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Abstract: In this papee 
point divisible designs. 
designs and 2&&m 

we glue a recursive construction m&hod that yields many families of 
Under certain conditions we also obtain many strongly divisible I- 

I. Iatrodwtion 

Adhikary [ 1 J extended the concept of group divisible designs, first introduced by 
BOX and Connor [6], i<? generalised group divisible designs. A genera!i_h group 
divlsbn of a l-design is a partition of the points into cl;xsses PI,, . ., .@& such that 
the number of blocks through two points depends only on their point classes, and 
is denoted by Au, (15 i, ji 6). 

Independently, the concept of point divisibility was introduced in connection 
with strong tar&i decompositions of designs (set [Z, 33). A point division of a I- 
design is a generalised group division such that L,i =A for all i. A tacticul dioision 
of @ l-design is a tactical decomposition whose point classes form a point division. 
CI;arly in the case of a 2-design the terms tactical diGsicrn and tactical 
decomposition are synonymous. If t?e tactical division has c block classes and d 
point classes, then b 4-d 2 v + c where b is the number of blocks and v is the 
number of points (see [3])* Tactical divisions for which b +d =: u-,-c are of special 
interest and are called strong. A I-design admitting a strong tactical division is 
said to be strongly divisible. 

The purpose of this pqxr is to give a recursive method for the construction of 
point diviiible l-designs and 2-designs, In particular, the construction yields many 
strongly divisible l-designs and 2-designs. For instance, in Section 4, we show that 
if &? is a Madamard 244 &n- l), $( m- 3) design, and ,& is an affine plane of 
order m, then there exists a strongly divisible 2-(4m2 (t - v), m(2pnt - 2mv + t - 2v), 
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Im + 1 )(mt - tin’+ t - 2~)) design whenever there exists P S(4(t - v), t, v) symmetric 
design, of which there are infinitely many. 

In Section 5 we use a modified form of the construction process to obtain the 
affine designs of [9]. 

2. Etasic results and definitions 

A t-stt*tlctUre, .CY, is an incidence structure with a Fiinite number of points and 
blocks, with the properties: 

(i) Each block of9 is incident with exactly k points for some integer kz t, 
(ii) There e:rists an integer h >O, such that any set of t points is incident with 

exa+y i, t~llocks. 
A tiesign. 56, is an incidence structure with the properties: 
(iii) Whenever blocks s and 4’ are incident with the same set of points, then x 

= 
$$I Whenever points P and Q are incident with the same set of blocks, then P 

= . Q 
A f-design is a t-structure t’hat is also a design, Hence in a t-design we may 

regard a block as the set of points incident with that block, with incidence as set 
theoretic inclusion. 

if Q(V) ccnlains c points, then we say that 9v) is a t-(u, k, A) design (structure). 
We will denott: the number of blocks, and the number of blocks through a point 
by b and r respectiveiy. {‘We assume throughout that h> 1.) 

A t~~ir*c~! citwmpositio~~ of a design (structure) is a * 3rtition of the points into 
classes .9 I, . . ,, .Yd ‘together with a partition of the &locks into classes &, . . .,B,, 

such that for any /point class :Yi and any block class gj, the number of points of 
*Pi on a block of aj depends only on the classes chosen and is denoted by Bij* 
Dually the nunber of blocks of &4Jj through a point of .9$ depends only on i and j 
and is der,joted by yij. 

A paralMism of a design (structure) is a tactical decomposition with just one 
point class, such thM yii = 1 ~OS all j. 

The folfQwin,g res,tilt can be found in [Z]: 

eswlt 1. If T@) is a tactical division of a l-design 9, then the following are 
equivalent: 

(i) 7’(9 ) is strong; 
(ii) The nurnbe~ of points in the intersection of two distinct blocks depends only 

on their block classes ; 

(iii) Every two distinct blocks of the sanre block class inr::rsect in k - r + A. 
points. 

A special cask of csuh II is the foi!c.wing rebult due XI Bose [S]: 
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3, The main construction 

Let. ~4 be a 2-(0, k, A) structure with b blocks and p blocks through every point, 
admiktiq a paPal!elism with m blacks in each parallel class, hence ZJ = mk, We label 
the para& classes +J$ lr s . ,, d,, and let A be an incic;ience matrix “associated with” 
this parallelism of A (If% for a structure 9, there is defined a partition of the 
points (blocks} into d classes of It points (blocks) each (15 i s d), then an incidence 
matrix associated with this partition is an incidence matrix for 9’ with the rows 
(coIumns) ordered so that the rows (columns) corresponding to the points (blocks) 
of the nth point (block) class are the C:it Zi + 1, DG; Ii + 2,. ., & 1 li rows 
(columns) of this matrix.) Then A can be written as (Ai& l l l A,), where AI is a v 
x m incidence matrix of the l-structure whose points are the points of & and 
whose blocks are the blocks of &i* 

Let 9 be a l-(mn, k’, r’)structure with b’ blocks, admitting a regular point dioision (i.e. a 
point division with all point classes of equal size), with point classes 9 1, . . ., 5pn and laYi 
= m. We denote the number of bilocks mutually incident with a point of 9, and a point 
of ,Yj by 2, and let A’ = A& for all i. We let S be an incidence matrix for 9’ associated with 
this point division. Let 

where I, is the n x n identity matrix, and @ denotes Kronecker m&iplication. 
Then B is a tin x mnr matrix. We point out that, essentially, we have taken n 
isomorphic copies of .A 

L?t C = I,@% Thus C is a.n mnr x b’r matrix. 
Finally let D = BC. 

Theorem IL. D is the incidence matrix of a l-(mnk, kk’, rr’) structure 9, admitting a 
regular point division with n point classes. 

Prod. Since every row of Z,,@AI has exactly one entry + 1, it is clear that D is a 
(&I) matrix, Further, since every column of I,@At has exactly k entries + 1 and 
every column of S ha; k’ entries + 1, we see that every column of D has kk’ 
entries + 1. Thus D is the incidence matrix of a structure 9 with constant block 
size kk’. 

We now consider DDT=BCCTB. Clearly CC’= E,@SST. However, since S has a 
regular pair: division, 

SST = (r’ - A’)l,, -+ A, 

where 

and j, is the all + 1 vector of len th F~I, and A z (Afj). 



ThUS 

DDT = (r’ - a’)sBT + B(I,@)A)BT. 

Since J$ is a Z-structure it is gtctstly verified &at 

.im* = (r - a)lmnk -I- (I&QJ,k), 

where .I,, is the mk x mk matrix every entry of which is + I. Ckmpaxtation of 
B(I,@A)BT yields 

where 

However, the entries of DIbT are just the inner products of rows GF 3, i.e. they 
count the number of blocks common to two points of 3. Thus we see that D has a 
“natural” regular point division with n point classes and wk points in E point 
class. The point classes are in (1 - 1) correspondence with the points of’ the 
isomorphic copies of &. 

Clearly 9 is not necessarily a design, since it may have blocks that are identical1 
as point sets or, duaLy, points incident with the same set of blocks. We let p d 
denote the greatest intersection number of &. 

Lemma 1. 9 is 0 desigrn $ 
(iI k >p.ti(nr -- 1) 
(ii) 9 is a design and MO block ~$9 contains all the points from my given p&t 

chss qjx 

Proof. We label the first b’ columns of D the first column class, the next 15’ 
columns the second column class, and so on. 

A block of ,(b is obtained by taking the union of k’ blocks of J# or il[s 
isomorphic copies. Since the blocks of each parallel class of ~8 are disjoint, we can 
never obtain identical (as point sets) blocks within a column class of $33 provided:? 
is u design. Suppost: y1 and y2 are two blocks of 9 (necessarily from different 

clasps) that are identical as point sets. Let x a block of either or 
its ~somorp~~ic copies which is contained in yl. 3en, by (ii), y2 contains iit 

.- T blocks from any parallel class of & or o of its isomorphic copies. 
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(Sinw yl and ya belong to different column classes y2 cannot contain any block 
from the parallel class of x .) But, since k > p,Jrn - 1 j, y2 cannot contain all k 
points of x, and thus; we have a contradiction. 
jl, To ‘show tha‘it t$o pqints of 9 are never incident with the same set of blocks we * ’ 

neeb:o& -bhoWthbt tk offkiia~onal entries of DD’ are always less than rr’. But 
Y.& < rr’ since,!? is a design, and 

(r’ ‘-A’ )A + 24’ = (r -4)(X - r’) + rr” 4 rr’, 

since F > f, and r’ > 2’. 

Remark 1. Condition (i) implies s?’ is a deisgn. 

Remark 2. If S# is an aiffine design, then its parameters may be written 2-(pd, 
pm, bzm-l)/(m- l)), and thus, since ~~12~ condition (i) is automatically 
satisfie,d. 

Lemma 2. 9 is Q 2-structure if c:nd only if 

ilr’ + (r - A )A’ = rAiJ for all i, j : I s i, j 5 n, i j, j. 

Proof, 9 is a 2-structure if and only if all the non-diagonal elements of DDT are 
equal. Hence (* j gives the result. 

Remark. If B is a 2-structure we see that9 must be a group divisible design, i.e. 
we must have Ai, -A; for all i and j. 

Lemma 3. If9 admits a point regular tactical division (i.e. a tactical decomposition 
whose point classes form a regular point division) T(9) with point classes sPI, *. ., Y, 

and Mock classes V 1, *. ./if,, then $3 admits a point regular tactical division T(9) 
with n point classes and rc block classes. 

Prod, L-t yij denote the number of blocks of %j incident with a point of,c;Pi, and 
let /YiJ, denote the number of points of Yi incident with a block of wj. Further 
suppose I%$1 = mj, 1 5 j 6 c, 

Using the notation of Theorem 1 we assume that S is an incidence matrix forY 
associated with T(Y). We call the points indexed by the first mk roves of D, PI, the 
points indexed by the next mk rows, 9$, and SO 2~ to 9$. We call the blocks 
indexed by the first ml columns of D,9,, the blocks indexed by the next in2 
columns of B,l?y,, and so on to %$, the blocks indexed i,y the next ~2~ columns of 
@%+I, and so on to $&. We shall show that these pain! and block classes define 
a talzt,ical decomposition of 93, and hence, by Theorem 1, a point regular tactical 
divis;ion. 

t loss of genera~ity~ consi er the F& x mj submntrix of D whlose row:; are 
indexed by the points of Pi (1 f i d n), and whose columns are indexed by the 
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blocks of 

‘The entries of this submatrix are obtained by multiplying the (S-c l)mk + 1,. . ,) i&k 

rows of B by the 

j- 1 j 

tb’ -t C ml,. . l , tb’ + x, ml 
I=1 iZm 1 

columns of C. However,, since each, of these rows ot” B has exactly one entry of + 1 
in the po*sitrons ~rnn + (i - 1 )m + I,. . ., tmn+ im, the row sum for each row of this 
submatrix will be exactly the row sum For each row of the corresponding m x mj 
submatrix of C containing rows tmn + (i - 1 )m -t- 1,. . ., tmn -t im and columns 

j-- 1 

t/i -+ 1 ix; + 1,. . ., tb’i- i ml. 
I-! 

However, by our hypothesis these row sums are all yip Thus the mk x mj 
submatrix of D has all its row X~S yij. 

By similar considerations we can show that this sub:matrix has all its column 
sums kfl,;. 

Thus .3+ admits a tactical decomposition with n point classes and I% block 
classes. 

Lemma 4. T(9) is strong if and only lf b’i* + n = mnk t rc. 

Proof. ‘T(9 ) is strong if and only if “b +d = 8-t r”, -i.e. if and only if b’r + n = mck 
+ rc. 

Theorem 2. Any two of the following conditions imply the third: 
(i) ,0I is afine: 
(ii] T( 9). is srrong; 
(iii) T(9) is strong. 

Proof. Suppose (i) holds, i.e. suppose & is a 2-(pm2, pm, (pm - l)/(rat-- 1 1) design 
wi+% m(pm2 - 1 )/(m - 1) blocks and (pm2 - 1 )/(m - 1) blocks through a point. 

T( 9’) is strong if and only -if b’+n =mn-+c; 

-- - if and only if rb’ - rc =--------- (pm” 1) mn .- (pnz2 .-- -- ----- 1) 
(m- 1) (m-1) 

11 

= (&ml2 - 1 )n 

= mnk - n ; 

if at3 y if (9) is strong ( 
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Hence (i) and (ii) hold if and only if (i) and (iii) hold. Yuppose (ii) holds, i.e. 
suppose 12’ + n = mn + c. 

T(Q) is strong if .and only if, 
if,and only if. 
if.and only if, 
if.and only if. 

Hence (ii) and (iii) hold if and snly if (i) 

b’r+n=mnk+rc (by Lemma 4); 
(mn - n)F = mnk - n (since T(S) is strong); 
b--r=v--l; 
(i) holds (by Result 2) 

$ 
and (ii) hold. d 

:: 
We now turn our attention to the intersection numbers of 9. I\9 is strongly 

divisible, then the number of.points in the intersection of.a block ofzlass ‘iBi and a 
block of class ‘iBj depends only on i and-j. We denote this number by &. Further, 
pi,! =p’= k’- r’+ 2 for all i (see Result 1). In the case when 9 admits a strong 
tactical division with block classes $Y l,. . ., 6Yrc (employing the notation of Lemma 
3)., we denote the number of points in the intersection of a block from +Vi and a 
block from tij by pij (1 s i,js rc) and denote the number of points in the 
intersection of two blocks of the same block class by pa 

Tlwotenn 3. 1f & is an a@ne desigrz and9 admits a stron,g tactical division TV), 
then 9 admits a strong tactical division T(9) and its intersection numbers we: 

Pij = kP:~ 1 -<i,jsrc, if j(rfiod c) 1 s u,w 5 c, u = i(mod c), w s j(mod c); 

pij=[p’+(“it”)]k lsi,jsrc,i=jrt(modc),ifj, ls;tcc; p=kp’. 

In order to prove Theorem 3 we need the following result from [3]. 

Result 3. Let T(g) be a strong tactical division of a l-design 9 with C block 
classes and il point classes. Then 

0) fijflij - &Tij for all i, j: 1 g i 5 c’; 1 C j <J; -- 

(ii) for all j, k: ls,i, k 5 c^; 

where CIi = 1. if j = k and S ==0 otherwise; and h is the size of the ith point class. (The 
1.emainder of the notation is analogous to that used throughout.) 

Prcmoii of Theorem 3. This computation is somewhat lengthy but rieverthelcss 
straightforward. We calculate D*D using techniques simAar 1.0 those used in 
Theorem 5. Since each entry in D*D is just inner produc\t of two co1 
the entries of B*D are the i~terse~~~o~ P,U 
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Remark. By Theorem 3, if9 has i intersection numbers, then 9 hm at r&xt i-+ c 
intersection numbers. 

4. An application of the constructian 

In this section vve give an ap$ication of the construction which yields not only 
many infinite families of point divisible and strongly divisib4e l-designs, but also 
many infinite families of strongly divisible 2-designs. . , 

We begin by constructing a strongly group divisible design 9 (i.e, a d&ign 
admitting a strong tactical division the point classes of which form a goup 
division) using a method which is a generalization on the construction of Sillitto 

WI . 
Let .M be a 2-@I, h, A) design with b blocks and r blocks through every point, 

and let .A”‘ be a 2-(n,t, v) design uith 6 blocks and r’ blocks through every point. 
(We include the possibility that either A! or N may be trivial 2&signs, i.e. every 
set of h (respectively t) distinct points being a block). Let M and N be incidence 
matrices for .*# and V respectively. Let 

S=N@M-t (J -N)@(J-Ad). 

Lemma 5, S is an incidence matrix of a 

design,?, admitting a tacticai decomposition T(Y) with n point classes and 6 block 
ch4.u2s. F'tdter, HO block C.JJ ,‘fl contains all the points of a point class qf’ .K 

Proof. WC let the ith point Jass of T(58) Be the points indexed by the (i- d)m 
-F i , * a l , iia rows of S(l s isn), and the jth block class, of T(V) be the l&dcs 

indexed Ir’y the (j - 1 )b t- 1 , . . ., jb columns of S(1 gj6 6). Sncc J5r and 4 are both 
2-designs, and, as above we assume b 1, the result follow? immediately. 

Le~nma 6. T( 9’) is a tactical group diz:ision if and only if ii=4(F-- u). 

Proof. Computation yields: 

ssT=!,~([(v-n)r;3r,-t[l~+(b.-2r+1)(6-~)]J,} 

+ (J,-I,)Q{[(r--A)(F--4r’+4v)]I, 

+[Av+ (b-2r+k)(6-2~cv)+2(r-A)~;F-v)]J,}. 

i 

Clearly the point classes of ‘;I’( 9) form a group division if and only if (r- 1) 
FC4cb=O, i.e. 5.=4(F-0). 



ilu-(b-2r+12)(6-F)=-av+(b-2r+A)C6-2~+v) 

+2(r-A)@+), i.e. b=4(r-A). 

ILeqxna~ 8, T(Y) is strong if and only if N and -4 are both symmetric. 

JPIw& T( (Ep) i!i strong if.and only if .“b + il = v -I- c”, i.e. if and only if. b6+ tz = mn + 6. 
IHowever $nce 62 n and b 2 ,w, we have TV) strong if and only if 6== n and b = m. 

Lemma 9. There exist infiraiteiy many symmetric 2-designs with “t, = 4(r - A)“. 

Pro&. If A and N are both symmetric 2-designs with “b ==4(r - A.)“, then 9 is a 
symmetric 2-design with “b =4(ir - A)“. Since there exists koth a 2-(4,3,2) design 
and a 2-(16,6,2) design with the required properties we can use this construction 
method recursively to obtain an inf’kte family. 

:knma $0. Let N be a symmetric 2-(n, t, 1~) &sign vvic;h n -4,(t - v), and let A? be a 
;symmetric 2-(m, &,A) design. Then 9 is a strongly group divisible desiglz 
parameters: 

with 

b-v-4(t-v)m; c=d=4(t- I’); r=k==3mt+4hv-2ht-Limv; 

Fr=I’.=3mt-4mv-dht$-$~v i-4&-4Av; 

pij = A; = 2mt - 3mv - 2ht -t- 4hv 1 f i,j s ~6, i + j. 

Proof, This follows immediately from Lcrkumas 5, 6 and 8, a& observing that SST 
= STS. 

‘Theomn 4. Let & be a 2-(ym2,,pm, {pm - 1 )J(m - 1)) a#iple diesign (if such a desigri 
exists), and let9 be the strongly gwup divisible l-design of Lemma 10 above. Then 
9 as constructed in Tkwrem 1 is a strongly divisibk Mesigss, end is a 2-design if 
and onty if p= 1 anld A! is a 2-(4A -+ 3, 2A -I- 1, A) Hafkmard design or its 
complement. 

Proof. By Theorems 1 and 2 z&i Lemmas 1 and 3, 9 is clearly a. strongly 
divisible l-design. By Lemma 2, 9 is a 2-design if UK! only if 

pm-l (-> z (3mt+4hv-Ght-4mt) 

i ;g” - 
=r f -.-.--t 

\ nz-1 > 
(2mt -- 3 mv -- 2ht -k Qhv ). 



Since A[m - 1) = h(h - l), on substitution and dividing by m(t -v) we obt&: 

/4-(2h- l)n-*h(h- 1)]2=P (1) 

If p > 1, then 

[(2h- 1y---h(h- l)]“<P, i.e.(&$!)(,_~)4I, i.e. $A>?; 

which is clearly not possible since h and A are integers. Thus the only solutions of 
(1) are p = 1 and h = 2A + 1 or h = 2h, which implies that A? is a symmetric 
Hadamard design or its comple$nent. 

Theorem 5. Let AV be u 2-(4A+ 3,2R + 1, A) Hadamard design such thui ihere exists 
an ajlino plane d of order m =4;1 -I- 3. Then there exists an infinite faudy of 
st ronglp divisible 

2-(4m2(t-,v),m(2mt-2mv+t-2\,),(m+1)Cmt-mv+t-2v)) 

desigrts with 4(t -v) point classes and intersection numbers: 

m(mt-mv-v), m(mt-mv-2v+t) and (m+1)2(t-v)-mmt. 

Proof. Let .N be any one of the infintely many symmetric 2-(4(t -v), t, v) designs 
that exlrst by Lemma 9. Then9 as constructed in Lemma 5 is a strongly divisible 
l-design (by Lemma lo), with parameters: 

t.=b=4m(t-v); c=d=4(t-v); 

r=k=2mt-Zw+t-2v; (2) 
p’ = ;b’ =mt-mv-v; 

P~j=&j=?Tlt-mV+ t--S: 1 si,js4(t--v),i#j. 

Since there exists an a&e pilane & of order m, we can construct 9 as in 
Theorem 1 using 9 and &, ta.king n ==4(t -v). By Lemmas 1, 2 and 3 and 
Theorems 1 and 3 we see that ZS has the required properties. 

Remark 1. Whenever m is a prime power it is known that there exists an affine 
plane of that order, and many S(j4A-t 3, 2A+ 1, A) Hadamard designs with 
m = 4iL + 3 a prime power are known to exist 

We point out that the strongly divisible 2-designs constructed above 
ree ~~t~rse~tion numbers: “k “(r-A)@)-+-k-r+-L” 

ecomposition. Thus the 
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strongly regular’ graph of such a design (obtained by taking the vertices of the 
graph to be the block classes of the decomposition of the design, with two vertices 
adjacent if- atid only if a block from each tif the corresponding block classes 
intersect in x points where x is One of the intersection numbers. apart from k - r 
+A) is complete bipartite or its complement. For further details see [4]. 

> <_’ 

Rematk 3, Given any strongly divisible l-design with the parameters of they of 
Theorem 5, we can construct a strongly divisible &design; i.e. it is not necessary 
for the construction of Theorem 1 that ,Y belongs to the class of designs 
constructed in Theorem 5. For instance, the authors have constructed a. strongly 
divisible l-(16,7,7) design 59 (i.e. taking m =4, t = 3, v = 2 in (2)), and since there 
exists an affine plane of order 4, this can be used to construct a strongly divisible 
2-(64,28,15) design. This strongly divisible l-(16,7,7) design, however, is not a 
member of the family of designs of Theorem 5. 

We point out that in a recent paper by John and Turner [S], the strongly 
divisible l-(16,7,7) mentioned above and also a strongly divisible l-(20,9,9) have 
been found using a computer aid.ed search. Since there exists a.n afine plane of 
order S we may apply our construction to the latter of these designs to obtain a 
strongly divisible 2-( 100,45,24) design. 

5. A. modification of the construction 

It is clear that the construction of Section 3 can be modified and generalised in 
many ways, and below we give an example of how a modified form r&f this 
construction can be used to obtain the afine designs of Kimberlq C93. 

Construct 9 with matrix D from & and Sp as in Section 9, with the extra 
condition that every block of 9’ is incident with prel;isely of IJvints of9 (i.e. k’ 

= m). Then, by Theorem 1, D Is the incidence m&ix of a I-(mnk, m k, rr’ ) 
structure 9, admittmg a regular point division with n point classes. 

Let A =I, @ jzk. Then d is an mnk x m matrix, and evtiry column of d contains 
precisdy mk entries of + 1. Let D = (DA ). 

Theorem 6. b is the incidence matrix of a l-(mnk, mk, IT’-/- 1) structure .9, 
admitting a regular point division with n point classes. 

Proof, The proof is ident;lcal to that of Theorem 1, with the eh.cepton that DligT 
= DDT + AAT. Clearly AA r = InOJlnk. 

so 

where D’ is given by (*) above. So, as in Theorem 1, we hal.1: .a “natural” point 
division. 
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_esmnSrr 11. g is a design @he conditions of Lemma I are sutisfied. , ) j 

hf. Sime 3 is a design, by Lemma I, and Once no two columns of d are the 
same, we need only observe that, since no blflck of9 contains all the points of a 
point class of 9, no block of 9 contains all the po&s of a point class of the 
“natura!” point division of 9. Hence 9 ii’ a design. 

Lemma 12. d is a 2-structure y’anlf! onl;~ $ 

Jr’ + (r - 1)n’ + 1 = tl_k for all i, j: 1 s i, j s 3, i #j. 

Roof. cf. Lemma 2. 

Lenoma 13. lf B is a 2-structure and 9 admits a pain; qular tactical division 
T(Y) with point classes9 1,. . .y, and b&k classes VI,. . .,%!&, such that the number 
of blocks of VZJ incident with a point ?fYi depends only on the block class Wj, (i.e. 
there exists a ys for ~11 j (1 rj 5~) such that y il=yj for all i (I~i~n)--where yij is 
as in L~E,M 3), therr d admits a txtical division R(g) with 01.e point class and rc 
+ i block classes. 

Proof. Leb the block classes of R(B) be the block classes of T(B) as given in 
Lemma 3, with the blocks corresponding to the columns of A as one extra block 
class. The proof’ then follows by Lemma 3. 

Remark. If TV) is strong wle may replw:e the condition yij” yj in the above, by 
the condition 

n(J 4’) 
“i= (m_ptn)’ 1 SjQ. 

Since 

i Yij= C 7 
n mjbij (bi Result 3(i)) 

j = 1 i=l i 

= ??ljk’/m = rnJ (since k’ = m ). 

Let ;’ = iTlj/n 

n 

c n ,)22/j?. 
y+ .L _y (Result 3(i)) 

i= 1 i= 1 i 

z 5 (p’mj + r’ - 2’) 
m 

(Result 3(ii)). 

SO ;‘fj “” ;‘j for all i if and only if’ 

n 

q L( Yij-Y)2=0 fC?P allj; 
i=l 
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i.e. 

n(r’- 2) 
mj= 

(m-w’) 
for all j, 1 s jr c. 

Lemma 4. R@) is strong if an:d only if b’r + n =- m,qk + rc, 

Roof. R(g) is strong if and only if “‘b + I= v +c”, i.e. if and only if (b’r + n) + 1 

=mnk+ (rc+ 1). 

Theorem 7. If 9 and 9’ satisfy the condition,s of Lemma 13, then any two of the 
following impZy the third: 

(i) & is aflne; 
(ii) T(9) is strong: 
(iii) R(a) is strong. 

Proof. cf. Theorem 2. 

We now construct the designs of [9] by this method. 

Theorem 8. Let ..c# be an afine 2-(pm2, pm, (iirn - 1 )/@I - 1)) design, and let 9” be 
an a@nc plane of order m. Suppose the parallel classes of’9 are&, . . .,Ym+ 1. Then 
if9 is the Zzcidence structure whose points are the poinj:s of 9”, and whose blocks 
are the blocks of Y,,. . .$@, with incidence as in 9’, then a, constructed as in 
Theorem 1 using 9 and & is an affine 2-(pm’, pm2, (pm2 - l)/(m - 1)) design. 

proof. 3’ is clearly a 1m(m2, m, m) design. Define Tc’ip) as follows: Let the block 
classes of TV) be the parallel classes9 l,. . .$f, 0fK Let the point classes of TV) 
be the point sets of the blocks of&, + 1. Then T(Y) has m block ( oint) classes of 
size m. Every block (point) of9 is incident with precisely one point (block) of any 
given point (block) class. So T(Y) is a strong tactical decomposition satisfying the 
condition of Lemma 13. Any two points of 9 are on 0 or 1 common blocks 
depending only on whether they are from the same or different point classes 
respectively, ancl so TV) is a strong tactical division. So, by Theorems 6, 7 and 
Lemmas 11, 12 and 13, a is a 2-(pm3, pm2, (pm2 - 1. )/( m - 1)) design admitting a 
strong tactical decomposition R(a) with one point class. By Lemma 3, the 
number of blocks of any block class (apart from the one derived from 4) incident 
with any point is yii= 1. Also, every row of d contains ]?recisely one -C 1. So R(a) 
is; a parallelism. Hence, by Result 2, 9 is affrne. 
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5. General remarks 

In our examples of the use of the construction of Section 3 we have mainl! 
festricted ourselves 10 t‘~es in which the structure 9 abtained is a 2_desi;yyl, 
Clearly this construction process can yield many more point divisible l-designs. 
For example, we cc&d use the 

2-(&l (t - v), 

designs constructed in 
obtain further group 
construction. 
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