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Abstract: In this paper we give a recursive construction method that yields many families of
point divisibie designs. Under certain conditions we also obtain many strongly divisible 1-
designs and 2-designs.

1. Introduction

Adhikary [1] extended the concept of group divisible designs, first introduced by
Bose and Connor [6], ic generalised group divisible designs. A generalised group
division of a 1-design is a partition of the points into classes 2,,...,#,, such that
the number of blocks through two pomts depends only on their point classes, and
is denoted by 4,;, (15i, j 2d).

Independently, the concept of point divisibility was introduced in connection
with strong ta-tical decompositions of designs (see [2,3]). A point division of a 1-
design is a generalised group division such that A,;=A4 for all i. A tactical division
of ¢ 1-design is'a tactical decomposition whose point classes form a point division.
Clzarly in the case of a 2-design the terms tactical division and tactical
decomposition are synonymous. If the tactical division has ¢ block classes and d
point classes, then b+dZv+c where b is the number of blocks and v is the
number of points (see [3]). Tactical divisions for which b+d=v--c are of special
interest and are called strong. A 1-design admitting a strong tactical division is
said to be strongly divisible.

The purpose of this paper is to give a recursive method for the construction of
point divisible 1-designs and 2-designs. In particular, the construction yields many

trongly divisible 1-designs and 2-designs. For instance, in Section 4, we show that
if # is a Hadamard 2-(m, (m—1), $(m—3) design, and o/ is an affine plane of
order m, then there exists a strongly divisible 2-(4m?(t—v), m2mt —2mv +1—2v),
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294 H.J. Beker, CJ. Mitchell -

(m+ 1)(mt —mv+t—2v)) design whenever there exists # Z-(4(t—v), t, v) symmetric
design, of which there are infinitely many.

In Section 5 we use a modified form of the construction process to cbtain the
affine designs of [9].

2. Basic resuits and definitions

A t-structure, &, is an incidence structure with a finite number of points and
blocks, with the properties:

(1) Each block of # is incident with exactly k points for some integer k=1,

(i) There exists an integer A>0, such that any set of ¢ points is incident with
exactly A blocks.

A design, 2, is an incidence structure with the properties:

(iiiy Whenever blocks x and y are incident with the same set of points, then x
=Y,

(iv) Whenever points P and Q are incident with the same set of blocks, then P
=Q.

A t-design is a t-structure that is also a design. Hence in a t-design we may
regard a block as the set of points incident with that block, with incidence as set
theoretic inclusion.

If 2¢/) contains v points, then we say that 2() is a t-(v, k, 1) design (structure).
We will denote the number of blocks, and the number of blocks through a point
by b and r respectively. {We assume throughout that b>1.)

A tactica! decomposition of a design (structure) is a * artition of the points into
classes #,,....#, together with a partition of the blocks into classes #,,...,%..
such that for any point class #; and any block class #;, the number of points of
#; on a block of #; depends only on the classes chosen and is denoted by f;.
Dually the nuinber of blocks of #; through a peint of #; depends only on i and j
and is denoted by y;;

A parallelism of a design (structure) is a tactical decomposition with just one
point class, such that y;;==1 for all j.

The following resualt can be found in [2]:

Result 1. If T(%) is a tactical division of a 1-design ¢, then the following are
equivalent:

(1) T(<)1s strong;

(i1) The number of points in the intersection of two distinct blocks depends only
on their block classes;

(ii1) Everv two distinct blocks of the same block class iniarsect in k—r+4
poiats.

A special case of Result 1 is the foilowing result due o Bese [5]:

Result 2. If a Z.design @ bas a paraliclism, then b+ 120+ r with equality if and
only if & is affine.
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3. The main construction

L

be a 2-(v, k, A) structure with b blocks and * blocks through every point,
! _parallelism with m blocks in each parallel class, hence v=mk. We label
'the parallel classes of,,...,o,, and let 4 be an incidencc matrix “associated with”
this ”parallehsm of o. (If for a structure &, there is defined a partition of the
points (blocks) into d classes of 1A pomts (blocks) each (1<i<d), then an incidence
matrix associated with this partition is an incidence matrix for & with the rows
(columns) otdered so that the rows (columns) correspondmg to the points (blocks)
of the nth point (block) class are the Sizfl+1, Yio!L+2,..,30. L rows
(columns) of this matrix.) Then A can be written as (4,4, A4,), where 4, is a v
x m incidence matrix of the l-structure whose points are the points of o/ and
whose blocks are the blocks of ;.
Let #beal-(mn, k', r')structure with b’ blocks, admitting a regular point division(i.e.a
point division with all point classes of equal size), with point classes &, ..., %, and |#|
=m. We denote the number of blocks mutually incident with a point of .91 and a point
of #;by 4;; and let A’ = 4; for all i. We et S be an incidence matrix for % associated with
this point division. Let

B=[I,,®A1 In®A2 o 'In®Arl

where I, is the nxn identity matrix, and ® derotes Kronecker multiplication.
Then B is a vnx mnr matrix. We point out that, essentially, we have taken n
isomorphic copies of of.

L~t C=I,®S§. Thus C is an mnr x b'r matrix.

Finally let D =BC.

Theorem 1. D is the incidence matrix of a 1-(mnk, kk',rr') structure 9, admitting a
regular point division with n point classes.

Proof. Since every row of I,® A, has exactly one entry +1, it is clear that D is a
(0,1) matrix. Further, since every column of I,®A; has exactly k entries +1 and
every column of § has k' entries +1, we see that every column of D has kk'
entries + 1. Thus D is the incidence matrix of a structure 2 with constant block
size kk'.

We now consider DDT=BCCTB. Clearly CC"=1,®SS". However, since § has a
regular poir* division,

SST=(r' =), + A4,
where
A=1,®jm)A1,®jm)

and j,, is the all +1 vector of length m, and A= (4;;). Hence

CCT = (r' =AM e + 1, @ A,
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Thus
DD =(r'~A")BBT+B(l,&A)B".

Since o is a 2-structure it is edsily verified that
BB = (r= A+ (L, ®AT ),

where J,, is the mk x mk matrix every entry of which is +1. Computation of
B(I,®A)BT yields

r(1,®ja) AU ®im)-
Hence
DD =(r' =AY r— A+ D’
where
[(r =2+ rA ) rAL 20 mk e rAnd mi
D= ri ,J',,,k [(r'-—/l’),1+r).’]J,,,k r}.z,,.;,,,,‘ *)
ri, 1J mk ri, 2J,,,k " [ - A’)/l + rA M

However, the entries of DDT are just the inner products of rows of D, i.e. they
count the number of blocks common to two points of .. Thus we see that D has a
“natural” regular point division with n point classes and mk points in a point
class. The point classes are in (1—1) correspondence with the points of the
isomorphic copies of .«&/.

Clearly 2 is not necessarily a design, since it may have blocks that are identical
as point sets or, duaiiy, points incident with the same set of blocks. We let u
denote the greatest intersection number of .

Lemma 1. 2 is o design if:

() k>p(m-1)

(1) & is a design and no block of ¥ contains all the points from any given point
class of & .

Proof. We label the first b’ columns of D the first column ciass, the next b’
columns the second column class, and so on.

A block of @ is obtained by taking the union of k' blocks of & or its
isomorphic copies. Since the blocks of each parallel class of « are disjoint, we can
never obtain identical (as point sets) blocks within a column class of @ provided .
is « design. Suppose y, and y, are two blocks of @ (necessarily from different |
column classes) that are identical as point sets. Let x be a block of either o7 or 5
one of its isomorphic copies which is contained in y,. Then, by (ii), y, contains at |
most m- ! blocks from any parallel class of .« or one of its isomorphic copies. ;

&é'w R
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(Since y, and y, belong to different column classes y, cannot contain any block
from the parallel class of x.; But, since k>pu {m—1), y, cannot contain all k
points of x, and thus we have a contradiction.

s of 52,‘are never mcldent with the same set of blocks we
L t the off-diagonal entries of DD™ are always less than r'. But
ri.i,<rr smcey’ is a design, and

(' =AA+rd =(r=A)A ~r)+rr' <rr,
since r>4 and r'> 1",
Remark 1. Condition (i) implies o is a deisgn.

Remark 2. If & is an affine design, then its parameiers may be written 2-(um?,
um, (um-—1)/(m—1)), and thus, since u=yu, condition (i) is automatically
satisfied.

Lemma 2. 2 is a 2-structure if ¢nd only if

Ar'+(r—=A)A'=rdi; forallij:iSijsn,i#j.

Proof. 2 is a 2-structure if and only if all the non-diagonal elements of DD' are
equal. Hence (x) gives the result.

Remark. If 2 is a 2-struciure we see that.9” must be a group divisible design, i.e.
we must have A;;=4; for all i and j.

Lemma 3. If¥ admits a point regular tactical division (i.e. a tactical decomposition
whose point classes form a regular point division) T(S) with point classes & ,..., &,
and block classes €,,....%,., then @ admits a point regular tactical division T(2)
with n point classes and rc block classes.

Proof. L«t y;; denote the number of blocks of ¢; incident with a point of &, and
let f;; denote the number of points of & mcndent with a block of €;. Further
suppose |€,|=m; 15 j<c.

Using the notation of Theorem 1 we assume that S is an incidence matrix for%”
associated with T@). We call the points indexed by the first mk rows of D, 2, the
points indexed by the next mk rows, #,, and su on to 2,. We call the blocks
indexed by the first m, columns of D,%,, the blocks indexed by the next m,
columns of D.%,, and so on to #,, the blocks indexed by the next m; columns of
D,%,.,, and so on to %,. We shall show that these poin' and block classes define
a tactical decomposition of 2, and hence, by Theorem 1, a point regular tactical
division,

Without loss of generality, consider the mk x m; submatrix of D whose rows are
indexed by the points of #,(1<i<n). and whose columns are indexed by the
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blocks of
yu‘i—j (0§l§r~1;1§j‘g‘:)’

The entries of this submatrix are obtained by mnlnplymg the (i 1)mk+1 o imk
rows of B by the o

i-1 J
tb,+ z m,,..., tb,+ Z‘ m‘
I=1

1=1

columns of C. However, since each of these rows of B has exactly one entry of +1
in the positions tmn+ (i—1)m+1,..., tmn+im, the row sum for each row of this
submatrix will be exactly the row sum for each row of the corresponding m x m;
submatrix of C containing rows tmn+ (i—1)m+1,..., tmn+im and columns

i1 i
‘—\

'+ % a1, th'+ ) my
1=1 =1

However, by our hypothesis these row sums are all y; Thus the mkxm;
submatrix of D has all its row cums y;;.

By similar considerations we can show that this submatrix has all its column
sums kp; .

Thus Z admits a tactical decomposition with n point classes and rc block
classes.

Lemma 4. T(9D) is strong if and only if b'r + n=mnk rrc.

Proof. T()is strong if and only if “b+d=v+¢" 1. if and only if b'r+n=mnk
+re.

Theorem 2. Any two of the following conditions imply the third:
(1)  is affine;
(i) T(S) is strong;
(i) T(2) is strong.

Proof. Suppose (i) holds, i.e. suppose o is a 2-(um?, um, (um—1)/(m—1)) design
with m(um? —1)/(m—1) blocks and (um?—1)/(m—1) blocks through a point.
T(¥)is strong  if and only W b+n =mn+c

(wm? 1) (um*~1)
=Ty “mn 1) n
=(um*—1)n

ifand only if rb' -rc=

=mnk—n;:

if and only if  T(2)is strong (by Lemma 4).
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Hence (i) and (ii) hold if and only if (i) and (iii) hold. Suppose (ii) hoids, i.e.
suppose b’ +n=mn+c.

T(2) is strong if and only if. b'r+n=mnk+rc (by Lemma 4);
~ if.and only if (mn—n)r=mnk—n (since T(S) is strong);
if and only if b—r=v—-1;
if and only if (i) holds (by Result 2),

Sy

Hence (ii) and (jii) hold if and only if (i) and (ii) hold. :

We now turn our attention to the intersection numbers of 2. Itg.sf is strongly
divisible, then the number of points in the intersection of a block of'class €, and a
block of class €; depends only on i and j. We denote this number by pj;. Further,
Py=p'=k'—r'+4 for all i (sce Result 1). In the case when 2 admits a strong

tactical division with block classes %,,...,%,. (employing the notation of Lemma
3). we denote the number of points in the intersection of a block from &; and a

block from #; by p,;; (15i,jSrc) and denote the number of points in the
intersection of two blocks of the same block class by p.

Theorem 3. If o is an affine design and & admits a strong tactical dicision T),
then @ admits a strong tactical division T(2) and its intersection numbers Gie:

pij=kp,, 1=Z0,jSre, i#jmode) 1Suw=cu=i(modc),w= j(mod €);

I__)'I
p.-,-=[p'+(r )]k 1Sijsreisj=st(modce)i#j,1StSc; p=kp'.

’ »
In order to prove Theorem 3 we need the following result from [3].

Result 3. Let T(Z) be a strong tactical division of a 1-design £ with ¢ block
classes and d point classes. Then

(i) mB;=T7, foralliji1<i<é;15j<d;

d g 7 F—1o
(ii) Y By "°=,5jk+(r mI) for all jk:1gj, ke

i=1

o |

J

where § =1 if j=k and 6 =0 otherwise; and I, is the size of the ith point class. (The
remainder of the notation is analogous to that used throughout.)

Proof of Theorem 3. This computation is somewhat lengthy but ncvertheless
straightforward. We calculate DTD using techniques similar to those used in
Theorem i. Since each entry in D™D is just the inner product of two columns of D,
the entries of DTD are the intersection numbers of 2. Application of Result 3(ii)
yields the result.
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Remark. By Theorem 3, if# has i intersection numbers, then 9 has at most i+c
intersection numbers.

4. An application of the construction

In this section we give an application of the construction vshich yields not only
many infinite families ¢f point divisible and strongly divisible l-des:gns, but alao
many infinite families of strongly divisible 2-designs.

We begin by constructing a strongly group divisible design & (aﬁ a deSign
admitting a strong tactical division the point classes of which form a group
division) using a method which is a generalization on the construction of Sillitto
[11]. '

Let .# be a 2-(m,h,1) design with b blocks and r blocks through every point,
and let 4" be a 2-(n,¢,v) design with b blocks and 7 blocks through every point.
(We include the possibility that either .# or 4" may be trivial 2-designs, i.e. every
set of h (respectively t) distinct points being a block). Let M and N be inicidence
matrices for .# and 4 respectively. Let

S=N®M + (J =N)®(J — M).

Lemma 5. S is an incidence matrix of a
1-(mn,ht + (ma—h)(n—t),ri+ (b—r}{E—F))

design,#, admitting a tactical decomposition T(#) with n point classes and b block
clusses. Further, no block of ¥ contains all the points of a point class of .

Proof. W< let the ith point class of T() be the points indexed by the (i—1)m
+1,..., im rows of S(1<i<n), and the jth block class of T(¥) be the blocks
indexed by the (j—1)b+1,..., jb columns of S(1<j<b). S:nce 4" and # are both
2-designs, and, as above we assume b> 1, the result follows immediately.

Lemma 6. T(%) is u tactical group division if and only if b=4(F - v).
Proof. Computation yields:
SST=I,,®{[(r—- MBI, +[AF+ (b—2r+ A) (b~ )V )

+ (.= L)®{L(r—A) (P~ 47 +4v)]1,,
+[AV+ (b=2r+A)b—2F+v)+2(r = A)(F = V) ).

Clearly the point classes of 7(%) form a group division if and only if (r- 1)
(h—4F+40)=0,ie b= 4(F —v).
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‘i[.emma ‘7. .9’ is a 2-design lfand only if b=4(F—v) and b=4(r—1) (cf. [10] [i).
,l?r.oqf.‘”Clearly,? ls a 2-design if and only if b=4(F—v) and

Ar+(b 2r+}.)(5 r)-lv+(b—-2r+A)(b'-2r+v)
+2(r-l)(r v), ie. b=4{r—21).

]De‘nitnaaa T( ‘f’) is strong if and only if ¥ and MH are both symmetric.

lProof. T(.?’) is strong lf and cnly if “b+d=v+¢", i.e. if and only if bb+n=mn+b.
ll-Iowever since b=n and bz m, we have T() strong if and only if 5=n and b=m.

]Lemma 92. Ther‘e exist infiniteiy many symmetric 2-designs with “b=4(r —1)".

Proof. I .# and 4 are both symmetric 2-designs with “b=:4(r—4)", then & is a
symmetric 2-design with “b=4(r—1)". Since there exists toth a 2-(4,3,2) design
and a 2-(16,6,2) design with the required properties we can use this construction
method recursively to obtain an infinite family.

Lemma 10. Let A4 de a symmetric 2-(n,t,v) design with n=4(t—v), and let # be a
symmetric 2-{m,h,A) design. Then & is a strongly group divisible design with
parameters:

b=v=4(t—v)m; c=d=4(t—v), r=k=3mt+-4hv-—2ht — dmv,
p'=A"=3mt—4mv —6ht +8hv +4it —4Av;
pii=Aj=2mt—3mv—2ht+4hv 1Z5i,jSni#j.

Proof. This follows immediately from Lerumas 5, 6 and 8, and observing that SST
=STS.

Theorem 4. Let of be a 2-(um?*, um, {um—1)/(m—1)) affine design (if suck a desigs
exists), and let S be the strongly grcup divisible 1-design of Lemma 10 above. Then
9 as constructed in Thearem 1 is a strongly divisible 1-design, and is a 2-design if
and only if u=1 and M is a 2-(44+3, 2A+1, 1) Hadamard design or iis
complement.

Proof. By Theorems 1 and 2 and Lemmas 1 and 3, 2 is clearly a strongly
divisible 1-design. By Lemma 2, 2 is a 2-design if and only if

(”"" l)(Bmt+4hv—2ht-4mt)

+ um(3mt — 4mv — 6ht + 8hv + 44t — 44v)

__[;:‘mzwl_
T\ m-1

) (2mt -- 3mv - 2ht + 4hv).
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Since A{m—1)=h(h—1), on substitution and dividing by m(t —v) we obtain:
pl(2h—1)A--h(h—1)1*=A* (1)
If u>1, then

h-1 h h h—1
—h(h—1V12 <12 i S | i — _—
[2h—1)A—h(h—1)]" <4A?, I.C.( 5 )(.# 2)<(), i.e. 2>A.> 3

which is clearly not possible since s and A are integers. Thus the only solutions of
(1) are p=1 and h=2A+1 or h=2A, which implies that .# is a symmetric
Hadamard design or its compleraent.

Theorem 5. Let # be a 2-(4A+3,2A+ 1, i) Hadamard design such thu: ihere exists
an affine plane of of order m=44+3. Then there exists an infinite fawmily of
strongly divisible

2-(4m2(t - v), m2mt —2mv +t —2v), (m+ 1)(mt —mv +t—2v))
designs with 4{t —v) point classes and intersection numbers:
m(mt —mv—v), m(imt—mv—2v+t) and (m+1)*(t—v)—mt.

Proof. Let 4" be any one of the infintely many symmetric 2-(4(¢t —v), ¢, v) designs
that exist by Lemma 9. Then% as constructed in Lemma 5 is a strongly divisible
1-design (by Lemma 10), with parameters:

v=b=4m(t—-v); c=d=4(t-v);
r=k=2mt'—2’ﬂv+t_2v; (2)
p'=)s,=mt_mv—\';
P;j=/1§j=mt—mv+t—2\‘: 1§, jSa(@t—v),i#j.
Since there exists an affine plane o of order m, we can construct £ as in

Theorem 1 using ¥ and o/, taking n=4(t—v). By Lemmas 1, 2 and 3 and
Theorems 1 and 3 we see that 2 has the required properties.

Remark 1. Whenever m is a prime power it is known that there exists an affine
planc of that order, and many 2-(41+3, 24+1, A) Hadamard designs with
m=44+3 a prime power are known to exist

Remark 2. We point out that the strongly divisible 2-designs constructed above
have three intersection numbers: “k—r+217, “Av/b” and “(r—21)/\B|+k—r+A"
where | 4] is the size of a block class in a regular maximal decomposition. Thus the



~Point divisible designs ) 303

strongly regular graph of such a design (obtained by taking the vertices of the
graph to be the block classes of the decomposition of the design, with two vertices
adjacent if and only if a block from each of the corresponding block classes
intersect in x points where x is one of the intersection numbers apart from k—r
f.)*.) is complete blpg;tltg or !ES wcomp\leme,ntt ,Fpr f}lvrthe,r‘ dctaﬂs sec [4].

gRema 3‘ leen any strongly dhvnslble 1-des:gn with the parameters of the# of
Theorem 5, we can construct a st rongly divisible 2-design; i.e. it is not necessary
for the constructlon of Theorem 1 that & belongs to the class oi designs
constructed in- Theorem 5. For instance, the authors have constructed a strongly
divisible 1-(16,7,7) dssign & (i.e. taking m=4, t=3, v=2 in (2)), and since there
exists an affine plane of order 4, this can be used to construct a strongly divisible
2-(64,28,15) design. This strongly divisible 1-(16,7,7) design, however, is not a
member of the family of designs of Theorem 5.

We point out that in a recent paper by John and Turner [8], the strongly
divisible 1-(16,7,7) mentioned above and also a strongly divisible 1-(20,9,9) have
been found using a computer aided search. Since there exists an affine plane of
order S we may apply our construction to the latter of these designs to obtain a
strongly divisible 2-(100, 45, 24) design.

5. A modification of the construction

It is clear that the construction of Section 3. can be modified and generalised in
many ways, and below we give an example of how a modified form of this
construction can be used to obtain the affine designs of Kimberle: [9].

Construct @ with matrix D from o/ and & as in Section 3, with the extra
condition that every block of & is incident with precisely m puints of & (i.e. k'
=m). Then, by Theorem 1, D is the incidence matrix of a 1-(mnk, mk, rr')
structure 9, admitting a regular point division with n point classes.

Let A=1I,®j%,. Then 4 is an mnk x m matrix, and every column of 4 contains
preciseiy mk entries of +1. Let D= (D4).

Theorem 6. D is the incidence matrix of a 1-(mnk, mk, rr'--1) structure 2,
admitting a regular point division with n point classes.

Proof. The proof is identical to that of Theorem 1, with the except.on that DD'
=DDT+ AA". Clearly 44T =1,®J -

So
DD =(r = AYr— Ay + D'+ 1, @ i

where D' is given by (x) above. So, as in Theorem 1, we have a “natural” point
division.
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Lemms 11. 9 is a design if the conditions of Lemma | are Satisjied. s :

Proof. Since 7 is a design, by Lemma 1, and since no two columns of 4 are the
same, we need only observe that, since no bluck of & contains all the points of a
point class of &, no block of 2 contains all the poius of a point class of the
“natural” point division of 2. Hence & is a design.

Lemma 12. 9 is a 2-structure if an’’ onl; if
AP+ (r=A +1=r; forall i,j:15i0,j<ni#j.
Proof. cf. Lemma 2.

Lemma 13. if 2 is a 2-structure and & admits a poin: i.gular tactical division

T¢) with point classes ¥ y,....#, and block classes €,,...,€,., such that the number
of blocks of €; incident with a point of #; depends only on the block class €, (i.e.

there exists a y; for all j (1<j<c) such that y;=y, for ail i (1Si<n)—where y; is
as in Lemria 3), ther 9 admits a tactical division R(Z) with ou.e point class and rc

+1 block classes.

Proof. Let the block classes of R(Z) be the block classes of T(2) as given in
Lemma 3, with the blocks corresponding to the columns of 4 as one extra block
class. The proof then follows by Lemma 3.

Remark. If T¢7) is strong we may replace the condition y;;=y; in the above, by
the condition

n(r—2") .
J—(m_pln) =J/=¢
Since
Y=Y '”’f £ (by Result 3())
i=1 i=1 4
=mk'im=m; (since k'=m).
Let y=mj/n
- 2omipE .
Z' ysz . JI-ZB—’ {Result 3(i))
i= i=1 i

= I,% (p'my+r'—2)  (Result 3(ii)).
So y;;=y; for all i if and only if

-

(v;—7¥=0 for all j;
1

™as

il
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e

S 2
_mm@fkm . or all j;

Coaedy
My <j<
m;= m—np) for all j, 15j<ec.

Lemma 4. R(%) is strong if and only if b'r +n=mak + rc.

Proof. R(2) is strong if and only if “b+1=v+c”, ie. if and only if (b'r+n)+1
=mnk+ (rc+1).

Theorem 7. If & and & satisfy the conditions of Lemma 13, then any two of the
following imply the third:

(1) of is affine;

(i) T(S) is strong:

(iii) R(D) is strong.

Proof. cf. Theorem 2.

We now construct the designs of [9] by this method.

Theorem 8. Let s/ be an affine 2-(um?, um, (um—1)/(m —1)) design, and let &’ be
an affine plane of order m. Suppose the parallel classes of ¥’ are& ,,....% 4. Then
if¥ is the incidence structure whose points are the poinis of &', and whose blocks
are the blocks of ..., with incidence as in &', then 9, constructed as in
Theorem i using & and sf is an affine 2-(um®, um?, (um* —1)/(m — 1)) design.

Proof. & is clearly a 1-(m?,m,m) design. Define T(#) as follows: Let the block
classes of T'#) be the parallel classes,,....#, of#’. Let the point classes of T(#)
be the point sets of the blocks of &,,,,. Then T ) has m block (point) classes of
size m. Every block (point) of & is incident with precisely one point (block) of any
given point (block) class. So T(#) is a strong tactical decomposition satisfying the
condition of Lemma 13. Any two points of & are on 0 or 1 common blocks
depending only on whether they are from the same or different point classes
respectively, anc so T¢”) is a strong tactical division. So, by Theorems 6, 7 and
Lemmas 11, 12 and 13, @ is a 2-(um?®, um?, (um? —1)/(m—1)) design admitting a
strong tactical decomposition R(Z) with one point class. By Lemma 3, the
number of blocks of any block class (apart from the one derived from 4) incident
with any point is y;=1. Also, every row of 4 contains precisely one -+1. So R(Z)
is a parallelism. Hence, by Result 2, 9 is affine.
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6. General remarks

In our examples of the use of the construction of Section 3 we have mainly

restricted ourselves to cases in which the structure @ obtained is a 2-design
Clearly this construction process can yield many more point divisible 1-designs.|
For example, we could use the ‘

2-(dm*{i —v), m(2mt +t—2mv —2v), (m+ 1)(mt —mv +2v—t))

designs constructed in Section 4 in conjunction with an affine plane of order m? to
obtain further group divisible 1-designs, utilising the recursive nature of this
construction.
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