trailer oracle. 44



Information Security Group

ESP Trailer Oracles
• Wrongly formatted ESP trailers should 

lead to packet drops.
– Padding checks SHOULD be carried out:

• but packet drop on failure is not mandated 
explicitly;

– NH byte must equal 04 to pass policy checks
• So a packet drop would indicate an 

incorrectly formatted ESP trailer.
• But we also need an indication of when an 

ESP trailer is correctly formatted. 45



Information Security Group

Building an ESP Trailer Oracle
• If ESP trailer is correctly formatted, then inner 

packet is eventually processed by IP.
• Paterson-Degabriele built a single tunnel mode 

packet that always results in an ICMP response 
when its inner packet is processed.
– Capture a tunnel mode packet.
– Modify TTL, Protocol or IP header length fields in 

inner packet by bit flipping.
– Correct Header Checksum field by bit flipping.
– One-time cost for construction.

46



Information Security Group

ESP Trailer Oracle Attack
• For any target ciphertext block:

– Splice random block and target ciphertext block onto 
end of ICMP-generating packet.

– Inject this new packet into tunnel.
– Target block interpreted as ESP trailer

• ICMP message created if and only if ESP trailer correctly 
formatted.

– ICMP message sent encrypted on reverse tunnel
• Detectable by its length.

• This is an ESP trailer oracle attack.
– Using behaviour of IPsec implementation at receiver 

coupled with presence/absence of ICMP messages 
as the oracle. 47



Information Security Group

Implementing the RFC Attacks
• These RFC attacks work “in theory” 

against any IPsec implementation that 
strictly follows the RFCs. 

• But many practical issues may interfere 
with the correct operation of the attacks.

• Are any implementations sufficiently strict?
• And what happens in reality?
• Look at open source implementations...

48



Information Security Group

49

Implementing the RFC attacks
• Linux:

– Comment in source code:
/* ... check padding bits here. Silly. :-) */}

– No padding check implemented.
– So the RFC attacks don’t apply because of incorrect 

implementation ... but then vulnerable to Bellovin-
Wagner attack from 1995!

– Also vulnerable to:
• a variant of the RFC attack which can efficiently extract 

two bytes per block, implemented as a proof of concept;
• another Paterson-Yau attack.



Information Security Group

Implementing the RFC attacks
• KAME, OpenBSD, FreeBSD, NetBSD, 

MacOS X:
– Crude padding check:  check if pad length byte 

is 0 or if pad length byte = last byte of padding.
– Not rigorous enough for the RFC attacks to 

work.
– But a variant of the Paterson-Degabriele RFC 

attacks extracts three bytes per block for 216

effort.
50



Information Security Group

Implementing the RFC attacks
• Openswan, strongSwan, FreeS/WAN:

– Don’t allow selection of encryption-only 
configurations (despite mandated support in 
ESPv2).

– All check padding carefully, but then don’t 
drop packet if it’s incorrect!

– (RFCs don’t explicitly mandate drop, but then 
what’s the point of doing the check?)

– So the RFC attacks won’t work, but Bellovin’s 
attacks will. 51



Information Security Group

52

Implementing the RFC attacks
• OpenSolaris:

– 3 different levels of padding check can be selected.
• No check, KAME-style check, full padding check.

– But the full check was incorrectly implemented!
– Paterson and Degabriele reported the bug to Sun.
– Sun fixed it in Release 55 of OpenSolaris.
– After which, they successfully attacked the 

OpenSolaris implementation.
– Attack complexity in line with theoretical results.

• Dominated by 216 trials to extract last 2 bytes of each block.



Information Security Group

53

Summary of attacks
• There is a range of attacks against 

encryption-only ESP that work:
– against any implementation strictly following 

the RFCs, e.g. OpenSolaris;
– against many implementations not following 

the RFCs, e.g. Linux.
• The attacks that work in practice shouldn’t 

work against the RFCs.
• The attacks that work against the RFCs 

often don’t work in practice.



Information Security Group

Discussion  I
• Encryption-only ESP is dangerously weak 

in a very practical sense.
• No security is gained from provision of 

upper layer integrity protection, despite 
claims to contrary in ESPv3:

ESP allows encryption-only … because this 
may offer considerably better performance 
and still provide adequate security, e.g., when 
higher layer authentication/integrity protection 
is offered independently.” 54



Information Security Group

55

Discussion  II
• Attacks reveal poor lines of communication in 

the IPsec community in its widest sense.
– Configurations known to be weak to IPsec insiders 

are still allowed in the standard.
– These configurations get deployed by end-users.
– 10 years on, many IPsec implementations don’t follow 

advice given in standards anyway.
– Why is that? What can we do to address it?



Information Security Group

56

Discussion  III
• Ultimately RFCs are standards for 

interoperability, but this causes problems 
for RFCs concerned with security.
– Applying patches to security in each new 

revision is not the answer.
– Such standards should take a more 

conservative approach and adopt 
defensive designs.

– Despite the many real-world constraints 
imposed on standards development process.



Information Security Group

57

Discussion  IV
• Attacks reveal disconnect between theory and practice in 

cryptography.
– Need for strong integrity protection well understood in 

theoretical cryptography, but not so well by practitioners and 
users.

– Cryptographic implementation details are vital for security, but 
are not currently considered in theoretical security models.

– Strong anecdotal evidence suggests these points apply 
equally to security API designs.

• Unfortunately, the gulfs between cryptographers, users 
of cryptography, and implementers appear to be 
growing.



Information Security Group

Discussion  V
• Implementers seem likely to ignore 

implementation requirements specified in 
standards if the reason for them is not 
blindingly obvious.

• One way of avoiding this problem is to 
design APIs to protect implementers 
against their own ignorance.

• That is, we should design security APIs 
to only permit safe use of cryptography.

58



Information Security Group

Agenda
1. Introduction
2. Security APIs – what is the problem?
3. New problems
4. Encryption and integrity – a case study
5. Rules for designing better APIs
6. Concluding remarks

59



Information Security Group

Research directions
• Current research includes work directed at 

the following problems:
– Establish models within which properties of 

security APIs can be established.
– Design compact APIs which can be reasoned 

about.
– Find new ways in which APIs can go wrong 

(analyse existing APIs). 

60



Information Security Group

Is this sufficient?
• Work of all these types is clearly necessary.
• However, is it enough?
• One problem with designing ‘good’ general 

purpose APIs is that there is likely to be a need 
to add specific commands to existing APIs on an 
ad hoc basis.

• Customers for security modules often have very 
specific needs, which cannot be met using a 
‘general purpose’ API.

61



Information Security Group

Special purpose APIs
• Apart from the need to add specific 

commands, there is also a requirement for 
new APIs to meet very special 
requirements.

• One example is provided by trusted 
computing’s TPM.

• That is, whilst clearly helpful, specially 
designed general purpose security APIs 
will never be sufficient for all needs.

62



Information Security Group

Formal security proofs  I
• Of course, in theory at least, we could just 

design our additions to existing APIs in 
such a way that security proofs can still be 
established.

• This may present formidable problems for 
suppliers of security modules, but of 
course we must try to develop means of  
analysing range of command types.

63



Information Security Group

Security proofs  II
• Interesting to observe that complexity-

theory approach to cryptography fits rather 
nicely to the way APIs work in practice.

• That is, the theory assumes access by an 
adversary to a set of oracles, and proofs 
are formulated in terms of minimising the 
probabilistic advantage of the adversary.

• Access to an API is essentially access to a 
specific set of oracles.

64



Information Security Group

Security proofs  III
• Existing complexity theory approach should be 

capable of analysing the security of individual 
commands (and small sets of related 
commands, e.g. encrypt/decrypt).

• Analysis must take into account the set of error 
messages associated with commands (indeed, 
error messages could well be one of the trickiest 
areas to get correct).

• Would be interesting to also analyse multi-call 
commands to address large data sets.

65



Information Security Group

Security proofs  IV
• It would also be extremely helpful to find a 

way of modelling the notion of 
‘independence’ of sets of commands.

• This would potentially enable subsets of 
an API’s command set to be analysed 
separately.

66



Information Security Group

Strong key separation  I
• The need for strong key separation has 

been well-documented (notably by Clulow 
(2003) – see also Mitchell (2003)).

• Strong key separation means that the API 
should force keys to have just one use, 
with just one algorithm, and with all
aspects of the algorithm fixed (e.g. MAC 
length).

67



Information Security Group

Strong key separation  II
• Strong key separation is implicit to 

mathematical models of cryptography.
• However, this fact does not appear to be 

universally recognised, either as:
– an issue by the crypto community, or
– a requirement by the crypto user community.

68



Information Security Group

Other key management issues
• The risks of encrypting data that is not 

secret (e.g. and then using the same key 
for PIN protection).

• Issues arising from use of Live versus Test 
keys.

• Issues arising from flexible start and end 
points for encryption within a long 
message or PIN block.

69



Information Security Group

Agenda
1. Introduction
2. Security APIs – what is the problem?
3. New problems
4. Encryption and integrity – a case study
5. Rules for designing better APIs
6. Concluding remarks

70



Information Security Group

Where are the problems?
• Right now, most of the issues appear to 

arise from poorly designed single 
commands (or small sets of commands).

• Fixing these problems would appear 
relatively straightforward.

• (There are also certainly major 
opportunities for finding issues in existing 
security APIs).

71



Information Security Group

New attack ideas
• One major possible direction for future 

attacks on APIs is to take advantage of 
‘old fashioned’ view of crypto inherent in 
many of today’s security APIs.

• For example, even the TPM v1.2 
specifications from the TCG, which are 
quite recent, do not use cryptography in 
ways recommended by well-established 
theory. 

72



Information Security Group

Implementation issues
• A rather different issue is probably worth 

mentioning – namely that of the robustness of the 
internal code of a security module.

• The software development community is now 
familiar with buffer overflow problems arising from 
poor checking of input data – has this lesson been 
learnt by security module manufacturers?

• What about ‘old’ modules?
• Would it be worth fuzz-testing modules? 

73



Information Security Group

Thoughts for the future
• Bespoke additions to APIs will not go away, and 

so research must take account of this.
• Crypto commands should implement provably 

secure versions of crypto primitives, such as:
– don’t offer ‘encryption only’ commands;
– use provably secure variants of RSA, including padding 

and redundancy.
• More generally, don’t introduce unnecessary 

flexibility, and avoid ‘optimisations’ at expense of 
implementing well-defined primitives.

74



Information Security Group

The final slide!
• Thanks to:

– organisers for inviting me to come and speak;
– Kenny Paterson for allowing me to borrow some of 

his slides on the IPsec attacks;
– Mike Ward for a number of valuable comments and 

corrections;
– you for listening.

• Questions?
(by all means contact me offline – e.g. at 
c.mitchell@rhul.ac.uk – for detailed references to the 
various work mentioned). 75

mailto:c.mitchell@rhul.ac.uk

	Towards safer security APIs
	Agenda
	Basic (informal) model
	Possible additional requirements
	State issues
	Agenda
	Poorly designed APIs
	Established wisdom
	A brief survey of flaws  I
	Survey of flaws  II
	Survey of flaws  III
	Known problems
	What does this mean?
	Agenda
	Where should we look next?
	Special purpose commands
	Secure cryptographic primitives
	Possible crypto issues
	Encryption without integrity
	Error oracle attacks
	Encryption functions in APIs
	Order of cryptographic operations
	How is this relevant here  I?
	Relevance  II
	Relevance  III
	Relevance  IV
	Agenda
	IPsec in encryption-only mode
	Why look at this example?
	Main ideas
	Bit flipping in CBC mode
	Padding oracles – a toy example
	ESP
	ESP in Tunnel Mode
	ESP header and trailer
	History of encryption in IPsec 
	Bellovin’s Attacks (continued)
	Integrity protection and ESPv2
	Integrity protection and ESPv3
	IPsec in theory and practice
	IPsec in theory and practice
	IPsec in theory and practice
	ESP trailer format
	ESP trailer oracles
	ESP Trailer Oracles
	Building an ESP Trailer Oracle
	ESP Trailer Oracle Attack
	Implementing the RFC Attacks
	Implementing the RFC attacks
	Implementing the RFC attacks
	Implementing the RFC attacks
	Implementing the RFC attacks
	Summary of attacks
	Discussion  I
	Discussion  II
	Discussion  III
	Discussion  IV
	Discussion  V
	Agenda
	Research directions
	Is this sufficient?
	Special purpose APIs
	Formal security proofs  I
	Security proofs  II
	Security proofs  III
	Security proofs  IV
	Strong key separation  I
	Strong key separation  II
	Other key management issues
	Agenda
	Where are the problems?
	New attack ideas
	Implementation issues
	Thoughts for the future
	The final slide!

