
On the Di�culty of Software Key Escrow

Lars R. Knudsen�

Katholieke Universiteit Leuven

Dept. Elektrotechniek-ESAT

Kardinaal Mercierlaan 94

B-3001 Heverlee

Torben P. Pederseny

Cryptomathic
�Arhus Science Park

Gustav Wieds Vej 10

DK-8000 �Arhus C

Abstract

At Eurocrypt'95, Desmedt suggested a scheme which allows individuals to en-

crypt in such a way that the receiver can be traced by an authority having additional

information. This paper shows that the proposed scheme does not have the required

properties, by devising three non-speci�ed protocols misleading the authority. We

also discuss how to repair Desmedt's scheme, such that our attacks are no longer

possible. However, by allowing slightly more general, but absolutely realistic attacks

also this improved system can be broken. In fact, we argue that software key es-

crow as proposed by Desmedt will be very hard to implement as it requires that the

distributed public key can only be used in few, well-de�ned systems. Furthermore,

even if this is achieved, most applications to key distribution can be broken.

1 Introduction

In key escrow systems, such as Clipper [5], it is necessary to be able to identify ciphertexts
sent to a person whose messages are to be read by the authorities (given a court order,
of course). The necessity of such identi�cation is discussed in [4]. In Clipper the identi�-
cation is enforced by adding a �eld, LEAF, to the ciphertext. If this �eld is missing the
decryption device will refuse to decrypt. Thus this technique depends on the fact that
this device is in a tamper resistant device, such that decryption cannot be enforced.

At Eurocrypt'95, Desmedt suggested a key escrow scheme not depending on tamper
resistant devices which allows individuals to encrypt information in such a way that the
recipient (i.e. the person able to recover the clear text) can be traced by an authority
having additional information [1]. According to [1] the investigation of such software key
escrow systems has also been initiated by NIST.

�email:knudsen@esat.kuleuven.ac.be
yemail:tppedersen@daimi.aau.dk

1



ASPeCT/DOC/KUL/005/WP23 2

Key escrow systems can only be argued secure in situations in which the participants
have not had the possibility to distribute other (secret) keys among themselves. This is a
necessary assumption, because otherwise they could have used these keys instead of those
distributed by the authority.

However, no practical key escrow system can avoid that some users use a publicly
described protocol di�erent from that devised by the authority. We will say that such a
non-speci�ed protocol succeeds if, �rst, the users obtain the same level of security as in the
speci�ed protocol, and second, the receiver can decrypt the ciphertext correctly, but the
authority cannot identify the receiver (either because the identi�cation fails, or because
a wrong user is identi�ed).

In this paper we consider the system proposed in [1] and devise three non-speci�ed
protocols, by which users can communicate secretly and mislead the authority at the same
time. By the �rst protocol it is possible to send a message to two or more collaborating
receivers, either of who can then decipher the message. If the authority tries to identify
the receiver an \innocent" individual (di�erent from the collaborating receivers) may
be identi�ed. The success of this protocol depends on the ability of two collaborating
receivers to communicate privately during key generation. Our second protocol does not
require this, and enables any registered users to communicate secretly and at the same
time mislead the authority. Our third and simpler protocol is applicable in the case where
the escrow system is used for key distribution.

This paper is organised as follows. First, Section 2 discusses possible attacks on
software key escrow. This is not a complete de�nition of such systems, but is meant
to provide a general basis for our work. In Section 3 Desmedt's proposed software key
escrow system is described briey, and in Section 4 we give three attacks on Desmedt's
scheme and suggest a redesign, which prevents the second and third attacks. However,
the redesigned system can be broken by general attacks which additionally shows that
a secure software key escrow system will in general be very hard to construct. This is
discussed in Section 5.

2 Software Key Escrow

Software key escrow is only de�ned very informally in [1] by mentioning some of the
properties, that such systems must have. It is out of the scope of this paper to give a
complete de�nition (see [4] for a discussion of the properties of escrow systems), but before
presenting our attacks the major components and properties of software key escrow are
described.

A key escrow system involves a number of persons or entities, say P1; P2; : : : ; Pn, and
an authority, A, which should be able to trace the recipient of encrypted messages (and
subsequently decrypt the message, if applicable). The system consists of a protocol (or
algorithm) for key generation, and algorithms for encrypting, decrypting and tracing as
described below. All components must be e�cient (i.e., run in polynomial time in a
security parameter).



ASPeCT/DOC/KUL/005/WP23 3

� Key generation: This is a protocol which results in each Pi getting a pair of public
and secret keys (denoted (pi; si)) and A obtaining some auxiliary information, aux.

� An encryption algorithm, E, which on input a message from a suitable de�ned
message space, M, and a public key produces a ciphertext.

� A decryption algorithm, D, which given a ciphertext and a secret key produces the
corresponding clear text.

� An algorithm, ID, which on input a ciphertext, some public information and aux
returns i 2 f1; 2; : : : ; ng. Intuitively, i is the index of the person able to decrypt the
ciphertext.

For this system to work properly, it must be required that if the keys are generated as
prescribed, then

8i 2 f1; : : : ; ng;M 2 M : D((E(M;pi); si) = M ^ ID((E(M;pi); (p1; : : : ; pn); aux) = i:

We next discuss some security aspects of such systems. In an attack, a sender S is trying to
send an encrypted message which can be decrypted by a collusion of cooperating receivers,
R1; : : : ; Rk (note that Desmedt also allows receivers to conspire [1, Footnote 10]).

We make the restriction that S may not have sent or received any message over any
private channels prior to the attack. This is quite restrictive, but as mentioned in the
introduction, key escrow is only possible if S has not had any private communication
with R1; : : : ; Rk. However, making a more restrictive model of the attack doesn't make
the attack weaker.

Let pub infS denote all information which S has received prior to the attack and
let pub infi denote all the public information, which Ri has received for i = 1; 2; : : : ; k.
Finally, let pub inf denote all information, which has been sent prior to the attack (by
any participant) including the public keys. We assume that A has this maximal amount
of information.

A generic attack runs as follows. Given a message, M 2 M, pub infS and the pub-
lic keys of R1; : : : ; Rk, S computes a number of ciphertexts c1; : : : ; cl. Based on these,
(pub infi)i=1;2;:::;k and their secret keys, R1; : : : ; Rk compute a message, M 0 2 M. The
attack is successful if

1. M 0 = M ;

2. It is not easier to �nd M given c1; : : : ; cl and (pub infj)j=1;:::;k than if M had just
been encrypted as E(M;pj) (i.e., as in the speci�ed protocol) for some j for which
Pj is among R1; : : : ; Rk.

3. A is not able to identify any of the receivers. In other words, for all i = 1; 2; : : : ; l
ID on input ci, aux and the public string (pub inf; c1; : : : ; cl) either fails or outputs
a number not identifying any of the receivers. In the �rst case A will discover the
fraud, and in the second case A will be totally mislead.



ASPeCT/DOC/KUL/005/WP23 4

A generic attack as described above can be executed in several ways. Some possibilities
are:

� One receiver. This means that k = 1.

� Many receivers: A distinction can be made whether the receivers cooperate using a
secret channel or only public discussions. Since, S is not allowed to use a private
channel it could be argued that the same should hold for the receivers. However, in
our opinion a strong key escrow system should also be able to cope with receivers
using private communication internally, since we are looking at the transfer of a
message from S to the group of receivers.

� Usage of public keys. We distinguish whether the public key is only used as input
to the prescribed encryption algorithm or it is used in other systems as well. This
may be possible, and in that case A has no way to prevent it. Note, however, that
if a di�erent encryption method is used A knows it as part of pub inf .

As mentioned initially other attacks are conceivable, but in this paper we only consider
attacks, which can be described in these terms.

3 The Proposed Solution

The scheme proposed in [1] is based on the ElGamal public key scheme (see [3]). First
determine m such that at most n � 2m individuals can participate. Let p; q1; : : : ; qm
be large, di�erent primes such that each qi divides p � 1, and let Q denote the product
Qm

i=1 qi.
1 Furthermore, let g be an element in ZZ�

p of order Q.
The authority selects these numbers together with a personal public number gj for

the j'th individual. If ej = (e1; : : : ; em) 2 f0; 1gm n f0gm uniquely identi�es the j'th
participant, then

gj = g

QQ
ei=1

qi :

Thus the order of gj is
Q

ei=1
qi, and this is di�erent for di�erent j's.

The j'th participant will have a secret key sj and a public key (gj ; yj) such that
yj = g

sj
j . An encryption of M 2 ZZ

�

p under this public key is a pair

(c1; c2) = (grj ;M � yrj );

where r 2 ZZ
�

p�1 is chosen uniformly at random. The authority can trace the owner of the
corresponding public key since c1 has order

Q
ei=1

qi, unless gcd(r; p�1) > 1 in which case
c1 might be in a smaller subgroup. However, without knowing the factorisation of p � 1
it seems hard to utilise this property in attacks against the system.

1[1] suggests that each qi is 320 bits long. Thus, as also noted by Desmedt, the scheme will be quite
slow in practice.



ASPeCT/DOC/KUL/005/WP23 5

The scheme is used only to exchange a common session key, therefore the sender should
choose a uniformly randomM 2 ZZ

�

p. OnceM has been obtained, both sender and receiver
hash M to obtain a session key [1].

In [1] it has not been suggested how to generate the user identi�er vectors ej. It
is however noted that, �rst, there is no need for the authority to reveal the vectors or
how they are computed, and second, it might be better to let the Hamming weight of all
vectors ej be identical.

4 Problems with the Solution

In the following we will �rst give a method, by which it is possible to send a message to two
(or more) collaborating receivers, who can then decipher the message. If the authority
tries to identify the receiver, a user di�erent from the collaborating receivers may be
identi�ed or the identi�cation fails (depending on the setup of the identity vectors). This
attack requires that the two receivers select the same secret key. The second attack
involves only one receiver, but requires two ciphertexts. The third attack requires only
one receiver and one ciphertext, and works in the case where the escrow system is used
for key distribution only.

4.1 Attack Involving Conspiring Receivers

Consider a scenario in which three participants cooperate, and denote these by S, R1 and
R2 corresponding to one sender and two receivers. Let the public keys of R1 and R2 be
(gi; yi) and (gj ; yj), respectively.

Below it will be shown that S can send an encryption of a message in such a way that
both R1 and R2 can decipher it, but if the authority tries to identify the recipient it will
not obtain the identity of any of these three parties.

Protocol 1 Using a private channel during key setup, R1 and R2 select si = sj = s. R1

and R2 publish a message saying that they have chosen the same secret key. S encrypts
M 2 ZZ

�

p as
(c1; c2) = ((gigj)

r;M � (yiyj)
r) ;

where r 2 ZZ
�

p�1 is chosen at random. This corresponds to encryption under public key
(gigj ; yiyj). R1 (and R2) can decipher the message as

M 0 = c2=c
si
1
:

Here c1 is in a subgroup identifying neitherR1 nor R2. Also, the protocol is easily extended
to the cases where more than two receivers choose the same secret keys.

Whether c1 identi�es a registered user depends on how the user identi�er vectors ej are
constructed. However, A will not be able to identify R1 or R2. By choosing the identity
vectors properly, it can, however, be ensured that c1 will not encode a registered user.

Note, that the authority has no way to decide (let alone prove) whether two receivers
select the same secret key (a publicly broadcast message does not serve as a proof).



ASPeCT/DOC/KUL/005/WP23 6

4.2 Attacks Involving one Receiver

Consider a scenario in which a sender S and a receiver R1 try to attack the system using
the following published protocol. Let (gi; yi) denote the public key of R1 and let (gk; yk)
be the public key of some registered user Pk 6= R1.

Protocol 2 S encrypts M 2 ZZ
�

p as follows. First, S sends to R1

C = (c1; c2) = (gr1k ;M � yri )

where r; r1 2 ZZ
�

p�1 are chosen at random. Next, S sends to R1

C� = (c3; c4) = (gr2k ; g
r
i )

where r is as in c2 and r2 2 ZZ
�

p�1 is chosen at random. Clearly, R1 (only) can decipher
the message as

M 0 = c2=c
si
4
:

Here both c1 and c3 are in a subgroup identifying the registered user Pk.
Note, that the authority even with the knowledge of the non-speci�ed protocol has no

way of deciding whether C and C� contain two messages to Pk or one message to R1.
For the application to key distribution, which is the typical situation [1], there is a

simpler protocol.

Protocol 3 S computes the session key, M = gr1k =y
r
i , and sends to R1

C = (c2; c1) = (M � yri ; g
r
i )

where r; r1 2 ZZ
�

p�1 are chosen at random. R1 deciphers the message as

M 0 = c2=c
si
1
:

The authority has no way of deciding whether C contains a message to Pk using the
speci�ed protocol or contains a message to R1 using the non-speci�ed Protocol 3.

Note that the subgroup generated by gi is by far large enough to encode all possible
session keys (Desmedt suggests that gi has order approximately 2320, which should be
compared with a, say, 128 bits session key).

The two attacks above exploit that the �rst and second part of the ciphertexts in
the ElGamal system can be separated without destroying the ability for the receiver to
decrypt, and the attacks can be prevented if both parts of the ciphertext are in the same
subgroup. We don't know how to achieve this in general, but for the application to key
distribution, it can be done by forcing M to be in the subgroup <gi> if the receiver is
Pi. This can for example be done by choosing random r2 2 ZZ

�

p�1 and setting M = gr2i . In
that way both parts of the ciphertext belong to the same receiver dependent subgroup.

However, as discussed below, there are practical problems with this solution as well.



ASPeCT/DOC/KUL/005/WP23 7

5 General Problems

In the �rst two attacks described above the public key was used only in the intended
crypto systems. However, in the setup used in [1] it is possible to use the public keys in
di�erent crypto systems. One simple example is to use the Di�e-Hellman key exchange
protocol [2]. Assume that a list of generators gk has been broadcasted. Then any two
users in the escrow system can use the generators and their own secret keys to exchange
a new session key using the Di�e-Hellman protocol with a di�erent generator each time.2

Another possibility is to replace c1 by gri gj , where Pi publishes the index j. Here, the
authority might discover the fraud (depending on the choice of user identity vectors).

Many such variations are possible, but the point we want to make is that ID must be
able to cope with all of these and we expect it will be hard to come up with a method for
doing that. The range of possible variations clearly depends on the public-key pairs and
not on the speci�ed encryption method. This is one problem with software key escrow.

Next, even if it was possible to construct a software key escrow system handling all
variations of the prescribed encryption system, A may not be able to exploit this. If the
system is used for key distribution, the authorities may not in practice be able to �nd the
actual session key being used. Consider the case where two users, Pi and Pj, are going
to use session keys K1;K2; : : : ;Km over a period of time. Using the escrowed public key
system, they exchange a key kl (which of course the authorities may be able to �nd).
Then they compute the l'th session key as

Kl = H(Kl�1; kl);

where e.g. H is a one-way hash function. Of course the method for doing this must be
published (i.e., the authorities know it), but the authority will only be able to �nd Kl if
it knows all previous keys. In other words, the authorities must tape all key exchanges!

6 Conclusion

In this paper we have shown that the scheme proposed by Desmedt does not have the
required properties. We devised three non-speci�ed protocols misleading the authority.
We showed how to repair Desmedt's scheme, such that our attacks are no longer possible,
but by allowing slightly more general attacks also this improved system was broken. We
are convinced that the software key escrow as proposed by Desmedt will be very hard
to implement as it requires that the distributed public keys can only be used in few,
well-de�ned systems. In general, we showed how most key escrow applications to key
distribution can be broken.

2Note, that a user, Pi, can raise any generator gk to his secret key by choosing c2 2 ZZ
�
p at random and

asking his device to decrypt the cipher text (gk; c2). If this returns the message, M , then the required
result can be obtained as c2=M mod p.



ASPeCT/DOC/KUL/005/WP23 8

References

[1] Y. Desmedt. Securing traceability of ciphertexts { towards a secure software key
escrow system. In L.C. Guillou and J.-J. Quisquater, editors, Advances in Cryptology
- EUROCRYPT'95, LNCS 921, pages 147{157. Springer Verlag, 1995.

[2] W. Di�e and M. Hellman. New directions in cryptography. IEEE Trans. on Infor-
mation Theory, IT-22(6):644{654, 1976.

[3] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. on Information Theory, IT-31:469{472, 1985.

[4] Y. Frankel and M. Yung. Escrow Encryption Systems Visited: Attacks, Analysis and
Design. In Advances in Cryptology - proceedings of CRYPTO 95, volume 963 of Lecture
Notes in Computer Science, pages 222{235. Springer-Verlag, 1995.

[5] A proposed federal information processing standard for an escrowed encryption stan-
dard (EES). Federal register, July 30, 1993.


