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Abstract. Many millions of users routinely use Google to log in to re-
lying party (RP) websites supporting Google’s OpenID Connect service.
OpenID Connect builds an identity layer on top of the OAuth 2.0 pro-
tocol, which has itself been widely adopted to support identity manage-
ment. OpenID Connect allows an RP to obtain authentication assurances
regarding an end user. A number of authors have analysed OAuth 2.0
security, but whether OpenID Connect is secure in practice remains an
open question. We report on a large-scale practical study of Google’s im-
plementation of OpenID Connect, involving forensic examination of 103
RP websites supporting it. Our study reveals widespread serious vulner-
abilities of a number of types, many allowing an attacker to log in to
an RP website as a victim user. These issues appear to be caused by a
combination of Google’s design of its OpenID Connect service and RP
developers making design decisions sacrificing security for ease of imple-
mentation. We give practical recommendations for both RPs and OPs
to help improve the security of real world OpenID Connect systems.

1 Introduction

In order to help alleviate the damage caused by identity attacks and simplify
management of identities, a range of identity management systems, such as
OAuth 2.0, Shibboleth, CardSpace and OpenID, have been put forward [1–3]. As
a replacement for the well-established OpenID [3] scheme, OpenID Connect 1.0
[4] builds an identity layer on top of the OAuth 2.0 framework [2]. The OAuth
2.0 framework enables an RP to obtain profile information about the end user,
but does not provide any means for the RP to obtain information about the au-
thentication of the end user. In OpenID Connect, in addition to obtaining profile
information about the end-user, RPs can obtain assurances about the end user’s
identity from an OpenID Provider (OP), which itself authenticates the user.

OpenID Connect involves interactions between four core parties:

1. the End User (U), who accesses on-line services of the RP;
2. the User Agent (UA), typically a web browser, that is employed by an end

user to transmit requests to, and receive responses from, web servers;
3. the OpenID Provider (OP), e.g. Google, which provides methods to authenti-

cate an end user and generates assertions regarding the authentication event
and the attributes of the end user;
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4. the Relying Party (RP), e.g. Wikihow, which provides protected on-line ser-
vices and consumes the identity assertion generated by the OP in order to
decide whether or not to grant access to the end user.

In summary, the end user employs a UA to access resources provided by the
RP, which relies on the OP to provide authentic information about the user.
Even though OpenID Connect was only finalised at the start of 2014, there are
already more than half a billion OpenID Connect-based user accounts provided
by Google [5], PayPal [6] and Microsoft [7]. This large user base has led very
large numbers of RPs to integrate their services with OpenID Connect.

The security of OAuth 2.0, the foundation for OpenID Connect, has been
analysed using formal methods [8–10]. Research focusing on implementations of
OAuth 2.0 has also been conducted [11–15]. However, as a newly standardised
protocol, it is not yet clear how secure practical implementations of OpenID
Connect really are. Given the large scale use of Google’s service, clarifying this
issue is vitally important. To help answer the question, the operation of all
one thousand sites from the GTMetrix Top 1000 Sites [16] providing services
in English was examined. Of these sites, 103 were found to support the use of
the Google’s OpenID Connect service at the time of our survey (early 2015).
All 103 of these websites were further examined for potential vulnerabilities,
with results as reported below. All RPs and the Google OP site were treated
as black boxes, and the HTTP traffic sent between RP and OP via the browser
was carefully analysed. For every identified vulnerability, we implemented and
tested an exploit to evaluate the possible attack surface.

Our study reveals serious vulnerabilities of a number of types, occurring in
many of the examined sites; they either allow an attacker to log in to the RP as
the victim user or enable compromise of potentially sensitive user information.
Google has customised its implementation of OpenID Connect by combining
SDKs, web APIs and sample code, and so the OpenID Connect specification
only acts as a loose guide to what RPs actually implement. Further examina-
tion suggests that the identified vulnerabilities are mainly caused by Google’s
implementation of its Hybrid Server-side Flow , and by RP developers making
design decisions sacrificing security for simplicity of implementation. Some of
the attacks use cross-site scripting (XSS) [17–20] and cross site request forgeries
(CSRFs) [21–26], well-established and widely exploited attack techniques.

OpenID Connect is used to protect millions of user accounts and sensitive
user information stored at RPs and the Google OP server. Moreover, as of April
20th 2015, Google shut down its OpenID 2.0 [27] service; as a result a huge
number of RPs have had to upgrade their Google sign-in service to use OpenID
Connect. It is therefore vitally important that the issues we have identified are
addressed urgently, and that Google considers issuing updated advice to all
RPs using its service. In this connection we have notified all the RPs in whose
OpenID Connect service we have identified the most serious vulnerabilities, as
well as Google itself. To summarise, we make the following contributions:

– We report on the first field study of the security properties of Google’s im-
plementation of OpenID Connect.
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– We examined the security of all 103 of the RPs supporting the Google
OpenID Connect service from the GTMetrix list of the Top 1000 Sites.

– We discovered a number of vulnerabilities which allow an attack to log in to
the RP as a victim user, we reported our findings to the most serious affected
websites and Google, and helped these RPs fix the identified problems.

– We propose practical improvements which can be adopted by OpenID Con-
nect RPs and OPs that address the identified problems.

The paper is organised as follows. In §2 we review OpenID Connect. We
describe our adversary model in §3. §4 describes the experiments we performed.
Possible reasons for the identified vulnerabilities are discussed in §5. In §6 we
propose mitigations for these vulnerabilities, we review related work in §7, and
§8 concludes the paper.

2 OpenID Connect

As already noted, OpenID Connect 1.0 [4] builds an identity layer on the OAuth
2.0 protocol. The added functionality enables RPs to verify an end user identity
by relying on an authentication process performed by an OpenID Provider (OP).

2.1 OpenID Connect Tokens

In order to enable an RP to verify the identity of an end user, OpenID Connect
adds a new type of token to OAuth 2.0, namely the id token. This complements
the access token and code, which are already part of OAuth 2.0. These three
types of token are all issued by an OP, and have the following functions.

– A code is an opaque value which is bound to an identifier and a URL of
the RP. Its main purpose in OpenID Connect is as a means of giving an
RP authorisation to retrieve other tokens from the OP. In order to help
minimise threats arising from its possible exposure, it has a limited validity
period and is typically set to expire shortly after issue to the RP [2].

– An access token is a credential used to authorise access to protected re-
sources stored at a third party (e.g. the OP). Its value is an opaque string
representing an authorization issued to the RP. It encodes the right for the
RP to access data held by a specified third party with a specific scope and
duration, granted by the end user and enforced by the RP and the OP.

– An id token contains claims about the authentication of an end user by an
OP together with any other claims requested by the RP. Claims that can
be inserted into such a token include: the identity of the OP that issued it,
the user’s unique identifier at this OP, the identity of the intended recipient,
the time at which it was issued, and its expiry time. It takes the form of a
JSON Web Token [28] and is digitally signed by the OP.

Both an access token [29] and an id token [30] can be verified by making a
call to the web API of the issuing OP.
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2.2 Authentication Flows

OpenID Connect builds on user agent HTTP redirections. We suppose an end
user wants to access RP services, which consumes OP-generated tokens. The
RP generates an authorization request on behalf of the end user and sends it
to the OP via the UA (typically a web browser). The OP provides ways to
authenticate the end user, asks the end user to allow the RP to access the user
attributes, and generates an authorization response which includes tokens of
two types: access tokens and id tokens, where the latter contain claims about
user authentication. The RP can use a received access token to access end user’s
attributes using the OP-provided API, and after receiving an id token the RP
learns about the user authentication, as summarised in Fig. 1.

Fig. 1. OpenID Connect Protocol Overview

OpenID Connect [4] supports four authentication flows [5], i.e. ways in which
the system can operate, namely Hybrid Server-side Flow (or Hybrid Flow) [31],
Authorization Code Flow, Client-side Flow (or Implicit Flow), and Pure Server-
side Flow. We describe the first two, since they are most relevant here.

An RP must register with the OP before using Google OpenID Connect.
During registration, the OP gathers security-critical information about the RP,
including either the RP’s redirect URI or its origin. The redirect URI is used in
the Authorization Code Flow , and the user agent is redirected to it after step 5
of §2.2. The origin is used in the Hybrid Server-side Flow and Client-side Flow ,
and points to the RP’s domain name. The OP issues the RP with a unique
identifier (client id) and a secret (client secret), used to authenticate the RP
when using the Authorization Code Flow or Hybrid Server-side Flow .

Hybrid Server-side Flow Google’s OpenID Connect uses postMessage [32–
35] to enable cross domain communication between an RP and Google’s OP.
Normally, scripts on different pages can only access each other if the web pages
that caused them to execute are at locations sharing the same protocol, port
number and host. The postMessage method gives a way to securely pass mes-
sages across domains — see, for example, in Son and Shmatikov [35]. In the
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Hybrid Server-side Flow (see Fig. 2) and Client-side Flow , an RP JavaScript
Client (RPJC) runs on the UA and listens for the postMessage event.

We now describe the Hybrid Server-side Flow , which is summarised in Figure
2 where the numbers correspond to the numbered steps below.

1. U → UA → RPJC: The user clicks the Google button on the RP website,
causing the UA to trigger the RPJC to generate an authorization request.

2. RPJC → UA → OP: The RP generates an OpenID Connect authorization
request and sends it to the OP via the UA. This request includes client id,
an identifier the RP registered with the OP previously; response type=code
token id token, requesting that a code, an access token and an id token be re-
turned directly from Google; redirect uri=postmessage, indicating postMes-
sage is being used; state, used by the RP JavaScript Client to maintain state
between the request and the callback (step 5 below); origin, a URL without
a path appended; and the scope of the requested permission.

3. OP → UA: If the OP has already authenticated the user then this step
and the next are skipped. If not, the OP returns a login form to collect
authentication information (e.g. user account and password).

4. U → UA → OP: The user completes the login form and grants permission
for the RP to access the attributes stored by the OP.

5. OP → UA: After receiving the permission grant, the OP generates an HTML
document containing the authorization response and returns it to the UA.
The authorization response contains the code, access token and id token gen-
erated by the OP; and state as sent in step 2.

6. UA → RPJC → RP: The UA executes the JavaScript inside the HTML
document it received in the previous step. The JavaScript sends the autho-
rization response using postMessage to the RPJC which is running on the
UA and listening for the postMessage event. After the RPJC receives the
authorization response it extracts the code and sends it back to the RP.

7. RP → OP: The RP produces an access token request and sends it to the
OP token endpoint directly (i.e. not via the UA). The request includes
grant type=authorization code, indicating that the RP wants to use the code
to retrieve an access token from the OP; the code generated in step 5; redi-
rect uri=postmessage, indicating that postMessage has been used to get
the code; and client secret, the secret shared by the RP and OP.

8. OP → RP: The OP checks the code, client secret and redirect uri and, if
correct, responds to the RP with access token and id token, the latter of
which is the same as the id token sent in step 5.

9. RP → OP: The RP verifies the id token. If valid, the RP knows the user has
been authenticated. If necessary it can make a web API call to retrieve user
attributes from the OP, using the access token as authorisation.

Authorization Code Flow One advantage of this flow is that no tokens are
available to the UA or any malicious application able to access the UA. If either
of the tokens are compromised they could be used to access sensitive user data
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Fig. 2. Google’s Hybrid Server-side Flow

and/or successfully masquerade as the user. The OP must authenticate the RP
before it issues the tokens, and hence use of the Authorization Code Flow requires
that an RP shares a secret with the OP. The flow involves the OP returning an
authorization code, typically a short-lived opaque string, to the RP, which uses
it to obtain the id token and access token directly from the OP’s access token
endpoint, i.e. not via the UA. The main steps are as follows.

1. U → RP: The user clicks a button on the RP website, as displayed by the
UA, causing the UA to send an HTTP or HTTPS request to the RP.

2. RP → UA → OP: The RP generates and sends an OpenID Connect au-
thorization request to the OP via the UA, including client id, previously
registered by the RP with the OP; response type=code, indicating use of Au-
thorization Code Flow ; redirect uri, to which the OP will redirect the UA
after granting access; state, used by the RP to maintain state between request
and callback (step 5 below); and the scope of the requested permission.

3. OP → UA: If the OP has already authenticated the user then this step and
the next are skipped. If not, the OP returns a login form to collect user
authentication data.

4. U → UA → OP: The user completes the login form and grants permission
for the RP to access the attributes stored by the OP.

5. OP → UA: After using the information provided in the login form to au-
thenticate the user, the OP generates an authorization response and sends it
back to the UA. The authorization response contains code, the authorization
code generated by the OP; and state, the value sent in step 2.

6. UA → RP: The UA redirects the response received in Step 5 to the RP.
7. RP → OP: The RP produces an access token request and sends it to the

OP token endpoint directly (i.e. not via the UA). The request includes
grant type=code, indicating the RP wants to use the code to retrieve an
access token; the code sent in step 5; the redirect uri ; and client secret, the
secret shared by the RP and OP.
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8. OP → RP: The OP checks the code, client secret and redirect uri and if all
are correct responds to the RP with an access token and id token.

9. RP → OP: The RP verifies the id token. If valid, the RP now knows that the
user has been authenticated. If necessary it can also make a call to the OP’s
web API, using the access token for authorisation, to retrieve user attributes.

3 Adversary Model

In our assessment of the security of Google’s OpenID Connect service, and of
RPs using the service, we consider two adversary scenarios.

– A Web Attacker can share malicious links or post comments containing
malicious content (e.g. stylesheets or images) on a benign website; and/or
exploit vulnerabilities in an RP website. Malicious content forged by a web
attack might trigger the UA to send HTTP(S) requests to an RP and OP
using GET or POST methods, or execute attacker JavaScripts. For example,
a web attacker could operate an RP website to collect access tokens.

– A Passive Network Attacker can intercept unencrypted data sent be-
tween an RP and a UA (e.g. by monitoring an open Wi-Fi network).

Conducting a security analysis of commercially deployed OpenID Connect
SSO systems requires various challenges to be addressed. These include lack of
detailed specifications for the SSO systems, undocumented RP and OP source
code, and the complexity of APIs and/or SDK libraries in deployed SSO systems.
The methodology we used is similar to that of Wang et al. [14] and Sun and
Beznosov [13], i.e. we treated the RPs and OP as black boxes and analysed
the BRMs produced during authorization. Since we used a black-box approach,
there may be vulnerabilities and implementation flaws we did not uncover.

4 A Security Study

We used Fiddler1 to capture BRMs sent between RPs and the OP; we also
developed a Python program to parse the BRMs to simplify analysis and avoid
mistakes arising from manual inspections. All experiments were performed using
accounts set up specially for the purpose, i.e. at no time was any user’s account
accessed without permission. Of the 103 RPs supporting Google OpenID Con-
nect that we examined, 69 (67%) adopt the Authorization Code Flow , 33 (32%)
use the Hybrid Server-side Flow , and just 1 adopted the Client-side Flow .

4.1 Studying the security of the Hybrid Server-side Flow

As described in §2.2, Google’s OpenID Connect API uses postMessage to de-
liver the authorization response from the OP to an RP. When the RPJC running
on the user’s browser receives the authorization response from the OP, it extracts
the code from the authorization response and then submits the code back to the
RP’s OpenID Connect sign-in endpoint.

1 http://www.telerik.com/fiddler
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Authentication by Google ID As stated above, the RPJC running on the
UA submits the code it receives from the Google OP back to the RP’s Google
sign-in endpoint (see step 6 in §2.2). The RP is meant to use the code to retrieve
the access token and id token from the OP. However, we observed that 18%
of the RPs using the Hybrid Server-side Flow (i.e. 6 of 33) simply submit the
user’s Google ID to the RP’s Google sign-in endpoint; of these, two submit the
user’s Google ID without appending a code, and one submits the user’s Google
ID with an access token. This led us to suspect that such RPs might be basing
their verification of user identity solely on the Google ID, and not using the code
as intended. If so, then a web attacker knowing a user’s Google ID could use it
to log in to the user’s RP account. We tested this, and found that 9% of the
RPs using the Hybrid Server-side Flow (i.e. 3 of 33) have this vulnerability.

Learning a user’s Google ID can be relatively simple, as a user’s Google+
post URL reveals it. An attacker can use the Google+ search for people func-
tion to find a victim user to attack, and can then visit the chosen user’s
Google+ page to learn the ID. For example, https://plus.google.com/u/0/
115722834054889887046/posts is the Google+ post URL for a Gmail account,
for which the ID is 115722834054889887046.

We reported our findings to the three affected websites, and recommendations
were also provided to enable the RP developers to fix the problem (see also 6.3).

Using the Wrong Token An access token is a bearer token, so anyone can
use it to get access to the associated user attributes stored by Google. By con-
trast, the id token is designed for use in providing assurances about user au-
thentication. However, in practice, some RPs use an access token to obtain user
authentication assurances without verifying it (i.e. making a web API call to the
OP token information endpoint [29]). In such a case, any party with a user’s ac-
cess token can impersonate that user to the RP simply by submitting it. This is
a particular threat for a malicious RP, which can routinely obtain access tokens
from the Google OP. In other words, any RP using Google OpenID Connect
can log in as a victim user to any RPs using an access token to authenticate
the user without verifying it. Unfortunately, we found that 58% of RPs using
the Hybrid Server-side Flow (i.e. 19 of 33) submit an access token back to their
Google sign-in endpoint (see step 6 in §2.2) and 45% (i.e. 15 of these 19) use the
access token to authenticate the user; of these 15 RPs, only two RPs verify the
access token before using it to retrieve user attributes. As a result, 39% of the
RPs (i.e. 13 of 33) we examined are vulnerable to this impersonation attack.

We tested the above attack using Burp Suite2 by submitting an access token
obtained from a randomly chosen RP using the Hybrid Server-side Flow to the
target RP’s Google sign-in endpoint. If the attack succeeds, we are able to log
in to the target RP as the victim user. As noted above, as many as 39% of the
RPs using the Hybrid Server-side Flow are vulnerable to this attack. Some of
the vulnerable RPs (i.e. 3 out of 13) require additional evidence of the user to
be submitted with the access token, in the form of the Google ID or the user’s

2 http://portswigger.net/burp/
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email address. However, an attacker with an access token can readily use it to
get the user’s Google ID or email address from Google, and so such additional
steps do not prevent the attack.

Intercepting an access token As stated above, 58% of RPs using the Hybrid
Server-side Flow require the submission of an access token back to their Google
sign-in endpoint (see step 6 in §2.2). If the RPJC running on the UA sends
an access token back to its Google sign-in endpoint without SSL protection, a
passive network attacker is able to intercept it (see §3). According to the OAuth
2.0 specification [36], an access token should never be sent unencrypted between
the user browser and the RP. However, we found that 12% of RPs using the
Hybrid Server-side Flow (i.e. 4 out of 33) send the access token unprotected. A
sniffer written in Python was implemented to test this.

We also observed that one additional site, namely TheFreeDictionary3 does
use SSL to protect the transfer of the code to its Google sign-in endpoint. How-
ever, the access token is subsequently stored in a cookie, and when the cookie is
sent from the browser back to TheFreeDictionary the link is not SSL-protected.
That is, the access token is observable by a passive eavesdropper.

Privacy Issues When a user chooses to use OpenID Connect to log in to an
RP website, the user attributes (e.g. email address, name) that the RP retrieves
from the OP should never be revealed to parties other than the RP. SSL con-
nections should be established to protect user information transmitted between
the browser and the RP or OP.

However, as explored below, user information leakage might happen if:

– the RPJC running on the user’s browser sends user information, the id token
or the access token back to its Google sign-in endpoint without SSL protec-
tion (see step 6 in §2.2);

– the RP Google sign-in endpoint sends the user information directly to the
user’s browser without SSL protection; or

– the RP uses SSL to protect the link to the Google sign-in endpoint, but
changes to http when sending user information back to the UA.

As described in §4.1, a passive eavesdropper can intercept the access token for
12% of the RPs that use the Hybrid Server-side Flow (i.e. 4 of 33), and can then
use it to retrieve potentially sensitive user information, e.g. including Google
ID and email address. As stated in §2.1, the id token is a JSON web token in
which the user email address and Google ID are encoded in cleartext; so anyone
obtaining the token can immediately obtain the information within. One of the
four RPs referred to above sends an id token in addition to the access token to
its Google sign-in endpoint, and thus a passive web attacker can retrieve the
token’s user information without requesting it from Google. We also found that
one RP did not enable SSL to protect its Google sign-in endpoint, and returned

3 http://www.thefreedictionary.com



10 Wanpeng Li and Chris J Mitchell

user information directly to the UA.̈ Another RP sends user information back to
its Google sign-in endpoint without SSL protection. Yet another RP uses SSL
to protect the link to the Google sign-in endpoint, but changes to HTTP when
sending user information back to the UA. As a result, user privacy cannot be
guaranteed for 21% of the RPs we examined (i.e. 7 out of 33). As noted above, a
sniffer in Python was implemented to demonstrate the feasibility of the attack.

Session Swapping As discussed earlier, the RPJC running on the UA sends
the user’s OpenID tokens (i.e. a code, an access token, an id token, and/or the
user’s Google ID) back to its Google sign-in endpoint (see step 6 in §2.2). The
OpenID Specification [4] recommends a state value should be appended when
the RPJC sends the tokens back, and that this state value should be bound to
the session. If the RPJC fails to send state, an attacker can execute a session
swapping attack [21, 13, 37] as follows.

1. The attacker logs in to the RP website using his/her own account (step 4 in
§2.2), and intercepts the Google-generated tokens (step 5 in §2.2).

2. The attacker constructs a request to the RP’s Google sign-in endpoint, in-
cluding the attacker’s own tokens.

3. The attacker inserts the request in an HTML document (e.g. in the src
attribute of a img or iframe tag) made available via an HTTP server.

4. The victim user is now, by some means, induced to visit the website offering
the attacker’s page. The HTML can be constructed in such a way (described
in detail below) that the victim’s UA will automatically use GET or POST
to send the attacker-constructed request to the RP; as a result the user
session on the RP website will be bound to the attacker’s account.

We observed that 42% of the RPJCs using Hybrid Server-side Flow (i.e. 14
of 33) use POST to submit the tokens back to the RP’s server without an ac-
companying state. Use of a static img or iframe tag to perform an attack of the
above type does not work against these RPs, as the browser will automatically
use GET to retrieve the img and iframe data. In order to use POST to submit
those tokens, we created a special HTML page to conduct the attack. We used
JavaScript to create an iframe with a unique name in the browser. We then
constructed a form inside the iframe whose action points to the RP’s Google
sign-in endpoint, put the attacker’s tokens into the form input, and configured
the HTML to submit the form whenever the HTML is loaded by a browser.

To deploy the attack, the constructed HTML page is made available via a
web server. If a victim’s UA visits the page, the JavaScript inside the HTML
automatically submits the attacker’s tokens to the RP using POST; as a result
the victim user’s session at the RP is bound to the attacker’s, i.e. a session-
swapping attack has been performed. An attacker could use such an attack to
collect sensitive user information, e.g. if the victim user updates his credit card
information on the RP website, this information will be written to the attacker’s
account.

Sadly, we found that 73% of RPs using Hybrid Server-side Flow (i.e. 24 of
33) are vulnerable. Of these 24 RPs, eight (i.e. 24% of this category) submit a



Analysing the Security of Google’s implementation of OpenID Connect 11

code to their Google sign-in endpoint; as code is a one-time value, the attacker
must update it within the attack HTML every time the page is retrieved by a
victim. For the other 48% of vulnerable RPs (i.e. 16 of 33), an access token or
the user’s Google ID is submitted back to the Google sign-in endpoint, in which
case the attacker does not need to update the attack page HTML as frequently.

4.2 Studying the security of the Authorization Code Flow

We first observe that Google’s OAuth 2.0 Authorization Code Flow implemen-
tation [38] has similar steps to those in 2.2. The token endpoint provided as part
of Google’s implementation of OAuth 2.0 (as checked on April 22, 2015) returns
an id token to the RP. That is, without knowing details of the RP’s internals, we
cannot tell whether an RP is using OpenID Connect or OAuth 2.0. We therefore
cover all cases where Google returns a code to the RP’s Google sign-in endpoint
under our discussion of the OpenID Connect Authorization Code Flow , even
though some of the RPs may actually be using OAuth 2.0. However, this makes
no difference to our security analysis.

Around 67% of the RPs we examined (i.e. 69 of 103) use Authorization Code
Flow . Unlike the Hybrid Server-side Flow , Google’s implementation of Autho-
rization Code Flow uses HTTP status code redirect techniques (using code 302)
to deliver the authorization response to the RP’s Google sign-in endpoint.

Intercepting an access token In the Authorization Code Flow , a code is
returned by Google to the RP’s Google sign-in endpoint (see step 6 in §2.2).
No tokens are transmitted during the authorization procedure. After the RP
receives the code, it can use it to retrieve an access token from Google (steps 7/8
in 2.2); it can then use the access token to retrieve user attributes from Google
(step 9 in 2.2). The RP then logs the user in to its website.

If an RP does not use SSL to protect communications with its Google sign-in
endpoint, a passive web attacker may be able to intercept the code. A passive
web attacker cannot use the code to retrieve an access token from Google, as it
will not know the RP’s client secret (shared by the RP and Google). However,
we observed that, of the RPs using the Authorization Code Flow , 6% of their
Google sign-in endpoints (i.e. 4 out of 69) return an access token to the user’s
browser instead of binding the user to the RP’s session. As these RPs do not use
SSL to protect the transfer of the access token, a passive web attacker is able to
obtain the user’s access token returned from the RP’s Google sign-in endpoint.

Stealing an access token via Cross-site Scripting Google’s ‘automatic
authorization granting’ feature [13] generates an authorization response auto-
matically if a user has a session with Google and previously granted permission
for the RP concerned. Using this feature, an attacker might be able to steal a
user access token by exploiting an XSS vulnerability in the RP or UA.

To test the feasibility of such an attack, an exploit written in JavaScript was
implemented. The exploit takes advantage of a recently revealed vulnerability in
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Android’s built-in browser [39] which allows an attacker to conduct a universal
XSS attack [20, 17–19]. The exploit uses a browser window.open event to send
a forged authorization request to Google’s authorization server, within which
response type=code (see step 2 in §2.2) is changed to response type=code token
id token. If the user is logged in to his or her Google account and has previously
granted permission for this RP, Google automatically generates an authorization
response without the involvement of the user; this response is appended as a URI
fragment (#) to the redirect URI (see step 5 in §2.2) and is sent back to the RP
(see step 6 in §2.2). As the RP Google sign-in endpoint does not expect an URI
fragment, a predefined error page will be generated by the RP (e.g. a ‘404 not
found’ or ‘Failed connection’ error). The exploiting JavaScript can now extract
the authorization response from the URL of the error page and send it to its
opener window, where the window.open event is triggered. The opener window
then sends the access token to the attacker’s server.

Unfortunately, we found that all the RPs using Authorization Code Flow are
vulnerable to this attack. The vulnerability affects all Android versions up to
4.4, which as of April 6, 2015 still accounted for 53.2% of Android devices4.

Privacy Issues Unlike the Hybrid Server-side Flow , only a code is submitted
back to the RP’s Google sign-in endpoint (see step 6 in §2.2). No user information
(e.g. a Google ID or id token) is transmitted during authorisation. However, user
information might still leak if the RP Google sign-in endpoint sends the user data
directly to the UA without SSL.

We found that 16% of RPs using the Authorization Code Flow (i.e. 11 of 69)
return user information to the browser directly without SSL protection. Thus a
passive web attacker is able to intercept potentially sensitive user information,
e.g. if the user is using an open Wi-Fi network (see §3).

Session Swapping If an RP using Authorization Code Flow does not enable
anti-CSRF measures (e.g. by appending a state bound to the browser session to
the tokens) to protect its Google sign-in endpoint, a web attacker can launch a
session swapping attack, as described in 4.1 for Hybrid Server-side Flow .

Unlike the session swapping attack in 4.1, in the Authorization Code Flow
only the GET method is used to submit the code back to the RP’s Google sign-in
endpoint. This means that the attacker can simply insert the forged request in
the src attribute of a img or iframe tag of an HTML document. When the
victim user visits the malicious HTML, the browser will automatically send the
request to the RP’s Google sign-in endpoint using the GET method.

We found that 35% of the RPs using the Authorization Code Flow (i.e. 24
of 69) are vulnerable to this attack. However, as code is a one time value, the
attacker must update it every time the attack page is visited by a victim. Thus
such an attack is not as harmful as session swapping in the Hybrid Server-side

4 https://developer.android.com/about/dashboards/index.html?utm_source=

suzunone
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Flow , where an access token which can be used multiple times is submitted back
to the RP’s Google sign-in endpoint.

Forcing a Login Using a CSRF attack A CSRF login attack operates in
the context of an ongoing interaction between a target UA (running on behalf
of a target user) and a target RP. A malicious website somehow causes the
target UA to initiate an OpenID Connect authorization request to the OP.
Because of Google’s ‘automatic authorization granting’ feature, receiving such a
request can cause the Google OP to generate an authorization response, which is
delivered to the RP without involvement by the user. If the target user is logged
in to Google, the UA will send cookies containing the target user’s Google OP-
generated tokens, along with the attacker-supplied authorization request, to the
OP. The OP will process the malicious authorization request as if initiated by
the target user, and will generate and send an authorization response to the RP.
The target UA could be made to send the spurious request in various ways; for
example, a visited malicious site could use the HTML img tag’s src attribute
to specify the URL of a malicious request, causing the UA to silently use a GET
method to send the request.

We found that 35% of the RPs using Authorization Code Flow (i.e. 24 of 69)
are vulnerable to such an attack. One consequence is that an attacker can cause
a victim user to log in to the RP, as long as the user has previously logged in to
Google. This could damage the user experience of the RP website, as the victim
user might dislike such a potentially annoying ‘automatic login’ feature.

5 Security Concerns over Google’s implementation of
OpenID Connect

In the Hybrid Server-side Flow , any authorization request generated by an RPJC
using Google’s OpenID Connect API will always include response type=code
token id token; as a result, the authorization response returned by Google to
the RPJC always contains a code, access token and id token. Unfortunately,
this feature is the source of many security threats to the system. First, as the
access token and id token are directly transferred to the UA, this means that
these tokens are potentially revealed to the user agent and any applications
which might be able to access the user agent. Second, it gives RP developers a
choice — that is, they can choose which token will be submitted back to the
RP server by the RPJC. We found that 67% (i.e. 22 out of 33) of RPs using
the Hybrid Server-side Flow design their RPJC to submit an access token or a
user’s Google ID back to the RP’s Google sign-in endpoint, and this leads to
most of the attacks described in §4.1.

5.1 Giving RPs the Ability to Customise the Hybrid-Server-side
Flow

According to the OpenID Connect specification [4], a code must be returned by
the OP to the RP’s Google sign-in endpoint (see step 6 in the Hybrid Server-
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side Flow). However, as described above, in Google’s implementation of the
Hybrid Server-side Flow, a code, access token and id token are always returned
by Google to the RPJC running on the user’s browser. Unlike the Authorization
Code Flow , where only a code is returned to the RP’s Google sign-in endpoint
(see step 6 in §2.2) and no RPJC exists, this gives RPs the ability to customise
their Hybrid Server-side Flow . In fact our experiments have shown that as many
as 67% of RPs (i.e. 22 out of 33) customise their implementation of the Hybrid
Server-side Flow by submitting an access token or a user’s Google ID back to
the RP’s Google sign-in endpoint. Among these RPs, 73% (16 out of 22) are
vulnerable to the first two attacks (namely Authentication by Google ID
which allows an attacker to log in to the RP as any victim user and Using the
Wrong Token which allows an attacker to impersonate the victim user using an
access token generated for another RP) described in §4.1. Moreover, as the code,
access token and id token are returned by Google inside a HTML document,
these values are also revealed to the user agent and hence to any applications
(e.g. browser plug-ins), which might be able to access the user agent. If the plug-
in or user agent has vulnerabilities which could allow an attacker to access these
values, the attacker can steal the user’s access token; for example a malicious
plug-in which has the right to read the content of HTML pages could obtain the
access token.

5.2 No CSRF Countermeasures in the Hybrid-Server-side Flow

In Google’s implementation of the Hybrid Server-side Flow , the authorization
request generated by the RPJC includes a state value which is designed to pre-
vent CSRF attacks [21, 23–25]. However, we found that the state value extracted
by the RPJC is actually a null value; this means that Google itself fails to de-
liver the state value to the RPJC, and hence the state value cannot be used to
mitigate the threat of a CSRF attack. We also observed that one of the RPs
using the Authorization Code Flow sends a null state value back to its Google
sign-in endpoint. As the state value generated by the RPJC is not bound to the
RP’s session and cannot be extracted by the RPJC, another state value which
is bound to the session needs to be implemented to protect the RP’s Google
sign-in endpoint against a CSRF attack.

In addition, checking the Google OpenID Connect sample code [40] reveals
that Google has not included a state value in its example of an RPJC-generated
AJAX request, used to send data back to the RP [31] (see step 6 in Hybrid
Server-side Flow). The lack of a state parameter in the sample code and the
complexity of implementing anti-CSRF measures helps to explain why 73% of
the RPs using the Hybrid Server-side Flow are vulnerable to this attack.

5.3 Automatic Authorization Granting

The ‘automatic authorization granting’ feature of Google’s OpenID Connect
significantly enhances the user experience and system performance. Without
this, users would have to click an “OK” button in a popup window whenever
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they wished to log in to an RP, in order to grant authorisation. However, it can
also be harmful, since it may allow an attacker to steal an access token (see §4.2)
and force a user log in to the RP (see §4.2).

We also found that, in the Hybrid Server-side Flow , iframes are used to
manage the session [33] between the RPJC and the OP. Suppose a user, who
has previously both granted permission for the RP and logged in to his or her
Google account, visits the RP login page which contains an iframe pointing to the
authorization request. Because of the ‘automatic authorization granting’ feature,
the browser can use the GET method to retrieve the authorization response
from Google without involvement by the user. The UA and any applications
(e.g. plug-ins) which can access the UA are able to extract the authorization
response, which might expose the Hybrid Server-side Flow to new attacks.

6 Recommendations

OpenID Connect has been deployed by many RPs and OPs, and increasing num-
bers of RPs supporting the Google service will likely implement it now Google
has shut down its OpenID service. We found serious vulnerabilities in existing
deployments of OpenID Connect, and there is a significant danger that these
vulnerabilities will be replicated in the future. Below we make a number of rec-
ommendations designed to address the identified vulnerabilities. These recom-
mendations primarily apply to RPs using the Google service and to the Google
OP itself, but some may have broader applicability. These recommendations are
intended both to try to address the problems that exist in current systems, and
to help ensure that future systems are built more robustly.

6.1 Recommendations for RPs

When using OpenID Connect, especially the Hybrid Server-side Flow , RP devel-
opers are responsible for designing the RPJC action on receiving an authorization
response from the Google OP. As a result, system security for the RP largely
depends on its developers. We have the following recommendations for RPs.

– Do not customise the Hybrid Server-side Flow: One reason OpenID
Connect is vulnerable to the attacks in §4.1 is that some RPs customise the
Hybrid Server-side Flow . In particular, instead of submitting a code back
to its Google sign-in endpoint, the RPJC running in the UA submits an
access token or Google ID, which is then used by the RP to authenticate
the user. Such a customised Hybrid Server-side Flow might improve user
experience and RP website efficiency, but this is at the cost of opening serious
vulnerabilities. RPs must implement the OpenID Connect Hybrid Server-
side Flow strictly conforming to the OpenID Connect Specification.

– Deploy countermeasures against CSRF attacks: One reason the
OpenID Connect systems we investigated are vulnerable to CSRF and ses-
sion swapping attacks is that the RPs have not implemented any of the
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well-known countermeasures. In order to prevent CSRF attacks, Google rec-
ommends that RPs include the state parameter in the OpenID Connect
authorization request and response, and RPs should follow this recommen-
dation.

– Do not use a constant or predictable state value: Some RPs include
a fixed state value in the OpenID Connect authorization request. If the state
value is fixed, it cannot be uniquely bound to the browser session, thereby
allowing an attacker to successfully forge a response, since the RP cannot
distinguish between a legitimate response produced by a valid user and a
forged response produced by an attacker. Hence, in such a case, the inclusion
of the state value does not protect against CSRF attacks. Thus RPs must
generate a non-guessable state value which should be bound to the browser
session so that the state value can used to verify the validity of the response.

6.2 Recommendations for OPs

In an OpenID Connect SSO system, the OP designs the process and provides
the API for RPs. An RP supporting a particular OP must therefore comply with
the requirements of that OP, and so OPs play a critical role in the system. We
have the following recommendations for OPs (and in particular for Google).

– Remove the token from the authorization request in the Hybrid
Server Flow: In the Hybrid Server-side Flow , the token in the authorization
request causes Google to return an access token to the RPJC. This allows
RPJCs to submit an access token back to their Google sign-in endpoints, as
was the case for 58% of the RPs using the Hybrid Server-side Flow that we
investigated. This practice gives rise to a range of possible impersonation
attacks. Sending the access token also creates further risks, since if the RP
does not enable SSL to protect its Google sign-in endpoint, a passive net-
work attacker could steal it. This would not only enable a malicious RP to
impersonate a user to those RPs which submit an access token to the Google
sign-in endpoint, but also allow the possibility of other misuses of this token,
e.g. to compromise sensitive user data.

– Add a state value to the sample code: OPs typically provide sample
code to help RP developers make their website interact appropriately with
the OP. As we discovered, Google does not include a state value in its sample
code for the Hybrid Server-side Flow . It seems reasonable to speculate that
this is the main reason why 73% of the RP-OP interactions we analysed (see
§4.1) are vulnerable to session swapping attacks. However, for cases where a
state value is included in Google’s sample code, this number fell to 35% (see
§4.2).

– Allow the RP to specify the state value in the Hybrid Server Flow:
The state value in the authorization request of the Hybrid Server-side Flow
is automatically handled by the Google OpenID Connect API. However, the
RPJC cannot extract the state as it is null. As the state value is not bound
to the browser session, it does not protect the RP against CSRF attacks.



Analysing the Security of Google’s implementation of OpenID Connect 17

It would probably be better to let the RP handle the state rather than the
Google API. Google should also check the source code of its postmessage.js
script to ensure that state can be extracted by the RPJC.

6.3 Notifying affected parties

Given their seriousness, we reported the Authentication by Google ID issues
directly to the affected parties in Feb. 2015 and also gave advice to help fix the
problems. As of 16/11/15, one had fixed the problem, one ignored our warning,
and the third terminated support for Google SSO. On 17/4/15 we notified Google
of all the issues described here. Google acknowledged the problem in §5.2 and
notified their OpenID Connect group. However, as of 16/11/15 we are not aware
of any other steps taken by Google.

7 Related Work

OAuth 2.0 has been analysed using formal methods. Pai et al. [9] confirmed
a security issue described in the OAuth 2.0 Thread Model [8] using the Alloy
Framework [41]. Chari et al. analysed OAuth 2.0 in the Universal Composability
Security framework [42] and showed that OAuth 2.0 is secure if all the commu-
nications links are SSL-protected. Frostig and Slack [10] discovered a cross site
request forgery attack in the Implicit Grant flow of OAuth 2.0, using the Mur-
phi framework [43]. Bansal et al. [44] analysed the security of OAuth 2.0 using
the WebSpi [45] and ProVerif models [46]. However, all this work is based on
abstract models, and so delicate implementation details are ignored.

Meanwhile, the security properties of real-world OAuth 2.0 implementations
have also been examined. Wang et al. [14] examined deployed SSO systems,
focussing on a logic flaw present in many such systems, including OpenID. In
parallel, Sun and Beznosov [13] also studied deployed systems of OAuth 2.0.
Li and Mitchell [12] examined the security of deployed OAuth 2.0 systems pro-
viding services in Chinese. In parallel, Zhou and Evans [15] conducted a large
scale study of the security of Facebook’s OAuth 2.0 implementation. Chen et al.
[11], and Shehab and Mohsen [47] have looked at the security of OAuth 2.0 im-
plementations on mobile platforms. However, unlike OAuth, very little research
has been conducted on OpenID Connect security, except for the recent work of
Mladenov et al. [48] who looked at the security of the OpenID Connect Discovery
and Dynamic Registration extensions.

8 Concluding Remarks

We have reported on the first field study of the security properties of Google’s
implementation of OpenID Connect. We examined the security of all 103 of
the RPs that implement support for the Google OpenID Connect service from
the GTMetrix list of the Top 1000 Sites. Our study reveals widespread serious
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vulnerabilities of a number of types, many allowing an attacker to log in to an
RP website as a victim user. We give practical recommendations for both RPs
and OPs to help improve the security of real world OpenID Connect systems.
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site scripting prevention with dynamic data tainting and static analysis. In: Pro-
ceedings of the Network and Distributed System Security Symposium, NDSS 2007,
San Diego, California, USA, 28th February - 2nd March 2007, The Internet Society
(2007)

19. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In
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