
Tailoring Authentication Protocols

to Match Underlying Mechanisms�

L. Chen, D. Gollmann and C. Mitchell

Information Security Group

Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

E-mail:fliqun, dieter, cjmg@dcs.rhbnc.ac.uk

Abstract

Authentication protocols are constructed using certain fundamental security mecha-

nisms. This paper discusses how the properties of the underlying mechanisms a�ect the
design of authentication protocols. We �rstly illustrate factors a�ecting the selection of
protocols generally. These factors include the properties of the environment for authen-

tication protocols and the resources of the authenticating entities. We then consider a
number of authentication protocols which are based on underlying mechanisms satisfying

di�erent conditions than those required for the ISO/IEC 9798 protocols, in particular the
use of non-random nonces and the provision of identity privacy for the communicating

parties.

1 Introduction

This paper is concerned with the fundamental security mechanisms which are used to con-
struct entity authentication protocols, and how the strength of these mechanisms a�ects
protocol design. For the purposes of this paper, the mechanisms are divided into two cat-
egories, cryptographic mechanisms and time variant parameters (TVPs). The �rst category
includes symmetric encryption, digital signatures, cryptographic check functions (CCFs) and
zero knowledge techniques. The second includes clocks for timestamping, nonce generators
and sequence numbers. An authentication protocol is typically constructed using at least one
mechanism from both categories.

When a new protocol is needed in a particular environment, the designer must �rst dis-
cover what mechanisms are available. For implementation reasons there may be limits on
available mechanisms, because every mechanism has particular properties corresponding to
the particular environment in which the protocol works. In such a case, the protocol must
meet the needs of the environment and the `strength' of the available mechanisms.

�This work has been jointly funded by the UK EPSRC under research grant GR/J17173 and the European
Commission under ACTS project AC095 (ASPeCT).

1

A variety of entity authentication protocols1 have recently been standardised by the Inter-
national Organization for Standardization (ISO) and the International Electrotechnical Com-
mission (IEC). The four published parts of ISO/IEC 9798 cover the general model (9798-1,
[1]), authentication protocols based on symmetric encipherment (9798-2, [3]), authentication
protocols based on public key algorithms (9798-3, [2]), and authentication protocols based on
CCFs (9798-4, [4]). A �fth part of ISO/IEC 9798, covering authentication protocols using zero
knowledge techniques, is currently at CD stage [5]. The ISO/IEC 9798 protocols use TVPs,
e.g. timestamps, nonces and sequence numbers, to prevent valid authentication information
from being accepted at a later time.

The protocols proposed in ISO/IEC 9798 have all been designed to use mechanismsmeeting
rather stringent requirements, which may be di�cult to meet in some practical environments.
Hence in this paper we look at alternatives to the ISO/IEC 9798 protocols which are still
sound even when the mechanisms do not meet such `strong' conditions.

The discussion starts in Section 2 with an illustration of factors which a�ect protocol
selection, including the properties of the environment for an authentication protocol, and the
resources of the authenticating entities. We then look at the ISO/IEC 9798 protocols in the
context of requirements on the mechanisms. In Sections 3, 4, 5, 6, 7 and 8, we consider possible
alternatives to the ISO/IEC 9798 schemes, which do not make such strict requirements on the
mechanisms. In the �nal section, we give a summary of the contributions of this paper.

2 Factors a�ecting protocol selection

We now discuss two important factors which a�ect protocol design, namely the properties
of the protocol environment and the resources of the authenticating entities. As we show in
subsequent sections, if the environment and entity resources for authentication satisfy less
stringent conditions than those required for the ISO/IEC 9798 protocols, then the ISO/IEC
9798 protocols cannot be used, and a di�erent protocol, tailored to match the properties of the
underlying mechanisms, needs to be designed. In these subsequent sections we give examples
of such variant protocols.

2.1 Properties of the environment for protocols

Before considering what underlying mechanisms are available and selecting a protocol which
uses them, the designer must know the environment in which the protocol will work. A partic-
ular environment may impose very stringent requirements on the mechanisms and the protocol
itself. For the purposes of this paper we consider the following aspects of the environment for
an authentication protocol.

Communications channel. Communications channels are used to transmit message
exchanges during the authentication processing. The major property of interest here is whether
a channel is broadcast or point-to-point.

� Broadcast channel, where there exist messages from a variety of senders and/or for
a variety of receivers. Typically, to make a broadcast channel operate correctly, the
sender's and/or receiver's names have to be sent across the channel.

1They are referred to as entity authentication mechanisms in ISO/IEC documents.

2

� Point-to-point channel, where the channel is reserved for a particular sender and receiver
who both know the initiator and terminator of each message, so that their names do not
need to be sent across the channel.

Other properties of the communications channel which a�ect the design of authentication
protocol include whether or not interceptors can modify messages and/or introduce totally
spurious messages. However we do not address these issues in detail here.

Entity identi�er. The major property of entity identi�ers of interest here is which entities
are authorised to know a particular entity identi�er during the authentication processing.
There are two main cases of interest, namely that the identi�er of an entity is allowed to be
transferred in clear text (e.g., ISO/IEC 9798 parts 2, 3 and 4) or that it is only allowed to be
known to particular entities (e.g., [6, 12, 16]).

Trust relationship. The trust relationship describes whether one entity believes that the
other entities will follow the protocol speci�cations correctly (e.g. [13]). The trust relationship
of particular interest here is between authentication servers and clients. For instance, a client
may not trust an individual server [8].

2.2 Resources of authenticating entities

We consider the following aspects of the resources of the authenticating entities.
Knowledge. An entity might have one or more of four kinds of knowledge before the

authentication processing starts, namely shared secret information with another entity, private
information (e.g. the private part of the entity's own asymmetric key pair), reliable public
information (e.g. the public part of another entity's asymmetric key pair), or no knowledge of
another entity.

Computational ability. The entities may or may not have the computational ability to
perform certain operations, namely computation of complex cryptographic algorithms (e.g. a
digital signature algorithm), random and secure generation of a key or an o�set for a key, and
generation of predictable or unpredictable nonces.

Time synchronisation. The entities may or may not have access to securely synchronised
clocks or synchronised sequence numbers.

3 Absence of trust in a third party

We consider a situation where two entities, who share no secret based on symmetric cryp-
tography or hold no public information based on asymmetric cryptography, want to complete
unilateral or mutual authentication. Typically they will have to get assistance from a third
party, referred to as an authentication server. However, in some environments, these clients
have no reason to trust an individual server, and in such a case the ISO/IEC 9798 proto-
cols cannot be used directly. In order to design a protocol which does not require trusting
individual servers, a range of possible approaches can be followed.

Firstly, a client can choose which server is trustworthy or untrustworthy from a set of
servers, typically by applying a security policy or their history of performance and reliability.
Yahalom et al. [20] proposed a protocol which allows a client or his agent to make such a
choice. One di�culty with this scheme is that a client may sometimes �nd it di�cult to
distinguish between trustworthy and untrustworthy servers.

Secondly, a set of moderately trusted servers who are trusted by users collectively, but
not individually, can be used. Gong [10] proposed a protocol with multiple servers such that

3

a minority of malicious and colluding servers cannot compromise security or disrupt service.
In that protocol two clients participate in choosing a session key, and each relevant server is
responsible for converting and distributing a part of the session key. Two variations on this
approach have been described in [8], in both of which the servers each generate a part of a
session key, which can be successfully established between a pair of entities as long as more
than half the servers are trustworthy. Both schemes from [8] have the advantage of requiring
considerably fewer messages than Gong's protocol.

A third approach, based on asymmetric cryptography, is to separate authentication infor-
mation transfer from authentication information issue, i.e. to let the issuer be o�-line. One
instance of this approach is where a master server (sometimes called the certi�cation author-
ity) issues a certi�cate which is then held by another on-line secondary server. The certi�cate
is valid for a period of time, during which there is no need to further contact the master server,
since the certi�cate is available from the secondary server. The client does not need to trust
the secondary server, but does need to trust the o�-line master server.

4 Entity identity privacy

During authentication processing, the identities of the entities concerned may need to be
sent across the communications channel, either embedded within or alongside the protocol
messages. There are two main reasons why this might be necessary.

� Depending on the nature of the communications channel, all messages may need to have
one or more addresses attached. More speci�cally, if a broadcast channel is being used,
then, in order for a recipient of a message to know whether or not it is intended for
them, a recipient address must be attached. In addition, many authentication protocols
require the recipient of a protocol message to know the identity of the entity which
(claims to have) originated it, so that it can be processed correctly (e.g. deciphered
using the appropriate key). If this information is not available, as would typically be the
case in a broadcast environment, then the originator address also needs to be attached.

� Certain authentication protocols, including some of those in ISO/IEC 9798, require the
recipient's name to be included within the protected part of some of the messages, in
order to protect the protocol against certain types of attack.

However, depending on the nature of the communications channel, communicating entities
may require a level of anonymity, which would prevent their name and/or address being sent
across the channel (except in enciphered form). For example, in a mobile telecommunications
environment, it may be important for users that their identi�ers are not sent in clear across the
radio path, since that would reveal their location to an interceptor of the radio communications.

Of the two reasons listed for sending names across the channel, the second is usually
simpler to deal with, since alternative protocols can typically be devised which do not require
the inclusion of names in protocol messages; for example, as described in ISO/IEC 9798{4,
`unidirectional keys' can be employed. We therefore focus our attention here on the anonymity
problems arising from the use of authentication protocols in broadcast environments. It is
important to note that these anonymity problems are not dealt with in any published part of
ISO/IEC 9798.

There are two main approaches to providing entity anonymity in broadcast channels, i.e.,
the use of temporary identities which change at regular intervals, and the use of asymmetric

4

(public key) encipherment techniques. We now discuss three examples which make use of
these approaches. In each case we consider a `many-to-one' broadcast scenario, where many
mobile users communicate with a single `base' entity. In this case anonymity is typically only
required for the mobile users who can only receive from the base, and hence there may be no
need for the base address to be sent across the channel.

First observe that in GSM (Global System for Mobile telecommunication) [12], temporary
identities (TMSIs) are transmitted over the air interface instead of permanent identities (IM-
SIs). TMSIs are changed on each location update and on certain other occasions as de�ned by
the network. A mobile user identi�es himself by sending the old TMSI during each location up-
date process, which has to be sent before authentication takes place and must therefore be sent
unencrypted. However, the new TMSI is returned after authentication has been completed
and a new session key has been generated so that it can be, and is, transmitted encrypted. In
certain exceptional cases, including initial location registration, the user has to identify itself
using its IMSI. In these cases an intruder may be able to obtain the IMSI from the GSM air
interface. Thus the GSM system only provides a limited level of anonymity for mobile users.

Second consider a mutual authentication protocol, also outlined in [16], which has been de-
signed for possible adoption by two third generation mobile systems, namely UMTS (Universal
Mobile Telecommunications System) and FPLMTS (Future Public Land Mobile Telecommu-
nication Systems). Like the GSM solution, this scheme also uses temporary identities to
provide identity and location privacy. However, in this protocol, temporary identities are used
at every authentication exchange including the case of a new registration, so that permanent
identities are never transmitted in clear text.

The principals involved in this protocol are one of number of users, A, a single `base'
entity B and an authentication server S. The protocol makes use of two types of temporary
identities: S-identities shared by A and S, including a current one IA and a new one I 0

A
, and

B-identities shared by A and B, also including a current one JA and a new one J 0

A
. There

are two versions of the protocol, depending on whether or not A and B already share a valid
temporary B-identity JA and secret key KAB. The protocol makes use of �ve cryptographic
check functions F1 - F5, each of which takes a key and a data string as input. Note also that
� denotes bit-wise exclusive-or.

Version 1: A and B share KAB and JA. Then the message exchanges are as follows (where
Mi : A! B : x means that the ith exchanged message is sent from A to B and contains data
x).

M1 : A! B : JA; RA

M2 : B ! A : RB; F4KAB(RA)� J 0

A
; F3KAB(RB; RA; J

0

A
)

M3 : A! B : F3KAB(RA; RB)

Version 2: A and B share no secret, A and S share KAS and IA, and B and S have a
secure channel which is available for exchanging messages 2 and 3.

M1 : A! B : IA; RA

M2 : B ! S : IA; RA

M3 : S ! B : F1KAS(RA)� I 0

A
; O;KAB; F3KAS(I

0

A
; RA; O)

M4 : B ! A : F1KAS(RA)� I 0

A
; O; F3KAS(I

0

A
; RA; O); RB;

F4KAB(RB)� J 0

A
; F3KAB(RB; RA; J

0

A
)

M5 : A! B : F3KAB(RA; RB)

5

where O is a key o�set so that KAB = F2KAS(O;B). The resultant session key K 0

AB
=

F5KAB(RA; RB; J
0

A
).

Our third example is based on the use of asymmetric encipherment. In this case, no
temporary sender identity is required because the real sender identity can be encrypted using
the public encipherment transformation of the receiver. In order to keep receiver identity
con�dentiality, a temporary receiver identity is needed. In this example, A is one of number
of users of a single broadcast channel which is used for communicating with a single `base'
entity B, EX denotes public key encipherment using the public key of entityX and H denotes
a hash-function. The messages are:

M1 : A! B : EB(A;RA; R
0

A
)

M2 : B ! A : R0

A
; EA(RB; RA; B)

M3 : A! B : H(RA; RB; A)

where the nonce R0

A
is also a temporary identi�er for A. For this protocol to operate success-

fully, the nonces RA and RB must be incapable of being guessed by any third parties. Note
also that A and B must have reliable copies of each other's public keys before starting the
protocol.

5 Avoiding abuse of digital signatures

During authentication processing based on digital signatures with `unpredictable' nonces, en-
tity A typically challenges entity B by sending a nonce RA. B then sends A a signature-based
message containing this nonce in reply to the challenge. By choosing the nonce appropriately
A may be able to use B's signature for malicious purposes.

Here, as throughout this paper, a digital signature function is de�ned to include use of
either a hash-function or a redundancy function to prevent an impersonator claiming that a
randomly chosen value is actually a signature.

The authentication protocols of ISO/IEC 9798-3 [2] discuss means of dealing with this
problem, and to help avoid the worst consequences a nonce chosen by the signer is also
included in the relevant signature. However, the same problem may still exist. We now
consider a protocol given in Clause 5.2.2 of ISO/IEC 9798-3 (see also [17]).

M1 : B ! A : RB;D1

M2 : A! B : CertA;RA; RB; B;D3; SA(RA; RB; B;D2)

M3 : B ! A : CertB;RB; RA; A;D5; SB(RB; RA; A;D4)

Note that D1 - D5 are (application dependent) data strings, SX denotes the signature
function of entity X, RA and RB are nonces, and CertX denotes the certi�cate of entity X.
RA is present in the signed part of M2 to prevent B from obtaining the signature of A on
data chosen by B. Similarly RB is present in the signed part of M3. However, this approach
cannot completely avoid the abuse of signatures for the following two reasons.

1. Although both nonces are included in both signatures, B selects its nonce before A.
This means that A is in a more favourable position than B to misuse the other party's
signature. To prevent this, B can generate an extra nonce and add it into the signed
message, e.g. in M3 a nonce R0

B
can be included in D4 and D5:

M3 : B ! A : CertB;RB; RA; A;R
0

B
;D0

5
; SB(RB; RA; A;R

0

B
;D0

4
):

6

2. It is possible for users of the signatures to `bypass' some nonces involved in the protocol if
other signatures in di�erent contexts use nonces in the same way. For example, a di�erent
protocol might make use of a message SA(R;X;B;D2) or SB(R;Y;A;D4), where R is a
random number and X or Y has a particular meaning. The signatures of the previous
protocol could then potentially be successfully abused in this protocol.

The above discussion implies that changing protocol construction only makes abuse of
digital signatures more di�cult, and cannot protect against such attacks completely, because
the protocol itself cannot detect the misuse of digital signatures involved. However, there exist
means of avoiding these problems, such as the following.

� The method of `key separation' is well known and widely used, i.e. using di�erent keys
for di�erent applications (see, e.g. [17]).

� Another approach is using sequence numbers rather than unpredictable nonces to control
the uniqueness of authentication exchanges. Because the values of the sequence numbers
are agreed by both the claimant and veri�er, neither party to a protocol can be persuaded
to sign information which has some `hidden meaning'.

� Last, but not least, observe that zero knowledge based protocols are speci�cally designed
to prevent this type of attack.

6 Predictable and unpredictable nonces

The nonce-based protocols speci�ed in Parts 2, 3 and 4 of ISO/IEC 9798 all require the nonces
used to be unpredictable, i.e. the nonces must be generated in such a way that intercepting
third parties cannot guess future nonce values. However, in some circumstances it may be
necessary to use nonces which are predictable, i.e. generated using a deterministic process
known to the interceptor. For example, it may be di�cult for an entity to generate random or
unpredictable pseudo-random numbers, particularly if the entity is implemented in a portable
device, such as a smart card, and use of a simple counter for nonce generation may be the
only practical possibility.

We now consider how secure nonce-based authentication protocols can be devised even
if the nonces are predictable (as long as they are still `one time'). This can be achieved by
cryptographically protecting all the messages in a protocol including the nonces.

Before proceeding we brie
y distinguish between predictable nonces and sequence numbers,
both of which are used to control the uniqueness of messages. They are both used only once
within a valid period of time and there is the possibility that they can be predicted in advance
by a third party. However, a predictable nonce is used as a challenge, so that the responder
does not need to know it before receiving it and to record it after using it. On the other
hand, a sequence number is agreed by the claimant and veri�er beforehand according to some
policy, and will be rejected if it is not in accordance with the agreed policy. Furthermore, use
of sequence numbers may require additional `book keeping' for both the claimant and veri�er.
Typically every entity will need to store a `send' sequence number and a `receive' sequence
number for each other entity with which they communicate.

It has been observed in [11] that, in a protocol using symmetric encryption with a nonce,
if the nonce is unpredictable then either the challenge or the response can be transmitted
unencrypted; however if the nonce is predictable then both the challenge and response have
to be encrypted. Otherwise the protocol cannot protect against replay attacks.

7

We now illustrate that this logic also applies to protocols using digital signatures and
CCFs. The following is one example of how digital signatures can be used in conjunction with
a predictable nonce to produce a secure authentication protocol. This is a modi�cation of the
protocol given in Clause 5.2.2 of [2] (the notation is as used previously).

M1 : B ! A : CertB;RB; SB(RB)

M2 : A! B : CertA;RA; SA(RA; RB; B)

M3 : B ! A : SB(RB; RA; A)

Another example, this time based on the use of a CCF, is the following, which is a modi-
�cation of the protocol given in Clause 5.2.2 of [4].

M1 : B ! A : RB; FK(RB)

M2 : A! B : RA; FK(RA; RB; B)

M3 : B ! A : FK(RB; RA)

The above analysis means that there is a good range of protocols available to support
both unpredictable and predictable nonces. Note that when using a predictable nonce as a
challenge, since a future challenge is predictable to the responder, the veri�er of the challenge
has to depend on the honesty and competence of the responder [11].

7 Disclosure of plaintext/ciphertext pairs

There are a number of di�erent models for known plaintext attacks, chosen plaintext at-
tacks and chosen ciphertext attacks on cipher systems (e.g. [7] and [9]). Although obtain-
ing plaintext/ciphertext pairs far from guarantees that attacks will be successful, it is typ-
ically the necessary �rst step for an attacker. Whether or not the attacker has access to a
plaintext/ciphertext pair during the authentication processing depends on the nature of the
communications channel, the authentication protocol, and the details of the cryptographic
processing.

We use the term `plaintext/ciphertext pair' rather loosely here, to cover matching pairs
of input and output for a variety of cryptographic algorithms, including encipherment algo-
rithms, digital signatures and cryptographic check functions. Whether or not disclosing a
plaintext/ciphertext pair is a problem depends on the strength of the algorithm, and whether
the same algorithm and key are used for applications other than the authentication exchange.

In some situations the disclosure of plaintext/ciphertext pairs is not a security problem and
that is what ISO/IEC 9798 assumes. However we are concerned here with situations where
disclosure of pairs may be a security threat, and we consider ways of avoiding the threat. The
following unilateral authentication protocols are given in ISO/IEC 9798 parts 2, 3 and 4.

Example 1: Symmetric encryption with nonce [3]:

M1 : B ! A : RB;D1

M2 : A! B : D3; EKAB(RB; B;D2)

Example 2: Digital signature with timestamp [2]:

M1 : A! B : TA; B;D1; SA(TA; B;D2)

8

Example 3: CCF with sequence number [4]:

M1 : A! B : NA; B;D1; FKAB(NA; B;D2)

Whether these protocols provide plaintext/ciphertext pairs depends on what kind of op-
tional text �eld D2 is used. If D2 is predictable data (including null), a plaintext/ciphertext
pair is exposed. If D2 includes some unpredictable data not supplied in D1, whether the plain-
text/ciphertext pair is exposed depends only on the structure of the cryptographic operation
applied (this case cannot hold for example 3).

If D2 is predictable, in timestamp or sequence number based protocols, it is rather di�cult
to avoid disclosure of plaintext/ciphertext pairs, since the intruder can choose when to start
the protocol or what predictable number is used in the protocol. When using an unpredictable
nonce, the nonce has to be cryptographically protected in order to prevent the protocol disclos-
ing a plaintext/ciphertext pair. The following examples of unilateral authentication protocols,
which do not disclose plaintext/ciphertext pairs, do not depend on whether or not D1, D2 and
D3 are unpredictable.

Example 4: Symmetric encryption with nonce:

M1 : B ! A : EKAB(RB;D1)

M2 : A! B : D3; EKAB(RB; B;D2)

Example 5: Digital signature and asymmetric encipherment with nonce:

M1 : A! B : EB(RA; B;D1; SA(RA; B;D2))

Example 6: CCF with nonces:

M1 : A! B : RA; B;D1; FKAB(RA; B;D2)�R0

A
; FKAB(R

0

A
;D3)

Note that the �rst nonce RA in Example 6 can be replaced by a timestamp TA or sequence
number NA.

8 Using poorly synchronised clocks

The authentication protocols with timestamps speci�ed in ISO/IEC 9798 require the commu-
nicating parties to have synchronised clocks. There are several approaches to achieving secure
clock synchronisation and re-synchronisation (e.g., [18, 19, 15]). However, in some environ-
ments, time stamp based protocols need to be used although the parties do not have exactly
synchronised clocks. For example, in a mobile telecommunications system, a mobile user may
�nd it di�cult to keep a clock synchronised with the clock of its service provider. The user
and network may still wish to use a timestamp-based authentication protocol rather than a
nonce-based one to reduce the number of messages exchanged, and to allow the detection of
forced delays.

Two points must be considered when using a timestamp-based protocol in such an environ-
ment. Firstly the size of the acceptance window to match the poorly synchronised clocks must
be selected. The size of this window can be either �xed or dynamically changed depending on
the environment, in particular on the delays in the communications channels and the quality
of the clocks in use. Secondly all messages within the current acceptance window must be
logged, and second and subsequent occurrences of identical messages within that window must
be rejected (see Annex B of [3] and [14]).

9

9 Summary

This paper discusses how the properties of underlying mechanisms a�ect the design of au-
thentication protocols and how to tailor authentication protocols to match underlying mech-
anisms. A number of alternatives to the ISO/IEC 9798 protocols, which do not make such
strict requirements on the underlying mechanisms, have been proposed and analysed. We now
summarise them as follows.

� If authentication servers are not trusted by clients individually, three possible approaches
are: (1) allowing clients to choose trustworthy servers, (2) using a set of moderately
trusted servers instead of a single one, (3) using o�-line master servers.

� In order to preserve entity identity privacy, two possible methods are: (1) based on
asymmetric cryptography the entity identity can be hidden by using the public part of
the receiver's asymmetric key pair, (2) one or more temporary entity identities instead
of the real entity identity can be transmitted unencrypted.

� In order to avoid abuse of digital signatures, four possible approaches are: (1) let the
signer generate an unpredictable nonce and insert the nonce into the signed message,
(2) use di�erent keys for di�erent applications, (3) use sequence numbers rather than
unpredictable nonces to control the uniqueness of authentication exchanges, (4) use zero
knowledge techniques.

� When using a predictable nonce as a challenge, all messages, both the challenge and
response, have to be protected cryptographically. Some possible examples are: (1) in
a symmetric encryption based protocol, the challenge and response are respectively a
nonce and a function of the nonce encrypted by the shared key, (2) in a digital signature
based protocol, the private parts of the challenger's and responder's asymmetric key
pairs are used in the challenge and response respectively, (3) in a CCF based protocol,
the challenge is a nonce concatenated with a CCF of the nonce, and the response is a
CCF of a function of the nonce.

� In unpredictable nonce based protocols without unpredictable optional text �elds it is
possible to avoid disclosing plaintext/ciphertext pairs by using cryptographic protec-
tion for every message. In timestamp or sequence number based protocols without
unpredictable optional text �elds, it appears to be rather di�cult to avoid giving plain-
text/ciphertext pairs.

� When using poorly synchronised clocks in authentication protocols, one approach is to
take the following steps: (1) select the size of the acceptance window to match the
poorly synchronised clocks, (2) log all messages and reject the second and subsequent
occurrences of identical messages within the acceptance window.

References

[1] ISO/IEC 9798-1: 1991. Information technology | Security techniques | Entity authen-
tication mechanisms | Part 1: General model. September 1991.

10

[2] ISO/IEC 9798-3: 1993. Information technology | Security techniques | Entity au-
thentication mechanisms | Part 3: Entity authentication using a public key algorithm.
November 1993.

[3] ISO/IEC 9798-2: 1994. Information technology | Security techniques | Entity authen-
tication | Part 2: Mechanisms using symmetric encipherment algorithms. December
1994.

[4] ISO/IEC 9798-4: 1995. Information technology | Security techniques | Entity authen-
tication | Part 4: Mechanisms using a cryptographic check function. 1995.

[5] ISO/IEC CD 9798-5: 1995. Information technology | Security techniques | Entity
authentication | Part 5: Mechanisms using zero knowledge techniques. December 1995.

[6] M.J. Beller, L. Chang, and Y. Yacobi. Privacy and authentication on a portable com-
munications system. IEEE Journal on Selected Areas in Communications, 11:821{829,
1993.

[7] S.M. Bellovin and M. Merritt. Limitations of the Kerberos authentication system. Com-
puter Communication Review, 20(5):119{132, October 1990.

[8] L. Chen, D. Gollmann, and C. Mitchell. Key distribution without individual trusted
authentication servers. In Proceedings: the 8th IEEE Computer Security Foundations

Workshop, pages 30{36. IEEE Computer Society Press, Los Alamitos, California, June
1995.

[9] I. Damgard. Towards practical public key systems secure against chosen ciphertext at-
tacks. Lecture Notes in Computer Science 576, Advances in Cryptology - CRYPTO '91,
pages 445{456, 1991.

[10] L. Gong. Increasing availability and security of an authentication service. IEEE Journal

on Selected Areas in Communications, 11:657{662, 1993.

[11] L. Gong. Variations on the themes of message freshness and replay. In Proceedings: the

Computer Security Foundations Workshop VI, pages 131{136. IEEE Computer Society
Press, Los Alamitos, California, June 1993.

[12] ETSI/PT12 GSM-03.20. Security related network functions. August 1992.

[13] B. Klein, M. Otten, and T. Beth. Conference key distribution protocols in distributed
systems. In P. G. Farrell, editor, Codes and Cyphers, Proceedings of the Fourth IMA

Conference on Cryptography and Coding, pages 225{241. Formara Limited. Southend-on-
sea. Essex, 1995.

[14] K-Y. Lam. Building an authentication service for distributed systems. Journal of Com-
puter Security, 2:73{84, 1993.

[15] K.Y. Lam and T. Beth. Timely authentication in distributed systems. In Lecture Notes

in Computer Science 648, Advances in European Symposium on Research in Computer

Security, pages 293{303. Springer-Verlag, 1992.

11

[16] C. Mitchell. Security in future mobile networks. The 2nd International Workshop on
Mobile Multi-Media Communications (MoMuC-2), Bristol University, April 11th-13th
1995.

[17] C. Mitchell and A. Thomas. Standardising authentication protocols based on public key
techniques. Journal of Computer Security, 2:23{36, 1993.

[18] M. Reiter, K. Birman, and R. van Renesse. Fault-tolerant key distribution. Technical
Report 93-1325, Department of Computer Science, Cornell University, Ithaca, New York,
January 1993.

[19] B. Simons, J.L. Welch, and N. Lynch. An overview of clock synchronization. In Lec-

ture Notes in Computer Science 448, Advances in Fault-Tolerant Distributed Computing.
Springer-Verlag, 1990.

[20] R. Yahalom, B. Klein, and T. Beth. Trust-based navigation in distributed systems.
European Institute for System Security, Karlsruhe University, Technical Report 93/4,
1993.

12

