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De Bruijn sequences

• A (span v, c-ary) de Bruijn sequence is an 

infinite periodic sequence of symbols 

{0,1....,c-1} (for some c>1), with the 

property that every possible v-tuple of 

symbols occurs exactly once in a period.

• The period must clearly be equal to the 

number of c-ary v-tuples, i.e. cv.
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Examples

• [00011101] is a span 3, binary (2-ary) de 

Bruijn sequence (of length 23=8).

• Here, as throughout, we write just one 

period of the bi-infinite sequence, and call 

it a cycle – we use square brackets for 

cycles.

• [001122021] is a span 2, 3-ary de Bruijn 

sequence (of length 32=9).
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Simple constructions  I

• One very well-known method of 

generating binary de Bruijn sequences is a 

greedy algorithm, known as the ‘prefer 

one’ method.

• Start with the all zero v-tuple, and add one 

bit at a time, always adding a one if 

possible.

• E.g., for v=4:

[0000111101100101]. 5
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Simple constructions  II

• Choose a prime power q.

• Take a maximum length v-stage shift register 

sequence over GF(q) (an m-sequence).

• This is a q-ary periodic sequence of period qv-1, 

in which very q-ary v-tuple occurs except the all 

zero tuple.

• Take any one of the (q-1) all zero (v-1)-tuples in 

a period and insert a zero – this gives a span v

q-ary de Bruijn sequence.
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Pseudorandom sequences

• Equally, one can remove a zero from the 

unique all-zero v-tuple in any de Bruijn 

sequence to obtain a sequence which 

contains all possible c-ary v-tuples except 

the all-zero tuple.

• Such a sequence is known as a 

pseudorandom sequence. 
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Example

• [001122021] is a span 2, 3-ary de Bruijn 

sequence (of length 32=9).

• [01122021] is a span 2, 3-ary 

pseudorandom sequence.

• [011220021] is another span 2, 3-ary de 

Bruijn sequence (of length 32=9). 
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Existence

• De Bruijn (1946) and Good (1946) independently proved 

that de Bruijn sequences exist for every possible span v

and every possible alphabet size c>1.

• They also gave an explicit formula for the number of 

such sequences for every c and v.

• It was subsequently discovered that their existence had 

first been established by Flye-Sainte Marie in 1894.

• Since the 1940s a significant number of different 

construction methods have been devised.

• Fredricksen (1982) gave an extremely helpful summary 

of construction techniques (since 1982 more techniques 

found). 9
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de Bruijn-Good graph  I

• This directed graph (which we write as 

G(c,v)) has vertices the c-ary v-tuples.

• Put an edge from vertex (a0,a1,...,av-1) to 

vertex (b0,b1,...,bv-1) if and only if ai+1=bi

(for 0 ≤ i ≤ v-2).

• A Hamiltonian cycle in G(c,v) then 

corresponds to a c-ary span v de Bruijn 

sequence.
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de Bruijn-Good graph  II

• We can also label edges of G(c,v) with c-ary 

(v+1)-tuples, i.e. so that the edge connecting 

(a0,a1,...,av-1) to (a1,a2,...,av-1,b) is labelled 

(a0,a1,...,av-1,b).

• It is then not hard to see that an Eulerian cycle

in G(c,v) corresponds to a c-ary span v+1 de 

Bruijn sequence.

• Since the in-degree of every vertex is equal to 

the out-degree (=c) such an Eulerian cycle 

always exists – hence establishing the existence 

of de Bruijn sequences. 11
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de Bruijn arrays (perfect maps)

• de Bruijn arrays are 2-dimensional 

analogues of de Bruijn sequences.

• An (m,n;u,v)c-PM is a c-ary periodic array 

of period mn, in which every c-ary uv

sub-array occurs precisely once in a 

period (2-dimensional cycle).

• Hence, we must have cuv=mn.

• Notion introduced by Reed and Stewart in 

1962, who gave a (4,4;2,2)2-PM. 12
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Examples

• The Reed and Stewart example is as follows:

• It is straightforward to verify that every 22 

binary array occurs once when this is regarded 

as the recurring periodic pattern in an infinite 

array (i.e. a 2-dimensional cycle). 
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Necessary conditions

• The obvious necessary condition for the 

existence of a (m,n;u,v)c-PM is cuv=mn.

• For reasons it is simple to verify, we must 

also have:

i. u=m=1 or 1 ≤ u < m;

ii. v=n=1 or 1 ≤ v < n.

• These necessary conditions have been 

conjectured to be sufficient.
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Existence

• The necessary conditions have been 

shown to be sufficient for the following 

cases:

– c=2  (Paterson, 1994);

– c a prime power  (Paterson, 1996);

– u=v=2  (Hurlbert, Mitchell and Paterson, 

1996).
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Applications

• A wide variety of applications have been 

proposed for de Bruijn sequences, 

including in:

– cryptography;

– position location.

• Position location/range funding 

applications have also been discussed for 

the two-dimensional arrays.
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Definition

• A perfect factor of a graph is a set of 

disjoint cycles of fixed length (n, say) 

which cover every edge.

• A perfect factor of the de Bruijn Graph 

G(c,v-1) (which we call an (n,v)c-PF) can 

be thought of as a set of cv/n periodic c-ary

sequences (of period n), for which every c-

ary v-tuple occurs precisely once in a  

period of just one of the sequences.
18
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Examples

• If n=cv, then an (n,v)c-PF is simply a span 

v, c-ary de Bruijn sequence.

• The set of two cycles: {[0,0,0,1], [1,1,1,0]} 

forms a  (4,3)2-PF.

• The set of three cycles: {[0,0,1], [1,1,2], 

[2,2,0]} forms a (3,2)3-PF.

• The set of four cycles: {[0,0,3,3], [2,0,1,3], 

[1,1,2,2], [0,2,3,1]} forms a (4,2)4-PF. 

19



Information Security Group

Necessary conditions

• We have the following trivial necessary 

conditions for the existence of an (n,v)c-

PF:

1. n|cv;

2. v=n=1 or 1 ≤ v < n. 

• These necessary conditions have been 

conjectured to be sufficient.
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Applications

• Perfect Factors are simply a special case of 

perfect maps, since any ordering of the cv/n

cycles as the columns of a c-ary periodic 

array will form a (cv/n, n; 1, v)c-PM.

• [The converse is also trivially the case].

• Perfect Factors can also be used to help 

construct a much larger class of perfect 

maps (as we next see).
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Etzion construction  I

• Etzion (1988) showed how perfect factors 

can be used to construct perfect maps, 

generalising a construction of Ma (1984).

• We describe a special case of this 

construction proposed by Mitchell and 

Paterson in 1994.

• For simplicity we describe it for the binary 

case – however it works for arbitrary size 

alphabets.
22
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Etzion construction  II

• Let C0,C1,...,Cn-1 be the cycles of an (2k,u)2-PF 

[and hence k ≤ u].

• Let (ri) be 2k(v-1) repetitions of a (2u-k)-ary span v

de Bruijn sequence [where uv  2k+1].

• Let (si) be 2v(u-k) repetitions of a 2k-ary span (v-1) 

pseudorandom sequence for which the first v-2 

elements are all zeros, preceded by 2v(u-k) zeros.

• Let (wi) be defined so that w0=0, w1=s0, 

w2=s0+s1, w3=s0+s1+s2, ...
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Etzion construction  III

• Then define a 2k  2uv-k array made up of 

columns from the perfect factor.

• Specifically, let the ith column consist of cycle Cri

cyclically shifted by wi places.

• This is a (2k,2uv-k;u,v)2-PM.

• Along with related constructions, this means 

that, if the perfect factor existence conjecture is 

positively resolved, the PM existence question 

will also be mostly resolved.
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Existence  I

• Etzion (1988) showed that (2k,v)2-PFs exist if k ≤ v < 2k

[i.e. the necessary conditions are sufficient in c=2 case].

• Paterson (1994) showed the necessary conditions for an 

(n,v)c-PF are sufficient if c is a prime power.

• Mitchell (1994) showed the necessary conditions are 

sufficient for all allowable triples (n,v)c as long as there 

exists a prime p such that p |n and p > v.

• Mitchell and Paterson (1998) observed that, to 

completely resolve the existence question, it is only 

necessary to establish the existence of an (n,v)c-PF for a 

‘square-free’ c.  This, in turn, means we only need to 

look at a finite number cases for each v.
25
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Existence  II

• The existence question has also been resolved 

for small values of v (the span).

• An (n,v)c-PF always exists if:

– v=2 (Mitchell, 1994);

– v ≤ 4 (Mitchell, 1995);

– v ≤ 6 (Mitchell and Paterson, 1998). 

• It was also established that if a (10,7)10-PF and 

a (10,8)10-PF could be constructed, then the 

existence conjecture would be resolved for v ≤ 8.
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Objective

• The main goal is to give a new construction 

method.

• We first describe a very simple construction 

which forms the basis of the new method.

• This method first appears in the 1998 Mitchell-

Paterson paper, but I have a feeling it was 

known before.

28
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A simple construction method

• Suppose n, c are integers greater than 1 

such that n|cn-1.

• Consider the set of c-ary cycles of length n

whose elements sum to a value congruent 

to 1 modulo c – since n|cn-1, these cycles 

have period exactly c.

• If we regard cyclic shifted sequences as 

equivalent, we obtain an (n,n-1)c-PF.

29
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Lempel homomorphism  I

• We also need a homomorphism of the de 

Bruijn graph first given by Lempel (1970).

• The Lempel homomorphism D maps 

G(c,v) to G(c,v-1), and is defined by:

D(a0,a1,...,av-1) = (a1-a0,a2-a1,...,av-1-av-2)

• D is a graph homomorphism – it is simple 

check that if there is an edge from a to b, 

then there is an edge from D(a) to D(b).

30
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Lempel homomorphism  II

• This homomorphism turns out to be an 

incredibly useful tool in the study of de 

Bruijn sequences and related structures.

• It is analogous to differentiation, and has 

many related properties.
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Lempel homomorphism  III

• We can apply D to periodic sequences, as 

well as just to tuples.

• If the sequence (si) has period u, then 

(D(si)) will have period dividing u.

• Also, the mod c sum of u consecutive 

elements of (D(si)) is always zero.

32
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The inverse homomorphism

• If s=[s0,s1,...,sn-1] is a cycle of weight w (reduced 

mod c) then we define the pre-image of s, 

written D-1(s), to be the set of cycles:

{ [t, t+s0, t+s0+s1, ..., t+(s0+s1+...+sn-2), 

t+w, t+w+s0, ... ] }.

• This set has size (w,c), and the cycles have

period nc/(w,c).

• Hence, if w mod c = 0, then |D-1(s)|=c, and the

cycles have period n.
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The construction

• Suppose c|n and c is odd.

• Suppose S is an (n,n-1)c-PF constructed 

using the simple construction method 

outlined previously.

• Then D(S) is an (n,n-2)c-PF.
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Example

• The set S of three cycles: {[0,0,1], [1,1,2], 

[2,2,0]} forms a (3,2)3-PF (the sum of 

elements in each cycle is congruent to 1 

mod 3).

• D(S) = {[0,1,2]}, is a (3,1)3-PF. 
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Justification  I

Claim:  If a = [a0,a1,...,an-1]  S, then D-1(D(a))  S.

Proof:  First note that the elements of D-1(D(a)) 

must have period n, since D(a) must have 

weight 0.

If b = [b0,b1,...,bn-1]  D-1(D(a)), then for every i: 

bi=ai+t for some t.

Hence:

b0+b1+...+bn-1= a0+a1+...+an-1+nt  1 (mod c)

since c|n.
36
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Justification  II

• We next need to show that |D-1(D(a))|=c.

• Unfortunately, for n=c=10 this will not hold, 

since, for example,

D([0000355558])=D([5555800003]).

• It will hold if we make the extra 

assumption that c is odd.
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Justification  III

• By the claim, the number of distinct cycles 

in D(S) must be |S|/n = cn-2/n.

• Hence the cycles in D(S) contain a total of 

cn-2 (n-2)-tuples.

• Since every (n-1)-tuple occurs in a cycle in 

S, every (n-2)-tuple must occur in a cycle 

in D(S).

• Hence, every (n-2)-tuple must occur in a 

unique cycle in D(S). 38
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Implication

• Unfortunately this construction does not 

give us a (10,8)10-PF, since here c is even!
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Finishing the job

• Over the last 20 years we have assembled 

a powerful set of construction techniques 

for de Bruijn graph perfect factors.

• This in turn allows us to construct 

examples of perfect maps for ‘most’ 

parameter sets.

• However, there is the fear that from now 

on we will just be knocking off sporadic 

cases.
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A general approach?

• It seems possible that the construction 

shown is just a special case of a much 

more general ‘simple’ construction 

technique.

• I am hopeful that this can be used to cover 

many more previously undecided 

parameter sets.

• Fundamentally, perfect factors are very 

numerous.
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