ALGORITHM REGISTER ENTRY

a.) ISO entry name $\quad\{$ iso standard 9979 feal (10) $\}$
b.) Proprietary entry name

FEAL: the Fast Data Encipherment Algorithm. One subset of FEAL, i.e., N round FEAL with 64-bit key, is called FEAL-N, and another subset of FEAL, i.e., N round FEAL with 128 -bit key, is called FEAL-NX.
c.) Intended range of applications

1. Confidentiality
2. Authentication : as detailed in ISO 9798.
3. Date Integrity : as detailed in ISO 9797.
4. Hash Function : as detailed in ISO 10118 Part 2 for FEAL-N.
d.) Cryptographic interface parameters

FEAL has five interface parameters in which 1,2 and 3 below are options selected by users.

1. Key length - which is 64 bits or 128 bits.
2. Round number (N) - which determines the round number (N) for FEAL data randomization, where $\mathrm{N} \geq 8$ and even.
3. Key parity - The key may contain parity bits as an option (one bit per byte of Key).
4. Input size : 64 bits (fixed)
5. Output size : 64 bits (fixed)
e.) Test words
6. FEAL-8 without key parity bits
(1) Key: $\quad 01234567$ 89AB CDEF
(2) Input data: $\quad 0000000000000000$
(3) Output data: CEEF 2C86 F249 0752
7. FEAL-16 without key parity bits
$\begin{array}{lllll}\text { (1) Key: } & 0123 & 4567 & 89 \mathrm{AB} & \text { CDEF } \\ \text { (2) Input data: } & 0000 & 0000 & 0000 & 0000 \\ \text { (3) Output data: } & & 3 A D E & 0 D 2 A & \text { D84D }\end{array}$
8. FEAL-32 without key parity bits
(1) Key:
01234567 89AB CDEF
(2) Input data: 0000000000000000
(3) Output data: 69B0 FAE6 DDED 6B0B
9. FEAL-8X without key parity bits
(1) Key: $\quad 01234567$ 89AB CDEF 01234567 89AB CDEF
(2) Input data: 0000000000000000
(3) Output data: 9616 57B2 BA41 31BD
10. FEAL-16X without key parity bits

(1) Key:	0123	4567	89 AB	CDEF
	0123	4567	89 AB	CDEF
(2) Input data:	0000	0000	0000	0000
(3) Output data:	F418	0986	EC9A	2E1C

6. FEAL-32X without key parity bits

(1) Key:	0123	4567	89 AB	CDEF
	0123	4567	89 AB	CDEF
(2) Input data:	0000	0000	0000	0000
(3) Output data:	70 D	E684	9CAD	2754

7. FEAL-8 with key parity bits
(1) Key:
01234567 89AB CDEF
(2) Input data: 0000000000000000
(3) Output data: $\quad 6 \mathrm{~A} 72$ 2D1C 46B3 9336
8. FEAL-16 with key parity bits
(1) Key:
01234567 89AB CDEF
(2) Input data: 0000000000000000
(3) Output data: 86BF OD9D 6255 B4FF
9. FEAL-32 with key parity bits
(1) Key:
01234567 89AB CDEF
(2) Input data: 0000000000000000
(3) Output data: 010A 53D8 E2B3 E965
10. FEAL-8X with key parity bits

(1) Key:	0123	4567	89 AB	CDEF
	0123	4567	89 AB	CDEF
(2) Input data:	0000	0000	0000	0000
(3) Output data:	0009	C4D9	C6E6	DBB3

11. FEAL-16X with key parity bits

(1) Key:	0123	4567	89 AB	CDEF
	0123	4567	89 AB	CDEF
(2) Input data :	0000	0000	0000	0000
(3) Output data:	486 D	38 EB	76 C 2	4 B 83

12. FEAL-32X with key parity bits
(1) Key:
01234567 89AB CDEF
01234567 89AB CDEF
(2) Input data: 0000000000000000
(3) Output data: C95D 79570410 D96C
f.) The identity of the organization

Sponsoring Authority

INFORMATION-TECHNOLOGY PROMOTION AGENCY, JAPAN (IPA)

Registration Requested by NIPPON TELEGRAPH AND TELEPHONE CORPORATION

Contact for Information
Secretariat for FEAL Registration, NTT Information and Communication Systems Laboratories, 1-2356 Take, Yokosuka-shi, Kanagawa, Japan zip code: 238-03, Telephone number +81 468-59-3377 Fax number +81 468-59-3858

g.) Dates of registration and modifications 14 November 1994
h.) Whether the subject of a National Standard : No.
i.) Patent license restrictions

> 1. US Patent number $4,850,019$ 'Data randomization equipment' , registered in 1989
2. New European Application number, 86115279.1-2209, 'Data randomization equipment' filed in 1986, for France, Germany and UK.
3. Japan No. 60-250398, filing date 1985
4. Japan No. 60-252650, filing date 1985
5. Japan No. 62-37231, filing date 1987
6. Japan No. 62-232957, filing date 1987
7. Japan No. 62-308463, filing date 1987
8. Japan No. 1-340384, filing date 1989

Note: 3 and 4 are owned by NTT and NTT-Data
Corp., but others are by only NTT.
j.) References
(j-1) S. Miyaguchi: The FEAL Cipher Family, pp. 627-638, Advances in Cryptology - CRYPTO'90, LNCS 537, Springer-Verlag, 1991
(j-2) S. Miyaguchi, S. Kurihara, K. Ohta and H. Morita: Expansion of FEAL Cipher, pp. 117-127, Vol. 2, No. 6, NTT REVIEW, November 1990
k.) Description of Algorithm

FEAL has three options: key length, round number and key parity. The key length selects either a 64 bit key or 128 bit key, the round number (N) specifies the internal iteration number for data randomization, and the key parity option
selects either the use or non-use of parity bits in the key block. The exact details of the FEAL algorithm are described in the Annex of this document.
1.) Modes of operation
m.) Other information

See ISO 8372 for information on modes of operation.
m -1.) Selection of key length
With current LSI technologies, an exhaustive key search for a 64-bit key cipher (FEAL-N) seems impossible now, but not one or two decades later. So, a 64-bit key (FEAL-N) is now recommended, but later a 128 -bit key (FEAL-NX) will be recommended. Details are discussed in the document
'The FEAL Cipher Family' (See document j-1).

$\mathrm{m}-2$.) Selection of Round number (N)

Where attacks that use pairs of plaintext and their ciphertext block (such as differential attacks, or linear attacks) are not a threat, small N is useful to achieve higher processing speeds, and where these attacks are a threat, the value of N should be increased.
m-3) Parity bit
Parity bits in the key-block of FEAL can be selected for hardware implementation where parity bit error correction is useful. The effective key length becomes 56 bits for FEAL-N and 112 bits for FEAL-NX. If error correction is not so important, no-parity bit option is recommended to maximize the effective key length, i.e. 64 bits for FEAL-N and 128 bits for FEAL-NX.
m-4) Upward Compatibility
FEAL-NX is upwardly compatible with FEAL-N because the right half of the 128 -bit key of FEAL-NX is all zero, FEAL- NX works as FEAL-N. This guarantees that FEALNX hardware/software modules support the FEAL-N protocol.
m-5) FEAL LSI chips
FEAL has been implemented as below.
(1) 1988, FEAL-8 LSI with/without key parity, with ECB/CBC/CFB-1, $1.5-\mu \mathrm{m}$ CMOS, which is available as NLC5001F.
(2) 1990, FEAL-8 LSI without key parity, with ECB/CBC/CFB-8/OFB-8, 1.0- $\mu \mathrm{m}$ CMOS, with full duplex.
(3) 1993, FEAL-8/-32 LSI without key parity, with ECB/CBC/CFB-8/OFB-8, $0.5-\mu \mathrm{m}$ CMOS, with full duplex.
m-6) Examples of enciphering speed with software implementation

It has been confirmed that :
(1) In the case of 32 -bit CPUs, ie. Sun SPARC $10(f=40 \mathrm{MHz})$. FEAL-8 program written in C language runs at 9 Mbps , and FEAL-32 program at 3 Mbps , table search techniques are not used.
(2) In the case of 8 -bit CPU for smart cards, ie. H8/310 ($\mathrm{f}=4.9 \mathrm{MHz}$). FEAL-8 program written in assembler runs at 300 kbps , The FEAL-32 program achieves 100 kbps . Program size is about 500 bytes for each program.

FEAL SPECIFICATIONS

1 Introduction

1.1 Outline of the FEAL cipher

FEAL, the Fast Data Encipherment Algorithm, is a 64 -bit block cipher algorithm that enciphers 64 -bit plaintexts into 64 -bit ciphertexts and vice versa with either a 64 -bit or 128-bit key.

FEAL has three options: key length, round number and key parity. The key length selects either 64-bit key or 128-bit key, the round number (N) specifies the internal iteration number for data randomization, and the key parity option selects either use or non-use of the parity bits in a key block.

One subset of FEAL, called FEAL-N, is N round FEAL with 64-bit key. FEAL-NX is also another subset and is described as N round FEAL with 128-bit key. When the right half of the FEAL-NX 128-bit key is all zero, FEAL-NX is equivalent to FEAL-N.

1.2 FEAL options

FEAL options are defined below.
(1) Key length

Selects either 64-bit key or 128-bit key for FEAL key schedule.
(2) Round number (N)

Determines the round number (N) for FEAL data randomization, where $\mathrm{N} \geq 8$ and even.
(3) Key parity

Indicates:
Use of key parity bits in a key-block, or
Non-use of key parity bits in a key-block

1.3 Definitions and explanations

1.3.1 Definitions

(1) key-block: Either a 64-bit block or 128-bit, which includes key parity bits only when the key parity option indicates " use of key parity bits ".
(2) key parity bits: odd parity bits for each 8-bit data in a key-block.
(3) key-block with no parity bits: a key-block that does not include parity bits.
(4) key-block with parity bits: a key-block that includes key parity bits. Parity bit positions are $8 \times i$ where $i=1,2,3, . ., 16$.
(5) key: Key information used for enciphering/deciphering.
(6) round number (N): the internal iteration number for FEAL data randomization.
(7) extended key: 16-bit blocks, K_{i}, which are a randomized and extended form of the key, are output from FEAL key schedule, where $\mathrm{i}=0,1, \ldots,(\mathrm{~N}+7)$.

1.3.2 Conventions and Notations

(1) $\mathrm{A}, \mathrm{Ar}, \ldots .$. : blocks
(2) $(A, B, \ldots$.$) : concatenation in this order$
(3) $A \oplus B$: exclusive-or operation of A and B
(4) ϕ : zero block, 32-bits long
(5) $=$: Transfer from right side to left side
(6) Bit position: 1, 2, 3, ... count from the first left side bit (MSB) in a block towards the right.

2 Enciphering algorithm

2.1 Computation stages

The extended key K_{i} used in this enciphering procedure is generated by the key schedule described in clause 4 . Similarly, function f used here is defined in clause 5 . The computation stages, specified more fully in subclauses 2.2 to 2.4 , shall be as follows (see also Figure 1):
a) Pre-processing (see 2.2)
b) Iterative calculation (see 2.3)
c) Post-processing (see 2.4)

2.2 Pre-processing

Plaintext P is separated into L_{0} and R_{0} of equal lengths (32 bits), ie., $P=\left(L_{o} R_{0}\right)$. First,

$$
\left(L_{0}, R_{0}\right)=\left(L_{0}, R_{0}\right) \oplus\left(K_{N}, K_{N+1}, K_{N+2}, K_{N+3}\right)
$$

Next,

$$
\left(L_{o}, R_{o}\right)=\left(L_{0}, R_{o}\right) \oplus\left(\phi, L_{o}\right)
$$

2.3 Iterative calculation

Input (L_{0}, R_{0}), and calculate the equations below for r from 1 to N iteratively,

$$
\begin{aligned}
& R_{r}=L_{r-1} \oplus f\left(R_{r-1}, K_{r-1}\right) \\
& L_{r}=R_{r-l}
\end{aligned}
$$

Output of the final round is $\left(L_{N}, R_{N}\right)$.

2.4 Post-processing

Interchange the final output of the iterative calculation, $\left(L_{N}, R_{N}\right)$, into $\left(R_{N}, L_{N}\right)$.
Next calculate:

$$
\left(R_{N}, L_{N}\right)=\left(R_{N}, L_{N}\right) \oplus\left(\phi, R_{N}\right)
$$

Lastly,

$$
\left(R_{N}, L_{N}\right)=\left(R_{N}, L_{N}\right) \oplus\left(K_{N+4}, K_{N+5}, K_{N+6}, K_{N+7}\right)
$$

Ciphertext is given as $\left(R_{N}, L_{N}\right)$.

3 Deciphering algorithm

3.1 Computation stages

The extended key K_{i} used in this deciphering procedure is generated by the key schedule described in clause 4. Similarly, function f used here is defined in clause 5. The computation stages, specified more fully in subclauses 3.2 to 3.4 , shall be as follows (see also Fig. 1):
a) Pre-processing (see 3.2)
b) Iterative calculation (see 3.3)
c) Post-processing (see 3.4)

3.2 Pre-processing

Ciphertext (R_{N}, L_{N}) is separated into R_{N} and L_{N} of equal lengths.

First,

$$
\left(R_{N}, L_{N}\right)=\left(R_{N}, L_{N}\right) \oplus\left(K_{N+4}, K_{N+9} K_{N+6}, K_{N+7}\right)
$$

Next,

$$
\left(R_{N}, L_{N}\right)=\left(R_{N}, L_{N}\right) \oplus\left(\phi, R_{N}\right)
$$

3.3 Iterative calculation

Input $\left(R_{N}, L_{N}\right)$, and calculate the equations below for r from N to 1 iteratively,

$$
\begin{aligned}
& L_{r-1}=R_{r} \oplus f\left(L_{r}, K_{r-l}\right) \\
& R_{r-1}=L_{r}
\end{aligned}
$$

Output of the final round is $\left(R_{0}, L_{0}\right)$.

3.4 Post-processing

Change the final output of the iterative calculation, $\left(R_{0}, L_{0}\right)$, into $\left(L_{0}, R_{0}\right)$.
Next calculate:

$$
\left(L_{0}, R_{o}\right)=\left(L_{0}, R_{0}\right) \oplus\left(\phi, L_{0}\right)
$$

Lastly,

$$
\left(L_{0}, R_{0}\right)=\left(L_{0}, R_{0}\right) \oplus\left(K_{N}, K_{N+1}, K_{N+2}, K_{N+3}\right)
$$

Plaintext is given as (L_{0}, R_{0}).

4 Key schedule

4.1 Key schedule of FEAL-NX

First , the key schedule of FEAL-NX is described (see also Fig. 2), where the functions used here are defined in Clause 5. The key schedule yields the extended key $K i$ ($i=0,1,2$, $3 . . ., N+7$) from the 128 -bit key.

4.1.1 Definition of left key K_{L} and right key K_{R}

Input 128 -bit key is equally divided into a 64 -bit left key, K_{L} and a 64 -bit right key, K_{R}. (K_{L}, K_{R}) is the inputted 128 -bit key.

4.1.2 Parity bit processing

(1) Non-use of key parity bits: There is no processing .
(2) Use of key parity bits: Bit positions, $8,16,24,32,40,48,56,64$ of both K_{L} and K_{R} are set to zeros, i.e., all parity bits in the key block are set to zero.

Note: How to use parity bits is outside the scope of the FEAL.

4.1.3 Iterative calculation

(1) Processing of the right key K_{R}
K_{R} is divided into left $K_{R 1}$ and right half $\left(K_{R 2}\right)$, (i. e., $K_{R}=\left(K_{R 1}, K_{R 2}\right)$) and the temporary variable, Q_{r} is defined as:

$$
\begin{aligned}
& Q_{r}=K_{R 1} \oplus K_{R 2} \quad \text { for } r=1,4,7 \ldots, \quad(r=3 i+1 ; i=0,1, \ldots) \\
& Q_{r}=K_{R 1} \text { for } r=2,5,8 \ldots, \quad(r=3 i+2 ; i=0,1, \ldots) \\
& Q_{r}=K_{R 2} \text { for } r=3,6,9 \ldots, \quad(r=3 i+3 ; i=0,1, \ldots)
\end{aligned}
$$

where $1 \leq r \leq(N / 2)+4,(N \geq 8, N$: even $)$.
Note: For FEAL- $N, K_{R}=(\phi, \phi)(64$ zeros $)$ and $Q_{r}=\phi$, (32 zeros).
(2) Processing of the left key K_{L}

Let A_{o} be the left half of K_{L} and let B_{0} be the right half, i.e., $K_{L}=\left(A_{0}, B_{0}\right)$. Set $D_{o}=\phi$, then calculate $K_{i}(i=0$ to $N+7)$ for $r=1$ to $(N / 2)+4$.

$$
\begin{aligned}
& D_{r}=A_{r-1} \\
& A_{r}=B_{r-1} \\
& B_{r}=f_{K}(\alpha, \beta) \\
& \quad\left.=f_{K}\left(A_{r-1},\left(B_{r-1} \oplus D_{r-1}\right) \oplus Q_{r}\right)\right) \\
& K_{2(r-1)}=\left(B_{r 0}, B_{r l}\right) \\
& K_{2(r-l)+1}=\left(B_{r 2}, B_{r 3}\right)
\end{aligned}
$$

A_{r}, B_{r}, D_{r} and Q_{r} are auxiliary variables, where $B_{r}=\left(B_{r 0}, B_{r l}, B_{r 2}, B_{r 3}\right), B_{r j} 8-$ bits long.

4.2 Key schedule of FEAL-N

When the right half (64-bit) of FEAL-NX 128-bit key is all zero, FEAL (i. e., FEAL-NX) works as FEAL-N. Then, the temporary variable $Q_{r}=\phi$, the iterative calculation is given as follows:

4.2.1 Parity bit processing

(1) Non-use of key parity bits: There is no processing .
(2) Use of key parity bits: Bit positions, $8,16,24,32,40,48,56,64$ of key block is set to zeros, i.e., all parity bits in the key block are set to zero.

Note: How to use parity bits is outside the scope of the FEAL.

4.2.2 Iterative calculation

Let A_{0} be the left half of the 64 -bit key and let B_{0} be the right, i.e., the 64 -bit key $=$ $\left(A_{0}, B_{0}\right)$ and $D_{0}=\phi$.
Then calculate $K_{i}(i=0$ to $N+7)$ for $r=1$ to $(N / 2)+4,(N \geq 8, N$: even $)$.

$$
\begin{aligned}
& D_{r}=A_{r-1} \\
& A_{r}=B_{r-1} \\
& B_{r}=f_{K}(\alpha, \beta)=f_{K}\left(A_{r-1},\left(B_{r-l} \oplus D_{r-1}\right)\right) \\
& K_{2(r-l)}=\left(B_{r 0}, B_{r l}\right) \\
& K_{2(r-l)+1}=\left(B_{r 2}, B_{r 3}\right)
\end{aligned}
$$

A_{r}, B_{r}, D_{r} and Q_{r} are auxiliary variables, where $B_{r}=\left(B_{r 0}, B_{r l}, B_{r 2}, B_{r 3}\right), B_{r j} 8$ - bits long. The key schedule of FEAL- N is shown in Fig. 3.

5 Functions

This clause describes functions used in clauses 2,3 and 4.

5.1 Function f (see also Fig. 4)

$f(\alpha, \beta)$ is shortened to $f . \alpha$ and β are divided as follows, where α_{i}, and β_{i} are 8-bits long.

Functions S_{0} and S_{l} are defined in clause 5.3.

$$
\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2} \alpha_{3}\right), \beta=\left(\beta_{0}, \beta_{1}\right) .
$$

$f=\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ are calculated in sequence.

$$
\begin{aligned}
& f_{1}=\alpha_{1} \oplus \beta_{0} \\
& f_{2}=\alpha_{2} \oplus \beta_{1} \\
& f_{1}=f_{1} \oplus \alpha_{0} \\
& f_{2}=f_{2} \oplus \alpha_{3} \\
& f_{1}=S_{1}\left(f_{1}, f_{2}\right) \\
& f_{2}=S_{0}\left(f_{2}, f_{1}\right) \\
& f_{0}=S_{0}\left(\alpha_{0}, f_{l}\right) \\
& f_{3}=S_{1}\left(\alpha_{3}, f_{2}\right)
\end{aligned}
$$

Example in hex:

$$
\text { Inputs: } \alpha=00 \text { FF FF } 00, \beta=\mathrm{FF} \text { FF, Output: } f=10041044
$$

5.2 Function f_{K} (see also Fig. 5)

Inputs of function f_{K}, α and β, are divided into four 8-bit blocks as:

$$
\alpha=\left(\alpha_{0} \alpha_{1}, \alpha_{2}, \alpha_{3}\right), \quad \beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right) .
$$

$f_{K}(\alpha, \beta)$ is shortened to f
$f_{K}=\left(f_{K 0}, f_{K 1}, f_{K 2}, f_{K 3}\right)$ are calculated in sequence, where functions S_{0} and S_{1} are defined in
clause5.3.

$$
\begin{aligned}
& f_{K 1}=\alpha_{1} \oplus \alpha_{0} \\
& f_{K 2}=\alpha_{2} \oplus \alpha_{3} \\
& f_{K 1}=S_{1}\left(f_{K 1},\left(f_{K 2} \oplus \beta_{0}\right)\right. \\
& f_{K 2}=S_{0}\left(f_{K 2},\left(f_{K 1} \oplus \beta_{1}\right)\right. \\
& f_{K 0}=S_{0}\left(\alpha_{0},\left(f_{K 1} \oplus \beta_{2}\right)\right. \\
& f_{K 3}=S_{1}\left(\alpha_{3},\left(f_{K 2} \oplus \beta_{3}\right)\right.
\end{aligned}
$$

Example in hex:

$$
\text { Inputs: } \alpha=0000 \quad 00 \quad 00, \beta=00 \quad 00 \quad 00 \quad 00, f_{K}=1004 \quad 1044
$$

5.3 Function S

S_{0} and S_{1} are defined as follows:

$$
\begin{aligned}
& S_{0}\left(X_{1}, X_{2}\right)=\operatorname{Rot} 2\left(\left(X_{1}+X_{2}\right) \bmod 256\right) \\
& S_{1}\left(X_{1}, X_{2}\right)=\operatorname{Rot} 2\left(\left(X_{1}+X_{2}+1\right) \bmod 256\right)
\end{aligned}
$$

where X_{1} and X_{2} are 8 -bit blocks and $\operatorname{Rot} 2(T)$ is the result of a 2-bit left rotation operation on 8-bit block, T.

Example: Suppose $X_{1}=00010011, X_{2}=11110010$ then

$$
\begin{aligned}
& T=\left(X_{1}+X_{2}+1\right) \bmod 256=00000110 \\
& S_{1}\left(X_{1}, X_{2}\right)=\operatorname{Rot} 2(T)=00011000
\end{aligned}
$$

6 Example of working data

Working data are shown in bit sequence and in hexadecimal (hex).
6.1 FEAL options (see clause 1.2)

In this example following FEAL options are selected:
(1) Key length: 64 bits
(2) Round number: $\mathrm{N}=16$
(3) Non-use of key parity bit

6.2 Input data

Input data are the key-block and the plaintext block.

The key-block K is given :

$$
\begin{array}{llllllllll}
K= & \begin{array}{llllllll}
0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111
\end{array} \\
& 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{array} \quad \text { in bit sequence }
$$

The plaintex P is :

$$
\begin{array}{rllllllll}
\mathrm{P}=\begin{array}{rl}
00000 & 0000 \\
0000 & 0000 \\
0000 & 0000
\end{array} 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & \text { in bit sequence }
\end{array}
$$

$$
\mathrm{P}=0 \begin{array}{lllllllll}
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \text { in hex }
\end{array}
$$

6.3 The key schedule (see clause 4)

Consider first the generation of the extended keys, $K_{0}, K_{1}, K_{2}, K_{23}$, each consisting of 16 bits generated from the key-block K.

6.3.1 Parity bit processing (see 4.2)

As non-use of key parity bits is selected, there is no special processing here.

6.3.2 Iterative calculation (see 4.3)

Let A_{0} be the left half of K_{L} and let B_{o} be the right half of K_{L}, ie.,
$K_{L}=A_{o} \| B_{0}$ and $D_{o}=\phi$. Thus:
$A_{o}=00000001001000110100010101100111$ in bit sequence $=01234567$ in hex
$B_{o}=10001001101010111100110111101111$ in bit sequence $=89 \mathrm{ABCDEF}$ in hex
$D_{o}=00000000000000000000000000000000$ in bit sequence $=000000 \quad 00$ in hex
Calculate $D_{l}, A_{1}, B_{1}, K_{0}$ and K_{1} as :

$$
\begin{array}{rlrllllll}
D_{1}=A_{0} & =0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111
\end{array} \text { in bit sequence }
$$

$$
A_{1}=B_{0}=\begin{array}{lllll}
1000 & 1001 & 1010 & 1011 & 1100
\end{array} 11011110 \quad 1111 \text { in bit sequence }
$$

$$
=89 \mathrm{ABCDEF} \text { in hex }
$$

$B_{l}=f_{K}\left(A_{0}, B_{0} \oplus D_{0}\right)$ $=11011111001110111100101000110110$ in bit sequence $=D F$ BB CA 36 in hex
$K_{0}=1101111100111011$ in bit sequence $=D F 3 B \quad$ in hex
$K_{I}=1100 \quad 101000110110 \quad$ in bit sequence =CA 36 in hex

If this procedure is continued it will be found that the extended key K_{i} is given in hex by:

6.4 The Enciphering algorithm (see clause 2)

6.4.1 Pre-processing (see 2.2)

$$
\begin{aligned}
& P= 0000 \\
& 0000 \\
& 0000 \\
& \hline
\end{aligned}
$$

P is separated into L_{0} and R_{0} both 32-bits long.
First,

$$
\begin{aligned}
& \left(L_{0}, R_{0}\right)=\left(L_{0}, R_{0}\right) \oplus\left(K_{16}, K_{17}, K_{18}, K_{19}\right) \\
& =01010011001000110000101000111110 \\
& 11110011000110011100001001110100 \text { in bit sequence } \\
& =53230 \mathrm{~A} \text { iE Ff } 19 \mathrm{C} 274 \text { in hex }
\end{aligned}
$$

Next,

$$
\begin{aligned}
& \left(L_{0}, R_{0}\right)=\left(L_{0}, R_{0}\right) \oplus\left(\phi, L_{0}\right) \\
& =01010011001000110000101000111110 \\
& 10100000001110101100100001001010 \text { in bit sequence } \\
& =53230 \mathrm{~A} 3 \mathrm{EAO} 3 \mathrm{~A} C 84 \mathrm{~A} \text { in hex }
\end{aligned}
$$

Output of this processing stage is:

$$
\begin{aligned}
L_{o} & =01010011 \quad 0010 \quad 0011000010100011 \quad 1110 \text { in bit sequence } \\
& =53 \quad 23 \quad 0 \mathrm{~A} \quad 3 \mathrm{E} \quad \text { in hex } \\
R_{0} & =1010 \quad 0000 \quad 0011 \quad 1010 \\
& =\text { A0 3A C8 4A in hex }
\end{aligned}
$$

6.4.2 Iterative calculation (see 2.3)

6.4.2.1 Calculation of R_{0} and L_{o} at the first stage

First, calculate $f\left(R_{0}, K_{0}\right)$ as:
$f\left(R_{0}, K_{0}\right)$
$=01111110111111111110001010110100$ in bit sequence $=7 \mathrm{EFF} \mathrm{E} 2 \mathrm{~B} 4$ in hex

Where details are described in clause 6.4.2.2.

$$
L_{0} \oplus f\left(R_{0}, K_{0}\right)=2 \mathrm{D} \text { DC E8 8A in hex }
$$

Output of first stage of the iterative calculation is:
$L_{1}=R_{0}=10100000001110101100100001001010$ in bit sequence = A0 3A C8 4A in hex
$R_{I}=00101101110111001110100010001010$ in bit sequence $=2 \mathrm{D}$ DC E8 8A in hex

6.4.2.2 Calculation \boldsymbol{f} of the first stage

In the calculation of $f\left(R_{0}, K_{0}\right)$, shown below, $f\left(R_{0}, K_{0}\right)$ is shortened to f, and α and β are defined as:

$$
\begin{aligned}
\alpha & =\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=R_{0} \\
& =1010 \quad 00000011 \quad 101011001000 \quad 01001010 \text { in bit sequence } \\
& =\text { A0 3A C8 4A in hex }
\end{aligned}
$$

$$
\begin{aligned}
\beta= & \left(\beta_{0}, \beta_{1}\right)=K_{0} \\
& =1101111100111011 \quad \text { in bit sequence } \\
& =\mathrm{DF} 3 \mathrm{~B} \quad \text { in hex } \\
& \alpha_{0}=1010 \quad 0000=\mathrm{A} 0 \text { in hex, } \\
& \alpha_{2}=1100 \quad 1000=\mathrm{C} 8 \text { in hex, } \quad \\
& \beta_{0}=00111010=3 \mathrm{~A} \text { in hex } \\
& \alpha_{3}=01001010=4 \mathrm{~A} \text { in hex } \\
11111=\mathrm{DF} \text { in hex, } & \beta_{1}=00111011=3 \mathrm{~B} \text { in hex }
\end{aligned}
$$

$$
\begin{gathered}
f=\left(f_{0}, f_{1}, f_{2}, f_{3}\right) \text { are calculated by the sequence: } \\
f_{1}=\alpha_{1} \oplus \beta_{0}=11100101=\mathrm{E} 5 \text { in hex } \\
f_{2}=\alpha_{2} \oplus \beta_{1}=11110011=\mathrm{F} 3 \text { in hex } \\
f_{1}=f_{1} \oplus \alpha_{0}=01000101=45 \text { in hex } \\
f_{2}=f_{2} \oplus \alpha_{3}=10111001=\mathrm{B} 9 \text { in hex } \\
f_{1}=S_{1}\left(f_{1}, f_{2}\right)=1111 \quad 1111=\mathrm{FF} \text { in hex } \\
f_{2}=S_{0}\left(f_{2}, f_{1}\right)=1110 \quad 0010=\mathrm{E} 2 \text { in hex } \\
f_{0}=S_{0}\left(\alpha_{0}, f_{1}\right)=0111 \quad 1110=7 \mathrm{E} \text { in hex } \\
f_{3}=S_{1}\left(\alpha_{3}, f_{2}\right)=1011 \quad 0100=\mathrm{B} 4 \text { in hex }
\end{gathered}
$$

150997910010

6.4.2.3 Continued calculations

If the above calculations are continued it will be found that L_{i} and R_{i} etc. are as given in hex. The Process stages

i		L_{i}	i				R_{i}		K_{i-1}		$f\left(R_{i-1}\right.$,	, K_{i})	
0	53	23	0A	3E	A0	3A	C8	4A					
1	A0	3A	C8	4A	2D	DC	E8	8A	DF3B		E FF	E2	
2	2D	DC	E8	8A	1D	78	92	DD	CA36		D 42	5A	97
3	1D	78	92	DD	2 C	FF	B1	56	F17C		123	59	DC
4	2C	FF	B1	56	13	2 F	1B		1AEC		E 57	89	83
5	13	2F	1B	5 E	DD	96	94	44	45A5		169	25	12
6	DD	96	94	44	07	07	E7	5B	B9C7		428	FC	05
7	07	07	E7	5B	DD	6F	D5	32	26EB		0 F9		76
8	DD	6F	D5	32	A6	8C	D2	FA	AD25		18 B	35	A1
9	A6	8C	D2	FA	3D	FD	87	07	8B2A		092	52	35
10	3D	FD	87	07	9 D	1D	F1		ECB7		B 91		AC
11	9 D	1D	F1		89	6D	99		AC50		490	1 E	
12	89	6D	99	D2	A3	1B	C5	4A	9D4C		E 06	34	
13	A3	1B	C5	4A	E1	1A	7 F		22 CD		877	E6	
14	E1	1A	7 F	16	DD	A5	07	2D	479B		E BE	C2	67
15	DD	A5	07	2D	61	59	76		A8D5		043		
16	61	59	76	CA	B8	5D	03	12	$0 \mathrm{CB5}$		5 F8	04	3 F

6.4.3 Post processing (see 2.4)

First, interchanging L_{16} and R_{16} yields:

$$
\begin{aligned}
\left(R_{16}, L_{16}\right)= & \begin{array}{lllllllll}
1011 & 1000 & 0101 & 1101 & 0000 & 0011 & 0001 & 0010
\end{array} \\
& 0110
\end{aligned} 0001 \quad 0101 \quad 1001 \quad 0111 \quad 0110 \quad 1100 \quad 1010 \text { in bit sequence }
$$

Next,

$$
\begin{aligned}
& \left(R_{16}, L_{16}\right)=\left(R_{16}, L_{16}\right) \oplus\left(\phi, R_{16}\right) \\
& \left(R_{16}, L_{16}\right)=10111000010111010000001100010010 \\
& 11011001000001000111010111011000 \text { in bit sequence } \\
& \text { = B8 5D } 0312 \mathrm{D} 90475 \mathrm{D} 8 \text { in hex. }
\end{aligned}
$$

Lastly,

$$
\left(R_{16}, L_{16}\right)=\left(R_{16}, L_{16}\right) \oplus\left(K_{20}, K_{21}, K_{22}, K_{23}\right)
$$

$$
\begin{array}{rl}
= & 0011 \\
& 1010 \\
1101 & 100 \\
& 1101 \\
= & 1110
\end{array} 000010011010010 \quad 1010
$$

Ciphertext is given as (R_{16}, L_{16}).

The final result (ciphertext) is :

$$
\begin{aligned}
\mathrm{C} & =\begin{array}{lllllllll}
0011 & 1010 & 1101 & 1110 & 0000 & 1101 & 0010 & 1010
\end{array} \\
& 1101 \\
& 1000 \\
= & 0100
\end{aligned} 1101 \quad 0000 \text { 1011 } \begin{array}{llllllll}
& 0110 & 1111 & \text { in bit sequence } \\
& \text { DE } & 0 \mathrm{D} & 2 \mathrm{~A} & \mathrm{D} 8 & 4 \mathrm{D} & 0 \mathrm{~B} & 6 \mathrm{~F}
\end{array} \text { in hex. }
$$

Plaintext \{Ciphertext block\}

Fig. 1 Data Randomization of FEAL

Fig. 2 Key Schedule of FEAL (FEAL-NX)

Fig. 3 Key Schedule of FEAL (FEAL-N)

$Y=S_{0}\left(X_{1}, X_{2}\right)=\operatorname{Rot} 2\left(\left(X_{1}+X_{2}\right) \bmod 256\right)$
$Y=S_{1}\left(X_{1}, X_{2}\right)=\operatorname{Rot} 2\left(\left(X_{1}+X_{2}+1\right) \bmod 256\right)$
Y : output (8 bits), X_{1} / X_{2} : inputs (8 bits),
$\operatorname{Rot} 2(Y)$: a 2-bit left rotation on 8 -bit data Y

Fig. $4 f_{\mathrm{K}}$-function of FEAL

Note : S_{0} / S_{1} are the same as S_{0} / S_{1} in f -function.

Fig. $5 f_{\mathrm{K}}$-function of FEAL

