
AutoPass: An Automatic Password Generator
Fatma Al Maqbali and Chris J Mitchell

Information Security Group, Royal Holloway, University of London

Abstract—Text password is a very common user authentication
technique. Users face a major problem, namely that of managing
many site-unique and strong (i.e. non-guessable) passwords. One
way of addressing this is by using a password generator, i.e. a
client-side scheme which generates (and regenerates) site-specific
strong passwords on demand, with minimal user input. This
paper gives a detailed specification and analysis of AutoPass,
a novel password generator scheme. AutoPass has been designed
to address issues identified in previously proposed password
generators, and incorporates novel techniques to address these
issues. Unlike almost all previously proposed schemes, AutoPass
enables the generation of passwords that meet important real-
world requirements, including forced password changes, use
of pre-specified passwords, and passwords meeting site-specific
requirements.

Index Terms—authentication, password, password generator,
password management, password policy.

I. INTRODUCTION

Despite its well-known shortcomings, text password authen-
tication is widely used. Many attempts have been made to
replace password authentication, e.g. using biometrics, tokens
and multi-factor authentication [1]. However, single-factor
password authentication remains very widely used. Moreover,
in recent years the number of widely-used password-protected
services has grown significantly, increasing the number of
passwords users must remember. There are many issues asso-
ciated with the use of text passwords [2], including: (a) users
may use the same password for multiple accounts; (b) users
will often choose guessable passwords, e.g. birthday or pet
name; (c) users will often make minimal modifications to an
existing password, e.g. by including a serial number, when
forced to make a change; (d) many sites enforce complex
password policies, e.g. enforcing regular password changes or
constraining passwords (e.g. to contain a minimum number of,
or include/exclude specific, characters), making memorising
passwords even more difficult.

A range of approaches have been devised to help users.
Perhaps best known are password managers, which store user
passwords either locally or in the cloud, and retrieve them
automatically when needed; many web browsers have such
functionality. A related but distinct approach involves pass-
word generators, which generate strong and random-looking
passwords and regenerate them when necessary. A number of
such schemes have been proposed [3], [4], [5], [6], [7], [8]. In a
previous paper, [9], we evaluated existing password generator
schemes and discussed their strengths and weaknesses; this
enabled us to outline a new password generator which we
called AutoPass. It combines features from existing password
generators with novel techniques designed to address identified

shortcomings in the existing schemes. In this paper we provide
the first detailed specification of AutoPass, and also give a
detailed analysis of its properties.

The remainder of the paper is as follows. II defines and
gives a general model for password generators (based closely
on [9]). III gives a high-level description of AutoPass, building
on the previous outline. This is followed in IV by a detailed
specification of AutoPass. V provides an analysis of AutoPass,
and in particular highlights how it addresses known shortcom-
ings of such schemes. Finally, the paper concludes in VI.

II. A GENERAL MODEL

1) Definition and model: We consider password generators,
i.e. schemes designed to generate site-specific passwords on
demand. This term has also been used to describe schemes
that generate random or pseudorandom passwords which the
user must then remember; however, we use the term to
describe systems intended to be used whenever a user logs
in and that generate the necessary passwords on demand and
in a repeatable way. A variety of such schemes have been
proposed in recent years. The general class of such schemes
has been briefly considered previously by McCarney [10]
under the name generative password managers. We use the
following general model for password generators as the basis
for describing our novel scheme, AutoPass.

In a password generator, input values determine the pass-
word for a particular site. Some values must be site-specific
so the password is site-specific. The values could be stored
(locally or online), based on website characteristics, or user-
entered when needed. A password generation function com-
bines the inputs to generate a password, and must meet the
requirements of the authenticating website. E.g., one web
site might forbid non-alphanumeric characters in a password,
whereas another might insist that a password contains at least
one such character. Thus, to be broadly applicable, a password
generation function must be customisable. A password output
method transfers generated passwords to authenticating sites,
e.g. by displaying the generated password to the user, who
then types (or copies/pastes) it into the appropriate place. This
functionality must be implemented on the user platform, e.g.
as a stand-alone application or browser plug-in.

2) Prior art: Password generator schemes conforming to
the above model include the following. The Site-Specific Pass-
words (SSP) scheme proposed by Karp [4] in 2002/03 is one
of the earliest proposed schemes. SSP generates a password
by combining a user master password and a memorable user-
chosen name for the web site. PwdHash, due to Ross et al. [6],
generates a password by combining a user master password,



data associated with the web site, and (optionally) a second
global password stored on the platform. The 2005 Password
Multiplier scheme of Halderman, Waters and Felten, [3],
computes a password as a function of a user master password,
the web site name, and the user name for the web site. Wolf
and Schneider’s 2006 PasswordSitter [7] generates a password
as a function of a user master password, the user identity, the
application/service name, and some configurable parameters.
Passpet, due to Yee and Sitaker [8] and also published in
2006, is similar to SSP, i.e. a password is a function of a
user master password and a petname, i.e. a user-chosen name
for the site (with an associated icon, displayed to the user to
help reduce the risk of phishing). ObPwd, due to Mannan et
al. [11], [5], [12], [13] from 2008, generates a password from
a user-selected (site-specific) object, e.g. a file, together with
optional parameters, e.g. a long-term user password (referred
to as a salt), and the URL. Finally, PALPAS [14] generates
passwords complying with site-specific requirements using
server-provided password policy data, a stored secret master
password (the seed), and a client-stored secret (the salt) that
is synchronised across all user devices using a server.

There are also widely available implementations. RndPhrase
(https://rndphrase.appspot.com/) is a Firefox add-on/web sys-
tem that generates passwords as a function of a prede-
fined user-unique salt, host name, and user-entered mas-
ter password. PwdHash port (https://addons.opera.com/en-gb/
extensions/details/pwdhash-port/) is an Opera add-on based
on PwdHash. Password generator (https://goo.gl/SNVtJY),
another Android app, generates passwords as a function of
a configurable set of parameters including a user salt.

3) Registration and Configuration: We consider schemes
that are completely transparent to the authenticating website,
so the ‘normal’ website registration procedure, where the user
selects a password and submits it, is used. Thus password
generation should occur before user registration, since use of
a password generator requires a user to modify their existing
passwords. This causes usability problems with all previously
proposed password generator schemes, as discussed in II-4.

There is a potential need for a password generator to store
configuration data, including: user-specific configuration data,
user- unique values used to help generate all passwords for that
user, e.g. a master password; and site-specific configuration
data, used to help generate passwords for a specific website
which are the same for all users, e.g. a password policy. Not all
schemes use configuration data, although producing a usable
system without at least some user-specific configuration data
is challenging. However, configuration data is clearly a major
barrier to portability since the configuration data must be kept
synchronised across all user platforms, a non-trivial task —
see Horsch et al. [15].

4) Issues with Existing Schemes: We next outline three
problems that affect almost all previously proposed password
generators. These issues motivate the design of AutoPass,
which incorporates novel features designed to overcome them.

• Setting and updating passwords As noted above, if a
user is already using the password generator when newly

registering with a website, the user can simply register
whatever value the system generates. However, if the user
has selected and registered passwords with a range of
websites before starting use of the password generator,
then all these passwords will need to be changed to
whatever the password generator outputs. This could
be highly inconvenient if a user has many established
relationships, and could present a formidable barrier to
adoption of the system.
Analogous problems arise if a user decides to change a
website password, e.g. because the site enforces periodic
changes. The only possibility for the user will be to
change one of the inputs used to generate the password,
e.g. the object (if a digital object is used as an input)
or a user site name. Password change could even be
impossible if the user does not choose any of the inputs
used to generate a password.

• Using multiple platforms If a user has multiple plat-
forms, e.g. a desktop and phone, then synchronising
locally-stored configuration data is problematic.

• Password policy issues A further problem arises from
the need to generate passwords in a site-specific form, an
issue not satisfactorily addressed by any previously pro-
posed schemes except PALPAS. Some existing schemes
have the option for the user to customise a generated
password, but the user has to identify the requirements
for the website manually and configure the options ac-
cordingly. Automatically generating passwords tailored to
meet website-specific requirements has been explored by
Horsch et al. [14], [15].

Of course, password managers (unlike password generators,
the main focus here) do not, in general, suffer from the first
and third of the above problems, since they store whatever
passwords are chosen by the user. However, as widely dis-
cussed (see, for example, [9]), password managers have their
own issues, and we do not discuss them further here.

III. AUTOPASS: INSTANTIATING THE MODEL

1) AutoPass Components: AutoPass has two main com-
ponents: the AutoPass server and the AutoPass client. The
AutoPass server stores less sensitive user data, e.g. user name
and website-specific password policies (specifying the types
of password a particular site will accept). The AutoPass client
software provides a user interface, and automatically generates
site-specific user passwords by combining the specified set of
inputs. Some inputs are stored locally and some are stored in
the AutoPass server, with which the client software interacts
as necessary. Where possible, the generated password is au-
tomatically inserted into login forms. Whilst data exchanged
between the AutoPass client and server is not highly confi-
dential, some is privacy-sensitive and its integrity is crucial
for correct operation. All data exchanged between client and
server is therefore protected using a server-authenticated TLS
channel established at the beginning of a client session. To
make server authentication robust, the client is assumed to use

https://rndphrase.appspot.com/
https://addons.opera.com/en-gb/extensions/details/pwdhash-port/
https://addons.opera.com/en-gb/extensions/details/pwdhash-port/
https://goo.gl/SNVtJY


certificate pinning for the server. Figure 1 depicts the AutoPass
architecture, showing the main components of the scheme.

Fig. 1. AutoPass System Architecture

AutoPass conforms to the general model given above.
The three main elements, i.e. the input values, the password
generation function, and the output method, are as follows.

AutoPass uses the following input types (as used in pre-
vious schemes). (a) A master password: a long-term strong
password selected by the user or generated by the system. It
is stored in encrypted form on the AutoPass server as part
of the user-specific configuration data. Since it does not need
to be remembered by the user, it could, for example, be a
128-bit random value; the precise choice is implementation-
dependent. The user should make a written record of this
value when it is initially chosen, and store it securely for
backup/recovery purposes. (b) The site name: the URL of the
site for which AutoPass is generating a password. To overcome
the issue of changes to URL sub-domains, AutoPass only uses
the first part of the URL (i.e. up to the first / character).
(c) A password policy: specifying the site-specific password
requirements, e.g. length constraints and/or minimum numbers
of certain classes of character. The policy is specified using
the Password Requirements Markup Language (PRML) [15].
(d) A digital object: a text fragment, picture, or audio sample,
e.g. in the form of a digital file. This is an optional input that
potentially adds significant entropy to the password generation
process, e.g. for use when generating passwords protecting
high-value resources. Such objects need to be available on all
user platforms, so objects should be selected with care to avoid
causing cross-platform mobility issues.

The process of combining input values to produce the site-
specific password has two stages. The first stage involves
combining the input values, including the master password
and the URL, to produce a bit string. Following Kelsey et
al. [16], this computation involves a two-level hash compu-
tation, as follows. (a) The master password is submitted to
a cryptographic hash-function, e.g. SHA-256, [17], that is
iterated n times, where n is chosen to be as large as possible
without making the client software too unresponsive. n can
be user-dependent, as long it is held in the server to enable
it to be synchronised across all user platforms. The output, a
256-bit string, is then cached by the client. Since this value
is website-independent, it can be computed once when the
client software is started up and cached locally while the
client is active. (b) The 256-bit string is concatenated with

website-specific inputs (site name and optional digital object)
and hashed again to give a site-specific string. This two-level
process protects against brute force attacks by slowing them
down. Use of a multiply-iterated hash means that any brute
force search will involve significantly more computational
effort than it otherwise would; however, since the iterated part
is only computed once per session, the additional load on the
genuine client will be manageable.

The second stage (encoding) involves constructing a pass-
word from the output of the first stage (and, possibly, the
offset), using the PRML policy specification to ensure the
password meets website-specific requirements. How encoding
operates is described in III-3 below. The generated password
is automatically copied to the target password field. AutoPass
uses secure filling techniques to prevent sweeping attacks [18].

We propose to implement AutoPass as a browser add-on, en-
abling automation of key tasks including fetching the website
URL and inserting passwords into login forms. In future, for
use with platforms not permitting add-ons, we plan to examine
stand-alone applications and web-based functionality.

2) Stored Data: AutoPass needs access to a variety of
configuration data, stored at the AutoPass server and client.
The configuration data stored at the server is held long-term,
i.e. for the lifetime of the user account; data held on the client
may be held either short-term, e.g. for the life of a session, or
long-term, i.e. while the software remains installed.

The following user-specific configuration data is held at the
AutoPass server: (a) the user account name; (b) a user email
address; (c) the (encrypted) master password; (d) a hash of
the master password; (e) a (salted) hash of the login password
(see IV-1). Also, for each website for which a password has
been generated, the server holds: the (first part) of the URL;
the input types used to generate the password; the password
offset (see III-4).

The following site-specific configuration data is held at
the AutoPass server: (a) the (first part) of the website URL;
and (b) the PRML-encoded password policy of the site (see
III-3). Note that the site-specific data could be maintained
by a server separate from that used to store the user-specific
data. Indeed, since this data is completely non-confidential, it
could be provided by a service independent of AutoPass, e.g.
the Password Requirements Description Distribution Service
(PRDDS) [15], which provides an online interface to meet
requests for PRML-based Password Requirements Descriptors
(PRDs) for websites identified by their URL.

The following data is held short-term at the client: (a) the
login password (see IV-1); and (b) a multiply-iterated hash
of the master password (see III-1). The AutoPass client also
caches recently downloaded password policies.

3) PRML: The Password Requirements Markup Language
(PRML) [15] is an XML-based syntax for specifying password
requirements, including minimum and maximum lengths, per-
missible character set, and minimum required number(s) of
specific types of characters. It addresses the diversity of pass-
word requirements arising in practice, and enables automatic
generation of passwords matching site-specific requirements.



A website’s PRML specification is one of the two inputs
for the second stage of password generation described in III-1,
the other being the bit string output from the first stage. The
second stage of password generation operates as follows. (1)
The size C of the password character set is derived from the
PRML specification; we suppose that a mapping is chosen
from the set of integers {0, 1, . . . , C − 1} to the characters in
the password character set. (2) The length L of the password
is chosen to be the minimum of 16 and the minimum length
prescribed by the PRML policy. (3) The input bit string is
converted to a positive integer by regarding the string as
the binary representation of a number, and this number is
converted to its C-ary representation dtdt−1 . . . d0, for some t,
where 0 ≤ di ≤ C−1 for every i (0 ≤ i ≤ t). (4) The final L
digits of the above sequence of numbers, i.e. dL−1dL−2 . . . d0,
are converted to characters using the mapping established in
step 1. (5) The password is tested to verify it satisfies the other
constraints in the PRML specification. If not, then the input bit
string is rehashed and the process is recommenced; otherwise
the process is complete.

The above procedure assumes the length of the input bit-
string is significantly greater than dL log2 Ce. Since a likely
value of L is 16, and C is typically at most 64, dL log2 Ce
is likely to be less than 100, i.e. much smaller than the 256-
bit output of a modern hash function such as SHA-256. It
also assumes that a random password with characters from the
specified password set has a reasonable chance of satisfying
the PRML requirements. If not, then a more elaborate second
stage algorithm could be devised.

4) Password Offsets: As noted in II-4, a major issue with
existing password generators is that they do not allow a user
to choose a password (e.g. to allow continuing use of a
password established prior to use of the system), or to change
a password without changing the set of inputs. We propose
the use of password offsets to support these requirements.
A password offset works in the following way. A password
dL−1dL−2 . . . d0 is first generated in the normal two-stage way
(as described in III-3), and suppose D is the positive integer
which has dL−1dL−2 . . . d0 as its C-ary representation. Let
the user-chosen password (of length M , say) be encoded as
an M -digit sequence eM−1eM−2 . . . e0, where 0 ≤ ei ≤ C−1
for every i (0 ≤ i ≤ M − 1), and suppose E is the positive
integer having eM−1eM−2 . . . e0 as its C-ary representation.
The password offset is simply E −D.

Password generation is unchanged, except that the offset is
added; the result will be the C-ary encoding of the desired
password. A similar approach can be used for password
changes, where a new password can be generated at random
(in accordance with the PRML specification) and the password
offset is set to the difference between the new password and
the value generated using the standard procedure.

Note that the use of a password offset is to some extent
like a cloud-based password manager, in that password-related
information is stored by a server. Indeed, it can be regarded
as a way of combining the best features of both approaches.
What distinguishes an offset-based password generator from

a password manager is that use of an offset is optional, and
users are only expected to employ it if they wish to either
continue to use an existing or externally chosen password or
make frequent password changes.

IV. DETAILS OF OPERATION

To simplify the description, we assume AutoPass is imple-
mented as a PC browser add-on. Alternative implementation
scenarios, e.g. as a stand-alone application on a phone or
tablet, will be very similar.

1) First Installation and Account Creation: After client
software installation, set-up involves the following steps.

1) When activated, AutoPass asks whether the user has an
existing account. If the user indicates a new account
is needed, the client collects the following registration
details from the user. The login password is chosen and
entered by the user, who must memorise it. After entry
of the login password, the client computes a salted hash
of the value, which is sent to the AutoPass server (with
the salt) as a means of authenticating the user. The user
must select a user name. The AutoPass server checks
the name is not already in use, and if necessary requests
a new value; the name serves as an identifier for the
user. The 128-bit master password can be generated by
the user or the AutoPass client (e.g. as a user choice).
If the client software generates it, it is displayed to the
user, e.g. as 32 hex characters, and the user is advised to
securely retain a copy so that system recovery is possible
(see IV-3 below). The login password is used to generate
a cryptographic key, e.g. by hashing a concatenation of
it and a fixed value; this key is used to encrypt the
master password, e.g. using AES [19] in an authenticated
encryption mode, prior to server upload. The server
retains this encrypted master password. The client also
generates a hash of the master password and sends it to
the server; this hash value is used for recovery purposes
(see IV-3). To allow recovery if a user forgets the user
name or login password, an email address should also
be collected and submitted to the server.

2) After successful user account creation, the user is re-
quested to log in using his or her newly established user
name and login password (see IV-4).

2) Installing AutoPass on a Newly Acquired PC: Once an
AutoPass account has been established (as described immedi-
ately above), the following step is followed to set up AutoPass
on a new machine. We suppose that the client software has
been installed on the platform.

As previously, when the AutoPass add-on is activated for the
first time, it first asks the user whether he/she has an existing
account. In this case the user indicates that he/she already has
an account. The AutoPass client then asks the user for his or
her user name and login password, and the process continues
exactly as in a normal operational session (see IV-4).

3) Recovery: The system needs to provide a recovery
mechanism for the case where a user forgets their user name



and/or password. The AutoPass client’s recovery function can
be used in the event of a forgotten user name or password.

If a user forgets their user name, he/she can request a copy
from the server by entering their registered email address. The
server checks the email address is registered, and emails the
user name to the user.

If a user forgets their login password, then it cannot be re-
covered since neither server nor client retain a copy. However,
if the user has a copy of the master password, then recovery
is possible. The user is prompted for his/her user name, the
master password and a new login password. The new login
password is used to generate a key which is used to encrypt the
master password, exactly as before. A hash of the new login
password, the user name, the encrypted master password, and a
hash of the master password are all sent to the AutoPass server.
The server authenticates the user by comparing the master
password hash with its stored value, and, if successful, replaces
the current encrypted master password and login password
hash with the new values. Finally, the server communicates
success of recovery to the client, which informs the user.

4) Operational Sessions: We next consider what occurs
when AutoPass is activated after initial set-up.

1) The user is prompted for user name and login password.
2) The user name is sent to the AutoPass server, which

responds with the salt value for its stored copy of the
hashed login password for the identified user.

3) The AutoPass client software hashes the combination of
salt and entered login password, and the resulting value
is sent to the server.

4) The AutoPass server checks that the received hash equals
its stored value, and so authenticates the user.

5) The AutoPass server returns the encrypted master pass-
word to the client, along with the following information
for each site for which the user has created an AutoPass
password: the first part of the URL (used as the site
identifier); the password policy (in PRML); the set of
input types used to generate the password (e.g. whether
or not a digital object is used); the password offset, if
it exists; any other parameters used to control password
generation. This site-specific data is unlikely to change
rapidly, so the client can cache the most recently down-
loaded copy, improving system availability even if the
AutoPass server is unavailable.

6) The AutoPass client decrypts the master password using
a key derived from the login password, and multiply
hashes the master password; the result is cached and the
master password can then be deleted.

7) Once activated, the AutoPass add-on will run contin-
uously in the background, examining each web page
to see if it is a login page. It does this by using
various heuristics, including looking for the string in-
put type=“password”. The add-on will then work as
required, generating passwords automatically, until the
session ends, e.g. when the browser is terminated.

When AutoPass is used with a new website, the following
procedure is executed.

1) If AutoPass detects a login page, it cross-checks the first
part of the site URL with the data from the AutoPass
server to determine whether it is a known site. In this
case, we suppose that it is a new (unknown) site.

2) The AutoPass add-on communicates with the user (e.g.
via a pop-up) to indicate it has detected a login page
for a website for which a password has not previously
been generated, and asks the user whether it would like
AutoPass to manage password generation for this site.

3) If the user declines, then AutoPass goes back to looking
for login pages. If the user accepts, AutoPass next asks
what types of input the user would like to use to generate
the password from amongst those listed in III-1.

4) The user selects the input types; if use of digital objects
is selected, the user is also asked to select an object. The
AutoPass client assembles the inputs, including the first
part of the website URL and the multiply-hashed master
password, to be used to generate the site password.
The client also offers the user the option to select the
password — if the user requests this option then the user
is prompted for the pre-chosen value.

5) The password is generated using the procedure speci-
fied in III-1 and III-4 and automatically copied to the
password field. If the user chose to select the password
value, then the appropriate password offset is computed
during password generation.

6) The user preferences and the password offset (if appro-
priate) are sent to the AutoPass server for storage.

When AutoPass is in everyday use, i.e. after a website has
already been set-up, the following process occurs (we suppose
that the client AutoPass software is already active). If the
AutoPass add-on detects a login page, it uses the first part
of the site URL to check whether a password has previously
been generated for this site — in this case we suppose it has.
The AutoPass add-on then assembles the set of inputs to be
used to generate the password; if the user preferences for this
site indicate that a digital object is to be used, the add-on
prompts the user for the object. The AutoPass add-on then
generates the password, using the password offset if available,
and automatically copies the value to the password field.

V. EVALUATION

The AutoPass server must be trusted to some extent by the
user, since if it sends incorrect data then correct passwords
cannot be generated. It also learns which websites the user
interacts with, and hence must be trusted to respect user
privacy. However, it cannot learn user passwords, since it only
has access to an encrypted copy of the master password, and
thus it can be regarded as being ‘partially trusted’.

The security and correct operation of AutoPass depends on
three key assumptions: (a) the client device is assumed to be
uncompromised, since passwords are generated in and used
by this device; if, for example, the browser is compromised
then clearly generated passwords may be compromised; (b)
the AutoPass client is assumed to be without exploitable
vulnerabilities; if a corrupted version of the client software



is present on the client device, then user passwords may
be compromised; (c) the AutoPass server provides correct
information (see also V above). Given these assumptions,
AutoPass resists the following types of attack.

Active attacks on communications between the AutoPass
client and server, including masquerading as the server to the
client or vice versa, e.g. as made possible by an untrustworthy
wireless access point or DNS poisoning. Such attacks are
prevented by use of TLS. The server will be authenticated by
a pinned certificate. The client is not explicitly authenticated
to the server, but the user is authenticated by checking the
login password hash sent over the link.

Attacks on password secrecy by the AutoPass server. The
server only has password metadata, a hash of the master
password, and an encrypted copy of the master password. If
the master password is randomly generated, use of a 128-
bit value will prevent direct brute forcing guessing attacks.
However, encryption of the master password is based on a
key derived from the user-selected login password. If the login
password is poorly chosen then it can be brute-forced, meaning
that the server could gain access to the master password.
Thus it is vital for the user to choose a login password with
high entropy. This is a reasonable assumption since it is the
only secret the user is required to memorise. Also, the use of
password offsets means that if a password (and its offset) are
compromised then all future passwords for that particular site
can be determined if the offset is known. That is, whilst offsets
will not be divulged to any party, a dishonest AutoPass server
that (by some means) learns a user’s password for a website
will be able to determine all future passwords for that site.

Attacks on password secrecy conducted by a valid site
against user passwords for other sites. The AutoPass system is
completely transparent to authenticating websites. If a website
guesses that AutoPass is in use, it could use the password to
try to perform a brute force search for the master password.
However, if the master password is chosen at random then
such a search is infeasible.

Attacks on password secrecy conducted by anyone with
access to the AutoPass server database. A party with access to
the AutoPass server database will not have access to any user
passwords. However, as discussed above, if the unauthorised
party obtains the encrypted master password and the login
password is poorly chosen, then the attacker might be able to
brute-force the login password and learn the master password.
This argues in favour of the AutoPass server providing ad-
ditional encryption of the database, giving protection against
compromise of stored user data.

VI. CONCLUDING REMARKS

In II-4 we identified three major problems with existing
password generators. These issues are all addressed by the
AutoPass scheme, as specified here, with the aid of a partially
trusted server that does not have the means to recover indi-
vidual user passwords. Firstly, existing schemes cause major
difficulties for users with a large body of existing passwords,
since they are obliged to change them all; AutoPass avoids this

through the use of password offsets, allowing continued use of
existing passwords. Secondly, the use of the AutoPass server
allows seamless cross-platform working. Thirdly, the use of
the server-provided PRML statements allows passwords to be
automatically generated to meet website-specific requirements.
Of course, whilst AutoPass works in theory, it remains to
verify that the system will work in practice. A prototype im-
plementation is being developed, and will be used to conduct
user trials. We plan to report on these trials in a future paper.

REFERENCES

[1] C. Herley and P. C. van Oorschot, “A research agenda acknowledging
the persistence of passwords,” IEEE Security & Privacy, vol. 10, no. 1,
pp. 28–36, 2012.

[2] D. Florêncio, C. Herley, and P. C. van Oorschot, “Password portfo-
lios and the finite-effort user: Sustainably managing large numbers
of accounts,” in Proc. 23rd USENIX Security Symposium. USENIX
Association, 2014, pp. 575–590.

[3] J. A. Halderman, B. Waters, and E. W. Felten, “A convenient method
for securely managing passwords,” in Proc. WWW 2005, A. Ellis and
T. Hagino, Eds. ACM, 2005, pp. 471–479.

[4] A. H. Karp, “Site-specific passwords,” HP Laboratories, Palo Alto, Tech.
Rep. HPL-2002-39 (R.1), May 2003.

[5] M. Mannan and P. C. van Oorschot, “Passwords for both mobile and
desktop computers: ObPwd for Firefox and Android,” USENIX ;login,
vol. 37, no. 4, pp. 28–37, August 2012.

[6] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell,
“Stronger password authentication using browser extensions,” in Proc.
14th USENIX Security Symposium, P. McDaniel, Ed. USENIX Asso-
ciation, 2005, pp. 17–32.

[7] R. Wolf and M. Schneider, “The passwordsitter,” Fraunhofer Institute
for Secure Information Technology (SIT), Tech. Rep., May 2006.

[8] K.-P. Yee and K. Sitaker, “Passpet: Convenient password management
and phishing protection,” in Proc. SOUPS 2006, L. F. Cranor, Ed. ACM,
2006, pp. 32–43.

[9] F. A. Maqbali and C. J. Mitchell, “Password generators: Old ideas and
new,” in Proc. WISTP 2016, ser. LNCS, S. Foresti and J. Lopez, Eds.,
vol. 9895. Springer, 2016, pp. 245–253.

[10] D. McCarney, “Password managers: Comparative evaluation, design,
implementation and empirical analysis,” Master’s thesis, Carleton Uni-
versity, August 2013, available at https://danielmccarney.ca/assets/pubs/
McCarney.MCS.Archive.pdf.

[11] R. Biddle, M. Mannan, P. C. van Oorschot, and T. Whalen, “User study,
analysis, and usable security of passwords based on digital objects,”
IEEE Trans. Inf. Forensics & Security, vol. 6, no. 3, pp. 970–979, 2011.

[12] M. Mannan and P. C. van Oorschot, “Digital objects as passwords,” in
Proc. HotSec’08, N. Provos, Ed. USENIX Association, 2008.

[13] M. Mannan, T. Whalen, R. Biddle, and P. C. van Oorschot, “The usable
security of passwords based on digital objects: From design and analysis
to user study,” School of Computer Science, Carleton University, Tech.
Rep. TR-10-02, February 2010, https://www.scs.carleton.ca/sites/default/
files/tr/TR-10-02.pdf.

[14] M. Horsch, A. Hülsing, and J. A. Buchmann, “PALPAS — passwordless
password synchronization,” in Proc. ARES 2015. IEEE Computer
Society, 2015, pp. 30–39.

[15] M. Horsch, M. Schlipf, J. Braun, and J. A. Buchmann, “Password
requirements markup language,” in Proc. ACISP 2016, ser. LNCS, J. K.
Liu and R. Steinfeld, Eds., vol. 9722. Springer-Verlag, 2016, pp. 426–
439.

[16] J. Kelsey, B. Schneier, C. Hall, and D. Wagner, “Secure applications
of low-entropy keys,” in Proc. ISW ’97, ser. LNCS, E. Okamoto, G. I.
Davida, and M. Mambo, Eds., vol. 1396. Springer, 1997, pp. 121–134.

[17] ISO/IEC 10118–3, Information technology — Security techniques —
Hash-functions — Part 3: Dedicated hash-functions, 3rd ed., Interna-
tional Organization for Standardization, Genève, Switzerland, 2004.

[18] D. Silver, S. Jana, D. Boneh, E. Y. Chen, and C. Jackson, “Password
managers: Attacks and defenses,” in Proc. 23rd USENIX Security
Symposium, 2014, pp. 449–464.

[19] ISO/IEC 18033–3:2010, Information technology — Security techniques
— Encryption algorithms — Part 3: Block ciphers, 2nd ed., International
Organization for Standardization, Genève, Switzerland, 2010.

https://danielmccarney.ca/assets/pubs/McCarney.MCS.Archive.pdf
https://danielmccarney.ca/assets/pubs/McCarney.MCS.Archive.pdf
https://www.scs.carleton.ca/sites/default/files/tr/TR-10-02.pdf
https://www.scs.carleton.ca/sites/default/files/tr/TR-10-02.pdf

