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Abstract. The security of two message authentication code (MAC) al-
gorithms is considered: the MD5-based envelope method (RFC 1828),
and the banking standard MAA (ISO 8731{2). Customization of a gen-
eral MAC forgery attack allows improvements in both cases. For the
envelope method, the forgery attack is extended to allow key recovery;
for example, a 128-bit key can be recovered using 267 known text-MAC
pairs and time plus 213 chosen texts. For MAA, internal collisions are
found with fewer and shorter messages than previously by exploiting the
algorithm's internal structure; consequently, the number of chosen texts
(each 256 Kbyte long) for a forgery can be reduced by two orders of mag-
nitude, e.g. from 224 to 217. This attack can be extended to one requiring
only short messages (224 messages shorter than 1 Kbyte) to circumvent
the special MAA mode for long messages. Moreover, certain internal
collisions allow key recovery, and weak keys for MAA are identi�ed.

1 Introduction

Message authentication code (MAC) algorithms are symmetric-key techniques
which provide data origin authentication and data integrity. They have received
widespread use in many practical applications, e.g. banking [9]. The primary
MAC algorithms used historically have been CBC-MAC and MAA. CBC-MAC
[10, 11] is derived from the cipher-block chaining (CBC) mode of block ciphers
such as DES; some theoretical support for this method has been given [1]. The
Message Authenticator Algorithm (MAA) is an ISO standard [10] which dates
back to 1984 [7]. The so-called envelope-based MACs of Tsudik [18] and others
have also received recent attention (see e.g. Kaliski and Robshaw [12]). Recently
several new practical MAC algorithms were proposed: XOR-MAC by Bellare et
al. [2], HMAC by Bellare et al. [4], MDx-MAC by Preneel and van Oorschot [14],
and the bucket-hashing MAC of Rogaway [16].
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Envelope-based MACs o�er speed and simplicity. The basic technique in-
volves using a secret key as part of the input to an unkeyed hash function. The
envelope method of RFC 1828 [12, 17], arising from the IPSEC working group
of the Internet Engineering Task Force (IETF), prepends and appends a secret
key K to the message input: MAC(x) = h(KkpkxkK). Here k denotes concate-
nation, and p denotes some padding bits. This construction was supported by
a security proof under assumptions regarding the pseudo-randomness of MD5
[3]. An alternative HMAC [4], involving two invocations of h(�), is de�ned as
MAC(x) = h(Kkp1kh(Kkp2kx)), where p1 and p2 are strings of padding bits
which pad K out to a full block; a version without padding was proposed earlier
in [12]. The security of HMAC can be proven based on the assumptions that h(�)
is collision resistant for a random and secret IV , and that the complete output
of the compression function is hard to predict when its �rst input is random and
secret.

Recent systematic analysis of MACs includes a new general attack by Preneel
and van Oorschot [14] which applies to all iterated MACs. It involves a birthday
attack using known text-MAC pairs, after which additional chosen text-MAC
pairs (e.g. a single text for the most common version of CBC-MAC) allows MAC
forgery. Overall this requires about 2n=2 known text-MAC pairs, where n is the
bitlength of the internal memory (chaining variable) of the MAC algorithm.

The current paper adapts and re�nes this attack schema speci�cally for the
envelope method (e.g. RFC 1828) and for MAA, yielding signi�cant improve-
ments and new results in each case. The sequel is organized as follows. x2 re-
views de�nitions and the general attack on iterated MACs. x3 presents a new
key recovery attack on the envelope method, while x4 gives an optimized forgery
attack plus a new key recovery attack on MAA. x5 concludes the paper.

2 Background De�nitions and Review

A hash function h map bitstrings of arbitrary �nite length into strings of �xed
length (say m bits). An unkeyed hash function does not involve secret parame-
ters. Such a function is said to be one-way if it is both preimage-resistant (it is
computationally infeasible to �nd any input which hashes to any pre-speci�ed
output); and second-preimage resistant (it is computationally infeasible to �nd
any second input which has the same output as any speci�ed input). Ideally,
�nding a preimage or second preimage requires about 2m operations. A one-way
hash function is said to be collision resistant if it is furthermore computation-
ally infeasible to �nd a collision (i.e. two distinct inputs that hash to the same
result). For ideal such functions, no collisions may be found more e�ciently than
by a birthday-like attack of about 2m=2 operations.

A keyed hash function h has a secret k-bit key K as a secondary input;
when used for message authentication, such a function is called a message au-
thentication code (MAC). Computing hK(x) (denoted simply h(x) when K is
understood) must be easy, given h, K, and an input x. An adversary able, with-
out initial knowledge of K, to �nd a corresponding MAC for any single message,



is said to be capable of existential forgery . An adversary able to determine the
MAC for a message of his choice is said to be capable of selective forgery . Ideally,
existential forgery is computationally infeasible; a less demanding requirement
is that only selective forgery is so. Practical attacks often require that a forgery
is veri�able, i.e. that the forged MAC is known to be correct (e.g. before at-
tempting to use it to advantage) with probability near 1. A key recovery attack
is more devastating than forgery { here an adversary is able to recover K itself,
and thus carry out arbitrary selective forgeries. Ideally, any attack allowing key
recovery requires about 2k operations. Veri�cation of such an attack requires
k=m text-MAC pairs.

In a chosen-text attack , an adversary may request and receive MACs corre-
sponding to a number of messages of his choice, before completing his (forgery
or key recovery) attack. For forgery, the forged MAC must be on a message
di�erent than any for which a MAC was previously obtained. In an adaptive
chosen-text attack, requests may depend on the outcome of previous requests.

Iterative hash functions and MACs h process inputs in successive �xed-size
b-bit blocks. A message or text input x is divided into blocks x1 through xt,
the last of which is padded appropriately if required for completeness. h involves
a compression function f and an n-bit (n � m) chaining variable Hi between
stage i� 1 and stage i: H0 = IV ; Hi = f(Hi�1; xi); 1 � i � t; h(x) = Ht.

MACs often involve an output transformation g applied to Ht, yielding a
MAC result h(x) = g(Ht). The secret key may be employed in the IV , in f ,
and/or in g. For an input pair (x; x0) with h(x) = g(Ht) and h(x0) = g(H 0

t),
a collision h(x) = h(x0) is an internal collision if Ht = H0

t, and an external
collision if Ht 6= H 0

t but g(Ht) = g(H0

t).
A general forgery attack [14] is applicable to all iterated MACs. Its feasibility

depends on the bitsizes n of the chaining variable and m of the hash-result, and
the number s of common trailing blocks of the known texts (s � 0). The basic
version is a known-text attack; if the message length is an input to the output
transformation, all messages must have equal length. Two results are cited for
convenience.

Lemma1 [14]. An internal collision for an iterated MAC allows a veri�able
MAC forgery, through a chosen-text attack requiring a single chosen text.

This follows since for an internal collision (x; x0), h(x k y) = h(x0 k y) for any
single block y; thus a requested MAC on the chosen text x k y provides a forged
MAC (the same) for x0 k y. The general forgery attack (Proposition 2) depends
on the nature of the compression function f . In MAA and in envelope methods
based on MD5 [15], the compression function f is considered to behave as a
random mapping for �xed xi. The parameters of the original attack [14] may be
improved slightly, as stated in Proposition 2.

Proposition2. Let h be an iterated MAC with n-bit chaining variable, m-bit
result, a compression function f which behaves like a random function (for �xed
xi), and output transformation g. An internal collision for h can be found using
u known text-MAC pairs, where each text has the same substring of s � 0 trailing



blocks, and v chosen texts. The expected values for u and v are: u =
p
2=(s+ 1) �

2n=2; v = 0 if g is a permutation or s + 1 � 2n�m+6, and otherwise

v � 2

�
2n�m

s+ 1
�
�
1� 1

e

�
+

�
n�m � log2(s+ 1)

m� 1

�
+ 1

�
: (1)

3 New Key Recovery Attack on the Envelope Method

The envelope method as proposed by Tsudik [18] consists of respectively prepend-
ing and appending secret keys K1 and K2 to the message input: MAC(x) =
h(K1kxkK2). An Internet proposed standard recommended by the IP Security
(IPSEC) working group for authentication of IP datagrams, namely RFC 1828
[17], speci�es a variant of this using MD5 and a single key K: MAC(x) =
h(KkpkxkK). Here p denotes some padding bits chosen such that Kkp �lls the
�rst block, and allows for a security proof assuming pseudo-randomness of MD5
[3]. RFC 1828 allows a variable length key, and mandates support for bitlengths
up to 128 bits. An important consideration motivating use of envelope MACs is
that they require minimal implementation and deployment e�ort: code for the
underlying unkeyed hash function can be used without modi�cation.

A divide and conquer key recovery attack on the envelope method with dis-
tinct keys K1 6= K2 was given by Preneel and van Oorschot [14]. Rather than an
exhaustive search over k1+k2 bits (where ki =jKij and k1 = n is the bitlength of
the chaining variable), �rst K1 and then K2 are found. For an MD5-based MAC,
the attack uses Proposition 2 with about 264 known text-MAC pairs (assume
s = 0 for simplicity) to �nd an internal collision. An o�-line exhaustive search
involving 2k1 operations results in a small set of possible keys K1 from which the
correct key can be determined with a few chosen texts, reducing security to an
appended secret key alone. K2 is then determined by o�-line exhaustive search.
K1 6= K2 thus o�ers substantially less additional security than one would hope,
relative to k1 bits of security for K1 = K2, although the former nonetheless
requires an extremely large number of known text-MAC pairs. In any case, for
k1 = 128, a search requiring 2k1 operations is completely infeasible.

We describe now a new divide and conquer key recovery attack. It applies
to the method of RFC 1828 (also proposed in [12]), and exploits the padding
procedure of MD5, which was not designed to conceal secret keys. This attack
again requires a very large number of known text-MAC pairs (variable depending
on choices made, but on the order of 264); however, the work complexity for key
recovery is decreased dramatically from previous numbers (from 2128 to 266).

The new key recovery attack is applicable to the basic envelope method
including the MD5-based RFC 1828 (IPSEC) variant and other hash functions
using MD5-like padding. It can also recover the trail key of the variation with
distinct keys. First recall the padding procedure for MD5 for a message input
y of bitlength b =jy j. A single `1' bit is appended to y, followed by z `0' bits
(0 � z � 511), where z is chosen to make the sum of b and the bitlength of
the padding equal 448 mod 512. The 64-bit integer representation of b is then



appended to complete the last block. For the special case of the IPSEC envelope
method with a 128-bit key, the data, after padding, processed by the compression
function of MD5 has the form: KkpkxkKk1000 : : :000kb. Here x is the message
on which a MAC is desired, y = KkpkxkK, and b = 512 + 128+ jxj. De�ning
r =jxj mod 512,

z =

�
319� r if 0 � r � 319
831� r if 320 � r � 511

If z 2 [0; 319], the key K will lie completely in the last block, and the number
of message bits in the last block is r. For z 2 [320; 446], z � 319 bits of the key
K will be in the second last block, with the remaining key bits in the last block.
For z 2 [447; 511], K falls completely in the second last block. In the latter two
cases, there will be r message bits in the second last block (see Figure 1).

second last block last block

z = 127 512 bits of message r bits K z + 1 b

z = 383 r bits K K z + 1 bits b

z = 511 r bits K z + 1 bits b

Fig. 1. Message, key, padding, and length �elds in �nal blocks of envelope method.

De�ne an internal collision as a pair of inputs (x; x0) which produce the same
MAC output, and for which the internal chaining variables collide just before the
block containing the key (or any partial key). Since such a collision is detectable
only through a collision for the MAC, all blocks following the internal collision
must be identical in the two members of the colliding input pair. Therefore the
attack of Proposition 2 requires the lengths of all the messages to be equal, and
the last r message bits (which are either in the last or in the second last block)
to be the same. If r = 0 (i.e. jxj= 0 mod 512), there is no condition on the last
message bits.

Consider the case r = 511 (i.e. z = 320). There is a single key bit in the second
last block. Therefore 511 message bits in the second last block must be identical
to allow for identi�cation of an internal collision. However, if we simply guess
that key bit, the unknown key is restricted to the last block, and collisions after
the second last block are again internal collisions (or almost internal collisions).
A �rst observation is that this reduces the constraint on the message. A more



signi�cant consequence is that by using the attack of Lemma 1, one can actually
verify the guess for that key bit. This leads to a powerful divide and conquer
attack for extracting the key, which may be illustrated as follows.

Let x be a 480-bit message. Then r=480, z=351, and the �rst block contains
the padded key K. The second block contains 480 message bits and 32 key bits.
The last block contains the 96 remaining key bits, a `1' bit followed by 351 `0'
bits, and the 64-bit length �eld b=1120 (i.e. 512 + 128 + 480). If the MACs for
about 264:5 such messages x are known, one may expect (by Proposition 2 with
n=128=m, s=0) about two collisions: one after the second block (an almost
internal collision), and one after the last block (an external collision). Denote
the almost internal colliding pair (x; x0). Construct 232 message pairs of the form
(xkkiky; x0kkiky), where ki is 32 bits and ranges over all 232 possible values,
and y is now an arbitrary block. Request the 233 corresponding MACs. When
ki takes on the value of the correct partial key, the two MACs agree; moreover,
with probability � 1� 1=296, no other pairs of MACs will be equal. This reveals
32 key bits. For the external collision, with overwhelming probability none of
the pairs gives the same MAC.

It is easy to extend the attack to �nd further key bits. One possibility is
to repeat the above procedure using messages of length 448 bits, yielding the
next 32 key bits. The remaining 64 key bits are then most e�ciently found (o�-
line) exhaustively. Alternatively, one could begin with messages of bitlength 448,
which would require 266 chosen texts, but reveal 64 bits of the key immediately.
This reasoning allows the following general result:

Proposition3. There exists a key recovery attack on one-key envelope methods
such as that of RFC 1828, which requires q = d64=te steps (1 � t � 64) to �nd
64 bits of the key. Step i (1 � i � q) requires

p
2 � 264 known texts of bitlength

ci � 512� t � i for some �xed ci > 1, and 2t+2 chosen texts.

Table 1 summarizes the complexity to �nd 64 key bits in t-bit slices, for di�erent
values of t. If a 128-bit key is used with the remaining bits found by exhaustive
search, the overall time complexity is on the order of the number of known texts.
The attack is easily modi�ed for keys exceeding 128 bits; e.g. recovering a 256-bit
key in three 64-bit slices requires about 266 known text-MAC pairs and the same
order of chosen texts. Thus relative to this attack, this MAC design makes very
poor use of key bits beyond 128. For context, recall that linear cryptanalysis of
DES [13], viewed as a tremendous breakthrough, requires 243 known texts against
a 56-bit key, while di�erential cryptanalysis requires 247 chosen texts [5]. The
above key recovery attack, relative to its larger 128-bit key, requires substantially
fewer known texts (and time); this indicates that the general construction fails
to make good use of key bits.

The above attack requires that jxj mod 512 2 [448; 511], because the number
of bits of K in the penultimate block must be between 1 and 64 (the attack
becomes less feasible if more than 64 bits need be guessed); and that the known
texts have the same number of blocks, because the value of b must be the same
for the two messages forming the internal collision. However, if a set of about 273

\short" (say ten or fewer blocks) known messages is available, we expect to �nd



Table 1. Complexity of key recovery attack on envelope method (128-bit key)

t # known texts # chosen texts

4 268:5 210

8 267:5 213

16 266:5 220

32 265:5 235

64 264:5 266

among those a su�cient number of messages suitable for the attack (without
�xing t in advance); the attack will still require a much smaller number (less
than 220) of chosen texts to identify the key bits.

The attack relies on the key being split across blocks. While it is not prac-
tical, vulnerability to it represents a certi�cational weakness, and indicating an
architectural 
aw. One concludes it is more secure to isolate the entire trailing
key in a separate block (together with the message length and possibly a pseudo-
random string). However, this requires changing the padding procedure for MD5,
contravening an original motivating factor { being able to call the underlying
hash function directly. Nonetheless, customized MACs (as suggested in [12, 14])
appear to o�er a more secure alternative to constructions relying directly on
unkeyed hash functions. Note also that no one has yet evaluated functions such
as MD5 with respect to pseudo-randomness properties (especially if only part of
the input is replaced by a secret key).

4 New Forgery and Key Recovery Attacks on MAA

In this section, a preliminary description of MAA is followed by a discussion of
how the basic attack of Proposition 2 may be customized for MAA, and opti-
mized using special messages. An extension of these to the special mode of MAA
for long messages is then presented, followed by a new key recovery attack.

4.1 Description of MAA

Designed by Davies, MAA was presented at Crypto'84 [7, 8] and is in the ISO
8731-2 banking standard [10]. On PCs and workstations it runs only 40% slower
than MD5. The algorithm consists of three parts. The prelude is a key expansion
from 64 bits (two 32-bit words) to 192 bits (six 32-bit words). From the �rst key
word are derived the parameters H10, V , S; from the second, the parameters
H20, W , T . The prelude, which needs only be executed during installation of a
new key, also eliminates \weaker bytes" 00x or FFx in keys and parameters. The
two words of the chaining variable (H1i;H2i) are initialized with (H10;H20).
The main loop mixes the chaining variable with message word xi (0 � i � t�1)



and key dependent parameters V and W . It consists of two inter-dependent
parallel branches with logical operations, addition modulo 232 ( ), and mul-
tiplication modulo 232 � 1 (
1) and modulo 232 � 2 (
2); due to the peculiar
de�nition (see [10]), the result may actually be equal to 232 � 1 respectively
232 � 2. In the coda, S and T are introduced as message blocks to be processed
as per the main loop. The 32-bit MAC result is computed using addition mod
2: Ht+2 = H1t+2 �H2t+2.

A single iteration of the main loop can be described as follows:

Step 1: V := rol(V ); Ki := V �W ; % rol denotes 1 bit cyclic shift left
Step 2: t1 := H1i�1 � xi; t2 := H2i�1 � xi;

H1i := t1 
1 (((Ki t2) _A) ^C); H2i := t2 
2 (((Ki t1) _B) ^D);

Here A = 02040801x, B = 00804021x, C = BFEF7FDFx, and D = 7DFEFBFFx.
These constants �x 8 bits of the second factor (four to 0, and four to 1). The
output transformation g consists of the coda iterations (where the key-dependent
S and T play the role of xi) and �nal XORing as noted above.

4.2 Basic MAC Forgery on MAA

The basic attack of Proposition 2 can be applied to MAA with parameters n =
64, m = 32. However, an internal collision (i.e. a collision for H1 and H2) yields
an external collision only if V is in the same position (the number of bits over
which V is rotated e�ectively adds 5 bits to the 64-bit MAA internal memory).
This e�ect can be countered by using messages of the same length modulo 32, or
messages for which the common trailing blocks start at the same position modulo
32. Note however that this is not strictly necessary: if the number of known texts
given by Proposition 2 is multiplied by about 32, the condition on the length
can be omitted. A second observation is that the output transformation consists
of two iterations, providing two ways to obtain an external collision; we expect
two additional external collisions after processing S and T (for 232:5 messages),
which accounts for (an expected) four additional chosen texts to eliminate them.
A third observation is that in the second chain, the modulus (232 � 2) is even,
while the second multiplier is odd (the least signi�cant bit of D is 1). This
implies that the least signi�cant bit of H2i, denoted LSB(H2i), is equal to the
LSB(H2i�1 � xi). Consequently, LSB(H2t) = LSB(H20)�

Lt
i=1 LSB(xi), and

the 64-bit internal memory can be reduced to 63 bits by making the second term
of the right hand side a constant. This assumes that the attacker can choose texts
for which the value of this sum is constant.

Table 2 gives the parameters of the attack for various values s. Here n = 63,
m = 32, and the last column counts the total number of bytes of the known and
chosen texts. Increasing s allows a reduction in the number of known and chosen
texts (the `known' messages begin to resemble `chosen' messages), but increases
the total number of bytes which must be processed with the known key. This
situation can be improved (as subsequently explained) by selecting messages with
a special structure. Since fast MAA implementations process 3{4 Megabytes per
second, processing 232 bytes requires about 20 minutes.



Table 2. Parameters for basic forgery attack on MAA

# com. # known texts length (bytes) # chosen texts length (bytes) total size
blocks s u 4(s+ 1) v+ 1 4(s+ 2) (bytes)

0 232 � 4 231:3 � 8 235:2

28 � 1 228 � 210 223:3 � 210 + 4 238:1

216 � 1 224 � 218 215:3 � 218 + 4 242:0

232 � 1 216 � 234 4 � 234 + 4 250:0

4.3 Optimized MAC Forgery using Special Messages

As noted by the designer of MAA, 232 � 1 has several small prime factors (in
fact 232 � 1 = 3 � 5 � 17 � 257 � 65537), and if one of these appears in H1i, it
might remain there due to multiplicative properties. The fact that xi is added
in every iteration should destroy this property; however if all xi's for i � i0
are chosen equal to 0, such a factor would remain nonetheless. If p is a prime
factor of 232� 1, the probability that i is the smallest index for which H1i0+i is
divisible by p is given by 1

p (1� 1
p )
i, a geometric distribution with expected value

i = p�1 for success (note this assumes that the H1i's are uniformly distributed;
this assumption has been con�rmed by some computer experiments). Thus, after
about 216 iterations (each with xi = 0), H1i will be divisible by all its prime
factors and thus equal to FFFFFFFFx (and not 00000000x, due to the special
de�nition of 
1). It is easy to prove the following:

Lemma4. Let p be a prime divisor of 232 � 1. If i = �(p � 1) zero blocks are
inserted, starting with xi0 , the probability that p divides H1i0+i is 1� e��.

Once H1i is constant, �nding a collision for H2i yields an internal collision.
Consider the second chain. For H1i = FFFFFFFFx and xi = 00000000x, H2i =
H2i�1 
2 Ui, where Ui = ((FFFFFFFFx Ki) _ B) ^ D. Note the value of Ui
depends only on i mod 32. To make this equation independent of i, �rst de�ne
~U =

Q31
i=0 Ui (with multiplication mod 232� 2). Then note H2i+32 = H2i�1
2

~U . Since LSB(D) = 1, and 231� 1 is a Mersenne prime, all Ui's are elements of
the cyclic subgroup (of order 231�1) of ZZ232�2. This implies that the same holds

for ~U , and thus by Fermat's (little) theorem we have that ~U231�2 mod (232�2) =
1. This may be used directly in a forgery attack as follows. A message ending
with 216 zero blocks (denoted Xk0216 ; here 0i denotes i blocks of 32 zero-bits)
has high probability of having H1i = FFFFFFFFx. If the MAC for such a message
is requested, with high probability Xk0216k032�(231�2) will have the same MAC.
This existential forgery, while not likely of practical use (the message ends in
about 238 zero bytes), illustrates a certi�cational weakness of MAA.

Proposition5. An existential forgery on MAA is possible which requires a sin-
gle chosen text of about 218 bytes to forge the MAC for a text of length about 238

bytes.



The above assumptions are however worst case (for the attacker): for certain
values of V andW , the Ui's will have a shorter period. This leads to the de�nition
of weak keys for MAA. A �rst type of weak keys are external keys which result
in an internal key V of rotational period < 32. For such keys, rotating V over
2, 4, 8, or 16 positions will yield V again (there are no keys V of period 1 since
the all zero and all one values are eliminated). There are respectively 2, 14,
254, and 64 516 values of V for which this holds.1 One can �nd by exhaustive
examination which values of the �rst 32-bit word of the input key yield such
values of V . Therefore the number of weak keys is independent of the second
input key word, and thus 232 times larger. If V has period r, the forgery above
requires r � (231 � 2) zero blocks. Verifying the forgery allows an attacker to
obtain information on V , which is undesirable since it leaks partial key bits. It is
relatively easy (x4.5) to detect whether a key is weak, leading to a key recovery
attack on these keys. These observations suggest that the fact that V depends on
only 32 bits of the input key is a design weakness in MAA.

A second class of weak keys are keys for which ~U has small order. The order
of ~U must divide D, where D is the order of ZZ�

M for M = 232� 2; in some cases
the order of ~U is considerably smaller than D. More speci�cally, D = �(M ) =
�(2) ��(231�1) = 231�2 = 2 �32 �7 �11 �31 �151 �331, where �() is Euler's totient
function. For each divisor d of D, the number of elements of order exactly d is
�(d), and the total number of elements whose order divides d is exactly d. For
example, from d = D=331 = 6 487 866, it follows that 1 key in 331 will yield a
forgery after appending about 6 487 866 � 32 � 4 = 229:6 zero bytes.

It is possible to obtain an internal collision using shorter messages (cf. Ta-
ble 2) by exploiting the properties of zero blocks presented in Lemma 4. This
requires chosen texts rather than known texts. As discussed above, for a text
with a su�ciently large number of trailing zero blocks, H1t becomes constant
(i.e. FFFFFFFFx) with high probability; if about

p
2 �216 such texts are available,

one expects by the birthday paradox to �nd two texts with colliding values for
H2t as well. The third observation of x4.2 implies that 216 such texts will su�ce
if the sum of the least signi�cant bits of the message blocks is kept constant. We
will assume that this condition is satis�ed. Note that the attack can be extended
easily to the case where the zero blocks are followed by some arbitrary common
trailing blocks.

The exact number of chosen texts for this improved variant can be computed
as follows. Lemma 4 (with p = 216 + 1) implies that among r = 216=(1 � e��)
messages each containing �216 trailing zero blocks for some �, we expect to
�nd about 216 messages for which the �rst chaining variable H1t becomes equal
to FFFFFFFFx (for simplicity it is assumed that � � 1=32, since otherwise the
second prime factor (p = 257) has to be taken into account in the calculation). By
the birthday paradox, the expected number of collisions for the second chaining
variableH2t, which corresponds to a (complete) internal collision is then equal to
(216)2=232 = 1. The expected number of external collisions is equal to r2=233 =
1=(2(1 � e��)2); these collisions can be eliminated by simulating (see [14]) the

1 Recall that bytes equal to 00x or FFx are eliminated from V in the prelude.



attack of Lemma 1. Two additional chosen texts are su�cient to identify an
external collision with high probability; the expected value is about 2(1� 1=e)
as will be shown in the full paper. The total number of blocks in the chosen texts
is then approximately

232
�

(1� e��)
+ 216

�
1� e�1

� �

(1� e��)
2 : (2)

If � ! 0, the �rst term approaches 232, but the second term increases quickly.
The sum is minimized for � � 1=228 (but this violates the constraint on �), and
for � > 1=228 it increases monotonically with �. The number of blocks is thus
minimized for � = 1=32 (for this value the �rst term in equation (2) dominates
and is approximately equal to 232 + 226), while the number of chosen texts can
be reduced by increasing �.

It is possible to use even shorter messages, but then we assume that H1t has
become with high probability a multiple of (232 � 1)=65 537 = 65 535 = FFFFx.
A complete internal collision requires then a collision in a set of size about 247,
which implies that more chosen messages are needed. In this case � must exceed
1=4 to avoid interference of the second prime factor (257).

An overview of the trade-o�s is given in Table 3. These trade-o�s are more
realistic (cf. Table 2) with respect to the total number of bytes; this number in-
creases only slightly while reducing the number of chosen texts. However, chosen
texts are more di�cult to obtain than known texts.

Table 3. Parameters for improved forgery attack on MAA. Attacks with < 256 zero
blocks avoid the `long message mode' (see x4.4).

� # 0 blocks # chosen texts total size (bytes)

H1t = FFFFFFFFx 1=32 2 048 221:0 234:0

1=4 16 384 218:2 234:2

1=2 32 768 217:3 234:3

1 65 636 216:7 234:7

2 131 072 216:2 235:2

H1t = 1=4 64 226:2 234:3

multiple of FFFFx 1=2 128 225:3 234:4

1 256 224:7 234:7

2 512 224:2 235:2

4.4 Long Message MAC Forgery on MAA

For a �xed key and message block xi, the compression function of MAA is not
a permutation. This causes the \loss of memory" problem, as was pointed out



by Block [6], and mentioned by Davies [7]. If a large number of variations of the
�rst blocks are chosen, all 2n states will be reached at some point. However, if
the next message blocks are kept constant, it can be shown that the fraction of
states y[i] at stage i can be approximated by 2=(i + 1

3 ln i +
9
5), for i � 1. To

control this e�ect, ISO 8731 [10] limits the size of the messages to 4�106 bytes (�
3.8 Megabytes). Also, the standard de�nes a special mode for messages longer
than 1024 bytes (256 blocks). In this mode, MAA is applied to the �rst 1024
bytes, and the corresponding 4-byte MAC is concatenated to the next 1024 bytes
of the message to form the new input of MAA. This procedure is repeated with
the next 1024-byte block, until the end of the message is reached. This may be
interpreted as the de�nition of a \meta" compression function based on MAA
which compresses 1028 bytes to 4 bytes. This thwarts attacks using more than
256 zero blocks, including the forgery attack of Proposition 5 which requires a
single chosen text.

However, it follows from Table 3 that the attack with zero blocks can be
done with about 224:7 messages of about 1000 bytes, independent of the special
mode. Ironically the basic attack (using Proposition 2) of x4.2 works even slightly
better with the special mode: in the case that s � 256, an additional non-bijective
mapping exists, resulting in an additional opportunity for an internal collision.
Consequently s may be replaced by s + bs=256c.

4.5 Key Recovery Attack on MAA

A key recovery attack on a MAC is considerably more serious than a forgery, as
key recovery allows MAC forgery on arbitrary messages and without additional
work, whereas forgeries are often existential only (and then of questionable prac-
tical use) and often chosen texts are required for each additional forged MAC.
Under certain circumstances an internal collision for MAA allows key recovery.

A �rst case is when we have a weak key for which the period of V < 32 (see
x4.3). One can verify the period of V by simulating the attack of Lemma 1, using
two sets of 217:3 chosen texts containing 131 072 trailing zero blocks each. In one
set all messages have length 0 mod 32; in the other all have length 16 mod 32.
One expects 9 internal collisions between messages of these two sets and 6 ex-
ternal collisions, but these cannot yet be distinguished from each other. The
simulated attack of Lemma 1 then (with high probability) �lters the external
collisions. If V has period < 32, this attack will work for all the internal colli-
sions, and it will fail otherwise. The key recovery attack will fail if there are no
internal collisions; since the number of internal collisions is Poisson distributed,
the probability of this event, for 9 internal collisions as above, is e�9 � 0:01%.
In this way it is evident if V belongs to this special set of 248 keys. If so, �nd-
ing the key then requires an exhaustive search over only 248 keys (rather than
264). This attack has success probability 2�16 (since 248 of 264 keys are weak).
Note that in this case the long message mode can be thwarted by using two
sets of 225:8 messages with about 256 trailing zero blocks; this will yield about
9 internal collisions, and about 219:6 external collisions. The rest of the attack



is similar; the second step requires slightly more work. We partially summarize
these observations as follows.

Proposition6. For MAA, one can detect, using 227 chosen messages of about
1 Kbyte each, whether a key belongs to a subclass of 248 weak keys.

A second attack is based on an internal collision which is created by the
message only, i.e. the chaining variables that enter the round are identical. This
can be achieved by trying all 232 possible values for the �rst message block, or
similarly by doing this for the �rst block after a number of common leading
blocks. The expected number of internal collisions is then Poisson distributed
with � = 1=2, with the probability that there are two internal collisions is given
by e�1=2=4 = 0:152. The unknowns a�ecting the internal collision are the param-
eters (H10; V ), and (H20;W ); see x4.1. A single internal collision (H11 = H101,
H21 = H201) gives 64 bits of information about these parameters. Therefore two
internal collisions yield enough information to �nd a solution.

We have developed an algorithm which can then solve for the 64 bits of the
key inputs (via the 128 bits of the unknown parameters), starting from the least
signi�cant bit (to control the propagation of the carries). Also, the algorithm
exploits the fact that (H10; V ) and (H20;W ) depend on di�erent halves of the
input key. A preliminary estimate is that the key can be recovered in at most 250

operations (cf. 264 for exhaustive key search). The expected number of chosen
texts required is about 235 to guarantee a high success probability. More details
will be provided in the full paper.

5 Concluding Remarks

Two improved variations of a general MAC forgery attack have been presented,
tailored for speci�c algorithms. For both the envelope method as discussed herein
and the MAA, the forgery attack may be adapted to allow key recovery. In
addition the internal structure of MAA may be exploited to reduce the total
number of bytes of known text-MAC pairs required for the attack. An important
conclusion is that the standard padding of a hash function should be modi�ed
when it is transformed into a MAC. This should not be surprising, since unkeyed
hash functions are not typically designed for use as MACs.
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