
Analysis of a hash-function of Yi and Lam�

Keith Martin

Katholieke Universiteit Leuven,

ESAT-COSIC,

Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

keith.martin@esat.kuleuven.ac.be

Chris J. Mitchell

Information Security Group,

Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK

C.Mitchell@rhbnc.ac.uk

16th September 1998

Abstract

A block cipher based hash-function of Yi and Lam [5] is analysed and shown to be
signi�cantly weaker than originally intended.

1 Introduction

Yi and Lam [5] give a method for deriving a 2m-bit hash-function from a block cipher
with an m-bit block length and a 2m-bit key length. We show that the hash-function is
somewhat less secure than claimed in [5]; indeed, it appears to o�er no signi�cant gains
over the `single length' block cipher based hash-function in ISO/IEC 10118-2 [1].

2 The Yi-Lam hash-function

The hash-function is based on the iterated use of a round-function, which is, in turn,
block cipher based. Data to be hashed is split into m-bit blocks, with padding added,
as necessary, to the �nal block. An extra �nal block is added, containing an encoding
of the data's bit-length prior to padding. We denote the resulting string of blocks by:
M1;M2; : : : ;Mn, where Mn contains the encoded length value.

Denote block cipher encryption by EK(M), whereM is an m-bit block and K is a 2m-bit
key (we also use D to denote decryption). The hash-function is computed by recursively
computing the following values, for i successively equal to 1; 2; : : : ; n.

Hi = EKi
(Mi)�Mi;

�This work was supported by the European Commission under ACTS project AC095 (ASPeCT).

1

Gi = (EKi
(Mi)�Gi�1)[+]Hi�1; (1)

where:

� G0 and H0 are `speci�ed initial values'1,

� � denotes bit-wise exclusive-or of blocks,

� [+] and [�] denote addition and subtraction modulo 2m, where m-bit blocks are
treated as binary representations of numbers in the range [0; 2m� 1],

� Ki is the 2m-bit key obtained by concatenating Gi�1 and Hi�1 (1 � i � n), and

� the 2m-bit hash-code is the concatenation of Gn and Hn.

Unfortunately the fact that the triple Gi�1; Gi and Hi can be used to compute Mi in
(1) means that this hash-function is susceptible to three solving one-half attacks [2]. For
completeness we describe in detail how to implement the general attacks described in [2].
We assume throughout that the block cipher behaves as a random function; if it does not,
then other attacks are likely to be possible.

3 Finding a collision

Suppose an attacker wishes to �nd two di�erent n-block data strings yielding the same
hash-code. The attacker chooses an arbitrarym-bit value Gn�1 and arbitrary data blocks
M1;M2; : : : ;Mn�3. The attacker then computes the pair of values (Gn�3; Hn�3). The
attacker now performs the following steps 2m=2 times.

1. Choose a data block Mn�2.

2. Compute (Gn�2; Hn�2) . Let Kn�1 be the 2m-bit cipher key obtained by concate-
nating (Gn�2; Hn�2).

3. Compute Mn�1 = DKn�1
((Gn�1[�]Hn�2)� Gn�2).

4. Compute Hn�1 = EKn�1
(Mn�1)�Mn�1.

Each pair of data blocks (Mn�2;Mn�1) and the corresponding Hn�1 are stored. At
the end of this process the attacker checks all the m-bit values Hn�1 (there will be
2m=2 of them) to see if any pair are equal. By the \birthday problem" there is a high
probability that such a pair will exist. If the matching values of Hn�1 correspond to
the message pairs (Mn�2;Mn�1) and (M 0

n�2;M
0

n�1) then it is simple to verify that the
sequences (M1; : : : ;Mn�3;Mn�2;Mn�1) and (M1; : : : ;Mn�3;M

0

n�2;M
0

n�1) both hash to
(Gn�1; Hn�1). To complete the attack we append the additional block Mn to each se-
quence, where Mn is a valid encoding for a message containing (n � 1)m bits. We then
have two data strings with the same hash-code.

Each iteration of the above steps involves 3 encryptions and decryptions. Hence the attack
complexity is 3:2m=2, substantially less than the brute force value of around 2m.

1Note that it is not clear whether Yi and Lam intend these values to be �xed for all applications of the
hash-function, although, since this is generally the most secure option, we assume that they are �xed, at
least within a particular domain of use.

2

Note that, to get two messages of (di�erent) pre-determined meanings with the same
hash, then we perform two sets of 2m=2 iterations of the above steps, the �rst (second)
set being performed with 2m=2 variants of the �rst (second) message. A match between
the �rst and second sets will give the desired `collision'.

4 Finding a second pre-image

Note that this attack was referred to as a \target attack" in [5]. Suppose an attacker has
a data string M1;M2; : : : ;Mn and the corresponding hash-code (Gn; Hn). We show how
the attacker can �nd another data string (of the same length) with the same hash-code.

The attacker �rst computes the pair (Gn�1; Hn�1), by hashing all but the last block of
the data string. The attacker then chooses data blocks M�

1 ;M
�

2 ; : : : ;M
�

n�3 and computes
the pair of values (G�

n�3; H
�

n�3). The attacker now performs the following steps as many
times as necessary.

1. Choose a data block M�

n�2.

2. Compute the pair (G�

n�2; H
�

n�2). Let K�

n�1 be the 2m-bit cipher key obtained by
concatenating (G�

n�2; H
�

n�2).

3. Compute M�

n�1 = DK�

n�1
((Gn�1[�]H

�

n�2)� G
�

n�2).

4. Compute H�

n�1 = EK�

n�1
(M�

n�1)�M
�

n�1.

5. If Hn�1 = H�

n�1 then it is simple to verify that (M�

1 ;M
�

2 ; : : : ;M
�

n�1;Mn) has hash-
code (Gn; Hn), i.e. we have a second pre-image for the speci�ed hash-code. It is
important to note that Mn is the same as the value for the original message, since
this encodes the message length.

The probability of success in each iteration of the above steps is 2�m, and hence the
expected number of times they must be performed to �nd a (second) pre-image is 2m�1.
Each iteration involves 3 encryptions or decryptions, and hence the expected attack com-
plexity is 3:2m�1, signi�cantly less than the 22m required for a brute force attack.

5 Finding a pre-image

Conducting a pre-image attack is only marginally more di�cult than a second pre-image
attack. We note that the full details of such an attack were not provided in [2]. In this
case the attacker has a hash-code (Gn; Hn), but does not know the corresponding data
string. We show how to �nd a data string giving this hash-code.

The attacker starts by choosing a value Mn, which encodes a valid length for an (n� 1)-
block data string (e.g. the value m(n�1)). The attacker now performs the following steps
as many times as necessary.

1. Choose an m-bit block H��

n�1.

2. Find the unique value G��

n�1 which satis�es

Hn �Mn � G
��

n�1 = Gn[�]H
��

n�1:

Let K�

n be the 2m-bit cipher key obtained by concatenating (G��

n�1; H
��

n�1).

3

3. Check whether or not EK�

n
(Mn) = Hn �Mn. If so, then exit this iterative process

and save (G��

n�1, H
��

n�1).

Note that it is not guaranteed that the above steps will succeed in �nding a pair (G��

n�1,
H��

n�1), since such a pair will not always exist; however, the probability of success is
greater than 0.5. Moreover, if the attacker happens, by accident or design, to choose the
same value of Mn as was used to originally generate the hash-code, then the existance of
at least one pair is guaranteed. The attacker now proceeds as for the second pre-image
attack, except with (Gn�1; Hn�1) replaced by (G��

n�1; H
��

n�1).

The success probability for both the search for (G��

n�1; H
��

n�1) and the pre-image search
is 2�m, and so the expected number of times they must be performed is 2m�1. Each
iteration of the �rst and second sets of steps respectively involves 1 and 3 encryptions or
decryptions. The expected attack complexity is thus 2m+1, again signi�cantly less than
the complexity of a brute force attack.

6 Conclusions

It has been shown that contrary to claims in [5] the hash-function of Yi and Lam is not
signi�cantly more secure than an m-bit hash function of the type described in ISO/IEC
10118-2 [1]. This is due to fatal design
aw that leaves the hash-function susceptible to
the \solving one-half attacks" described in [2]. For recent work on how best to design a
hash-function using a block cipher see [3, 4].

The authors would like to thank Bart Preneel and Vincent Rijmen for useful discussions.

References

[1] International Organization for Standardization, Gen�eve, Switzerland. ISO/IEC
10118{2, Information technology|Security techniques|Hash-functions; Part 2;

Hash-functions using an n-bit block cipher algorithm, 1994.

[2] L.R. Knudsen, X. Lai and B. Preneel. Attacks on fast double block length hash func-
tions. Journal of Cryptology, 11:59{72, 1998.

[3] L.R. Knudsen and B. Preneel. Hash functions based on block ciphers and quaternary
codes. In K. Kim and T. Matsumoto, eds., Advances in Cryptology, Proc. Asiacrypt

'96, Lecture Notes in Computer Science 1163, pp. 77{90. Springer-Verlag, Berlin,
1996.

[4] L.R. Knudsen and B. Preneel. Fast and secure hashing based on codes. In B. Kaliski,
ed., Advances in Cryptology, Proc. Crypto '97, Lecture Notes in Computer Science
1294, pp. 485{498. Springer-Verlag, Berlin, 1997.

[5] X. Yi and K.Y. Lam. Hash function based on block cipher. Electronics Letters,
33:1938{1940, 1997.

4

