
A novel stateless authentication

protocol

Chris Mitchell

Royal Holloway, University of London

c.mitchell@rhul.ac.uk

2

1. History

• It has long been recognised that a requirement for

stored state is an undesirable feature in almost

any protocol.

• During the 1990s considerable efforts were made

to devise protocols which minimise the

requirements for stored state at the server in

client-server protocols.

• One major goal was to minimise the threat of DoS

attacks.

3

State in the new world

• Whilst preventing exhaustion of table space was

the original motivation for state elimination, there

are other good reasons.

• It can greatly simplify network protocols by

simplifying the associated state machines.

• The cost is slightly longer messages (messages

are the new repository of state).

• Of course, this is not new at all – http cookies are

hardly a revolutionary new idea!

4

Aura and Nikander, 1997

• Aura and Nikander published a key paper ‘Stateless

connections’ in ICICS 1997.

• They describe how protocols can be made stateless by

‘passing the state information between the protocol

principals along[side] the messages’.

• Such state information (forming a cookie – as in http) can

be protected using a MAC computed using a server secret

key.

• Note that the idea of using cookies in this way appears to

predate Aura and Nikander – Boyd and Mathuria point out

that the idea occurs in the original version of Photuris,

published in 1995.

5

Aura-Nikander focus

• The focus of the Aura-Nikander paper was very

much on reducing the state held by a server in

client-server protocols.

• This has also held true for most (all?) subsequent

work on designing protocols which minimise state.

6

Aura-Nikander key ideas I

• They start by considering a generic client-server protocol:

1. C  S: Message1 [S stores StateS1]

2. S  C: Message2

3. C  S: Message3 [S stores StateS2]

4. S  C: Message4

5. ...

• The need for S to store state can be avoided by including the

server’s state in the messages:

1. C  S: Message1

2. S  C: Message2 || StateS1

3. C  S: Message3 || StateS1

4. S  C: Message4 || StateS2

5. ...

7

Aura-Nikander key ideas II

• Need to protect integrity (and possibly the confidentiality) of the

state information, since it is sent across an unprotected channel.

• Can use MACs (computed using a key KS known only to the

server) and a timestamp (using a server-based clock) to enable

the server to check its state information:

1. C  S: Message1

2. S  C: Message2 || TimeS1 || StateS1 || MACKS
(TimeS1 || StateS1)

3. C  S: Message3 || TimeS1 || StateS1 || MACKS
(TimeS1 || StateS1)

4. S  C: Message4 || TimeS2 || StateS2 || MACKS
(TimeS2 || StateS2)

5. ...

• Need to allow for variable delays in receipt of replies – allows

for state replay attacks.

• If necessary, can encrypt using server-owned secret key.

8

Aura-Nikander key ideas III

• Aura and Nikander do not state this explicitly, but the

MACed (and possibly encrypted) state needs to include

the complete session context, e.g.:

– name of the communicating client;

– session identifiers;

– session variables;

– session keys;

– ...

9

Oakley, Photuris, etc.

• Oakley, a protocol proposed for use in the

Internet, and some versions of which also avoid

the need for server state, was proposed at around

the same time.

• Photuris, that can be regarded as a development

of Oakley, is a session key management protocol

defined in RFC 2522.

• This work ultimately led to IKEv2, which has

similar properties.

10

Other DoS remediation

techniques

• Of course, avoiding stored state is by no means the only way of

trying to prevent DoS attacks.

• State elimination addresses state-space-exhaustion attacks.

• Juels and Brainard (NDSS 1999) and Aura, Nikander and Leiwo

(SPW 2000) discuss he use of ‘client puzzles’ to make a client

do work before requiring a server to do significant work. This

addresses attacks attempting to use all a server’s computational

resources.

11

2. Universal state elimination

• As we have already noted, the emphasis of past

work has primarily been on eliminating stored

state at the server.

• However, in the new world of transient

relationships and peer/peer communications (not

just client/server), it is necessary to try to protect

both parties engaging in a protocol.

• In the future, all machines may function as

servers.

12

Simple idea

• Well, we could use time-stamp based protocols,

e.g. of the form:

A  B: tA || fKAB
(tA||iB)

where tA is a timestamp, f is a MAC function, KAB

is a secret key shared by A and B, and iB is an

identifier for B.

• Such protocols are widely known and analysed

(can be used twice for mutual authentication).

• Note also that || denotes concatenation (need to

be careful here!).

13

Problems

• This approach requires securely synchronised

clocks.

• This doesn’t seem like a good solution for our

transient relationship scenario – who defines how

clocks should be synchronised?

• Anyway, it doesn’t prevent replays in a short time

window.

14

State elimination strategy

• If we want to avoid timestamps (and the

associated problems) we need to go back to the

1997 Aura-Nikander paper.

• Whilst the emphasis then (and since) has been on

eliminating server state, the ideas presented there

work just as well in eliminating client state.

• Key idea: ‘passing the state information between

the protocol principals along[side] the messages’.

15

3. Some failed ideas

• We use shared secret-based unilateral

authentication protocols throughout as simple

examples.

• We believe (hope!) that these protocols can be

extended/modified to use asymmetric

cryptography and/or provide mutual

authentication.

16

Idea 1

• Use a two-pass nonce-based unilateral

authentication protocol, modified to be stateless:

A  B: nA || fKA
(iB||nA)

B  A: nA || fKA
(iB||nA) || fKAB

(nA||iA)

where nA is a nonce chosen by A, KA is a key

known only by A (and used only for cookies), and

other notation is as before.

• The string [nA || fKA
(iB||nA)] functions as a cookie.

• We have moved A’s stored state into the

message.

17

Problems

• Good point is that A now only has to remember a

single secret KA.

• The main problem is that A cannot verify whether

the cookie [nA || fKA
(iB||nA)] is fresh.

• B can use the cookie to keep sending responses

which will be accepted.

• Even worse, a third party could intercept and

replay B’s original response, which will be

accepted.

18

Idea 2

• Use a timestamp instead of a nonce in a two-pass

protocol.

A  B: tA

B  A: tA || fKAB
(tA||iA)

where tA is a timestamp chosen by A, and other

notation is as before.

• We don’t need synchronised clocks – only A

checks the timestamp!

19

Problems

• Unfortunately, this scheme allows Gong-style

preplay attacks.

• Suppose C wishes to impersonate B to A at some

future time.

• C (pretending to be A) engages in the protocol

with B, using a future value of A’s clock.

• C can now replay this message to A at the future

specified time, and successfully impersonate B.

20

4. A fixed idea

• Combine the two ideas – use cookies and a

timestamp-based nonce.

A  B: tA || fKA
(iB||tA)

B  A: tA || fKA
(iB||tA) || fKAB

(tA||iA||fKA
(iB||tA))

where notation is as before.

• As in the previous case, we don’t need

synchronised clocks – only A checks the

timestamp (which could just be a counter).

21

Discussion I

• We could include a session identifier in the cookie.

• This would enable A to match the response to a

higher-layer protocol communications request

(e.g. from an application).

22

Discussion II

• Replays within a time window are still possible.

• Two obvious ways of fixing this:

1. Keep a log of recently accepted messages (not

so nice – re-introduces state, albeit of a

bounded size).

2. Keep track of the timestamp/counter of the

most recently received (accepted) message

and only accept ‘newer’ messages.

23

5. Next steps

• Where do we go from here?

• There are many unresolved issues, e.g.:

– Devise a mutual authentication scheme;

– Provide schemes using other types of crypto;

– Prove the protocols secure in an appropriate

model (of course – fix them first if they get

broken);

– Consider possible applications.

24

Protocol design thoughts

• Think about application to various communications

models – if all interactions are request-response,

then stored state may be completely unnecessary.

• Even where a connection is set up, only a party

wishing to initiate message transmissions, rather

than responding to a request, needs to maintain

state.

25

Other DoS attack issues

• In a world where client-client (as opposed to client-server)

communications dominates, do we need to rethink our DoS

countermeasures?

• Can we apply the client puzzle techniques in this environment?

• One obvious approach would involve suggesting that in a client-

client world, interactions are typically still of the requester-

provider form, in which case we can map requesters to clients

and providers to servers, and use the same techniques as

employed for client-server. Is this appropriate?

• Could we also use the computational asymmetries arising

naturally in certain public key crypto schemes as ‘natural’ client

puzzles?

26

And, finally ...

• Should be clear that these ideas are not fully

thought through.

• Would welcome collaboration to take ideas further.

• ...

• Questions?

