

Addressing threats to real-world identity
management systems

Wanpeng Li, Chris J Mitchell

Information Security Group, Royal Holloway, University of London

Egham TW20 0EX, UK

Wanpeng.li.2013@live.rhul.ac.uk me@chrismitchell.net

Abstract

Recent practical studies have revealed that, in practice, widely used identity management schemes

such as OAuth 2.0 and OpenID Connect are often poorly implemented by relying parties, and as a

result very serious vulnerabilities can result. In any event, any system relying on browser redirections,

as is the case for OAuth 2.0 and OpenID Connect, is vulnerable to web-spoofing and phishing attacks.

Many of these vulnerabilities would disappear if the user's browser (or other agent under user control)

remained in charge of what credentials are divulged to whom, and when. We outline a system known

as Uni-IdM, which has been successfully prototyped, which provides a generic service of this type.

Through the installation of a simple JavaScript plugin, the user is provided with a unified means of

managing and using all his or her credentials via a simple and intuitive interface, which will work with

a multiplicity of identity management systems. This not only reduces the risk of credential and/or

account compromise, but also greatly simplifies the work of the user in credential management as well

as providing a much clearer view to the user of which end parties are being sent user information.

1 Introduction
There is clearly a pressing need for better ways of handling user credentials than expecting

users to remembers tens of individual usernames and passwords. The end user demand for

improved solutions to practical identity management can be seen from the rapid growth in

adoption of services provided by Facebook, Google and others, primarily relying on OAuth

2.0 and its variants (in particular OpenID Connect). However, recent practical studies, as

outlined in this paper, have revealed that in practice these schemes are often poorly

implemented by relying parties, and as a result very serious vulnerabilities can result. In any

event, any system relying on browser redirections, as is the case for OAuth, is vulnerable to

web-spoofing and phishing attacks. Many of these vulnerabilities would disappear if the

user's browser (or other agent under user control) remained in charge of what credentials are

divulged to whom, and when.

In this paper we outline a system known as Uni-IdM, which has been successfully prototyped,

which provides a generic service of this type. Through the installation of a simple JavaScript

plugin, the user is provided with a unified means of managing and using all his or her

credentials via a simple and intuitive interface, which will work with a multiplicity of identity

management systems. This not only reduces the risk of credential and/or account

compromise, but also greatly simplifies the work of the user in credential management as well

as providing a much clearer view to the user of which end parties are being sent user

information.

mailto:Wanpeng.li.2013@live.rhul.ac.uk
mailto:me@chrismitchell.net

2 Addressing threats to real-world identity management systems

The remainder of the paper is organised as follows. In section 2, we first briefly describe how

OAuth 2.0 works, and then go on to outline issues which have arisen in real-world

implementations, and that have given rise to serious security weaknesses. We also consider

equally serious problems arising in real-world OpenID Connect implementations. In section

3 we outline the rationale for, and operation of, Uni-IdM, and explain why it can help to

address some of the problems we have observed in practice. We conclude in section 4 with a

discussion of ways forward for practical identity management.

2 OAuth-based Identity Management
OAuth 2.0 had rapidly gained huge traction as a means of simplifying the user authentication

process. It has been adopted by Facebook and many others as a means of providing identity

management services, and these services have been very widely adopted. OpenID Connect,

which builds additional functionality on top of OAuth 2.0, has also seen widespread adoption

for the same purposes, not least involving Google as identity provider. We next describe

briefly how these systems work, and at the same time consider some of the serious security

threats arising from their use.

2.1 OAuth 2.0 – a Brief Introduction

Since OAuth 2.0 was published in 2012 [Hard12], it has been used by many websites world-

wide to provide single sign-on (SSO) services. By using OAuth 2.0, websites can ease pass-

word management for their users, as well as saving them the inconvenience of re-typing at-

tributes that are instead stored by identity providers and provided to relying parties as re-

quired.

OAuth 2.0 involves four roles. The resource owner is a host acting on behalf of an end user,

which can grant access to protected resources. The resource server is a server which stores

the protected resources and consumes access tokens provided by an authorisation server. The

client is an application running on a server, which makes requests on behalf of the resource

owner (the client is the Relying Party (RP) when OAuth 2.0 is used for identity management

purposes). The authorisation server generates access tokens for the client, after authenticating

the resource owner and obtaining its authorisation (the resource server and authorisation serv-

er together constitute the Identity Provider (IdP) when OAuth 2.0 is used for identity man-

agement).

Fig. 1 provides an overview of the operation of OAuth 2.0. The client initiates the process by

sending (1) an authorisation request to the resource owner. In response, the resource owner

generates an authorisation grant, and sends it (2) to the client. After receiving the authorisa-

tion grant, the client initiates an access token request by authenticating itself to the authorisa-

tion server and presenting the authorisation grant (3). The authorisation server issues (4) an

access token to the client after successfully authenticating the client and validating the author-

isation grant. The client makes a protected source request by presenting the access token to

the resource server (5). Finally, the resource server sends (6) the protected resources to the

client after validating the access token.

Addressing threats to real-world identity management systems 3

Fig. 1: OAuth 2.0 Protocol Flow

OAuth 2.0 was designed to provide a way of allowing controlled access by an application to

resources protected by a resource server on behalf of the resource owner. The application is

given the necessary rights in the form of an access token issued by the authorisation server,

and this token is consumed by the resource server. The underlying goal is to allow the appli-

cation to gain access to resources independently of the resource owner, after the resource

owner has initially given consent, without being given the resource owner’s credentials. That

is, OAuth 2.0 is not a conventional identity management system, but is nevertheless used as

one, as we describe below.

In order to use OAuth 2.0 for identity management, and in particular for SSO, the resource

server and authorisation server together play the role of the IdP, the client plays the role of the

RP, and the resource owner corresponds to the user. OAuth 2.0-based SSO systems build on

web browser (or, more generally, user agent) redirections, where a user wishes to access ser-

vices protected by the RP which consumes the access token generated by the IdP. The IdP

provides ways to authenticate the user, asks the user to allow the RP to access the user's at-

tributes, and generates an access token. The RP uses the access token to access the user's at-

tributes using an API provided by the IdP.

OAuth 2.0 does not support identity federation as defined in identity management systems

such as Shibboleth or SAML, although federation is necessary if SSO services are to be pro-

vided. In practice, a commonly used means of achieving identity federation involves the RP

locally binding the user's RP-managed account with the user's IdP-managed account, using

the unique identifier for the user generated by the IdP. After binding, a user is able to log in

to the RP-managed account using his or her IdP-managed account.

Such a federation scheme typically operates as follows. After receiving the access token, the

RP retrieves the user's IdP-managed account identifier and binds the user's RP-managed ac-

count identifier to the IdP-managed account identifier. When the user next tries to use his or

4 Addressing threats to real-world identity management systems

her IdP-managed account to log in to the RP, the RP looks in its account database for a map-

ping between the supplied IdP-managed identifier and an RP-issued identifier. If such a map-

ping exists, then the RP simply logs the user in to the corresponding RP-managed user ac-

count.

In real-world OAuth 2.0 SSO systems supporting federation, RPs typically use one of two

ways to perform the binding. Firstly, suppose a user chooses to log using SSO. After finish-

ing the authorisation process with the IdP, the user is asked either to bind the IdP-managed

account to his or her RP-managed account or to log in to the RP directly. The user will need

to provide his or her RP-managed account information (e.g. account name and password) to

complete the binding. Alternatively, after a user has already logged into an RP, he or she can

initiate a binding operation. After being authenticated by the IdP and granting permission to

the RP, the user can bind his or her RP-managed account to the IdP-managed account. After

binding, many RPs allow users to log in to their websites using an IdP-managed account.

2.2 Practical Issues with OAuth 2.0

A number of authors have analysed the operation of OAuth, and have identified issues in real

world implementations. To understand the real-world security of OAuth 2.0, Wang, Chen

and Wang [WaCW12] examined a number of deployed SSO systems, focussing on a logic

flaw present in many such systems, including OpenID. In parallel, Sun and Beznosov

[SuBe12] also studied deployed systems. Both these studies restricted their attention to sys-

tems using English. Indeed, until recently, very little research had been conducted on the se-

curity of OAuth 2.0 systems using other languages, some of which, like those in Chinese,

have very large numbers of users. Indeed, OAuth 2.0 is very widely used on Chinese web-

sites, and there is a correspondingly rich infrastructure of IdPs providing identity services us-

ing OAuth 2.0. For example, some RPs, such as the travel site Ctrip, support as many as eight

different IdPs. At least ten major IdPs offer OAuth 2.0-based identity management services.

RPs wishing to offer users identity management services from multiple IdPs must support the

peculiarities of a range of different IdP implementations of OAuth 2.0. To try to redress this

imbalance, Li and Mitchell [LiMi14] reported on an analysis of Chinese-language OAuth 2.0

systems.

This latter study identified a number of serious security issues in these implementations. The

security of 60 implementations of OAuth 2.0 for federation-based SSO, as deployed by lead-

ing Chinese websites, was studied. Nearly half of these implementations were found to be

vulnerable to cross-site request forgery (CSRF) attacks against the federation process, allow-

ing serious compromises of user accounts. These attacks allow a malicious third party to bind

its IdP-managed account to a user's IdP-managed account, without knowing the user's account

name or password. Logic flaws were also discovered in real-world implementations of feder-

ation, which again allow binding of an attacker's IdP-managed account to a user's RP-

managed account. These latter issues arise primarily because of the lack of a standardised

federation process.

More generally, CSRF attacks are only possible because the operation of the identity man-

agement system is invisible to the user and to the browser. That is, all the actions of the us-

er’s browser are controlled by remotely controlled mechanisms such as the use of HTTP redi-

rects and JavaScript code downloaded from the RP. We return to this issue in section 3 be-

low.

Addressing threats to real-world identity management systems 5

2.3 OpenID Connect

OpenID Connect 1.0 [SBJ+14] is built as an identity layer on top of the OAuth 2.0 protocol.

The functionality that it adds enables RPs to verify the identity of an end user by relying on an

authentication process performed by an OpenID Provider (OP), i.e. it adds identity manage-

ment functionality to the OAuth 2.0 system. In order to enable an RP to verify the identity of

an end user, OpenID Connect adds a new type of token to OAuth 2.0, namely the id token.

This complements the access token, which is already part of OAuth 2.0. These two types of

token are both issued by an OP, and have the following functions.

 An access token contains credentials used to authorise access to protected resources

stored at a third party (e.g. the OP). Its value is an opaque string representing an au-

thorisation issued to the RP. It encodes the right for the RP to access data held by a

specified third party with a specific scope and duration, granted by the end user and

enforced by the RP and the OP.

 An id token contains claims about the authentication of an end user by an OP together

with any other claims requested by the RP. Possible claims within such a token in-

clude: the identity of the OP that issued it, the user's unique identifier at this OP, the

identity of the intended recipient, the time at which it was issued, and its expiry time.

It takes the form of a JSON Web Token [JoSB14] and is digitally signed by the OP.

Both access tokens and id tokens can be verified by making a call to the web API of the issu-

ing OP.

OpenID Connect builds on user agent redirections. Suppose that an end user wishes to access

services protected by the RP, which consumes tokens generated by the OP. The OP provides

ways to authenticate the end user, asks the end user to grant permission for the RP to access

the user attributes, and generates two types of token: an access token and an id tokens, where

the latter contain claims about a user authentication event. After receiving an access token,

the RP can use it to access end user's attributes using the API provided by the OP, and after

receiving an id token the RP is informed about the authentication of the user.

Even though OpenID Connect was only finalised at the start of 2014, there are already more

than half a billion OpenID Connect-based user accounts provided by Google, PayPal and Mi-

crosoft. This large user base has led very large numbers of RPs to integrate their services

with OpenID Connect, and the Google service alone is being used routinely to protect many

millions of user accounts, as well as sensitive information stored at both RPs and the Google

OP server.

2.4 Practical Issues with OpenID Connect

Given the clear and growing practical significance of OpenID Connect, it is clearly important

to understand its security in real-world deployments. A very recent study [LiMi15], conduct-

ed in early 2015, has sought to address this by conducting a large scale survey. The operation

of all one thousand sites from the GTMetrix Top 1000 Sites providing services in English was

examined. Of these sites, 103 were found to support the use of the Google’s OpenID Connect

service. All 103 of these websites were then further examined for potential vulnerabilities. In

the study, all the RPs and the Google OP site were treated as black boxes, and the HTTP mes-

sages transmitted between the RP and OP via the browser were analysed to identify possible

vulnerabilities. For every identified vulnerability, an exploit to evaluate the possible attack

surface was implemented and tested.

This study revealed serious vulnerabilities of a number of types, which either allow an attack-

er to log in to the RP website as the victim user or enable the compromise of potentially sensi-

6 Addressing threats to real-world identity management systems

tive user information. Google has customised its implementation of OpenID Connect by

combining SDKs, web APIs and sample code, and as a result the OpenID Connect specifica-

tion only acts as a loose guideline to what RPs have actually implemented. Further examina-

tion suggests that the identified vulnerabilities are mainly caused by RP developers misunder-

standing how to use the Google OpenID Connect service, and by making design decisions

which sacrifice security for simplicity of implementation. Many of the attacks that were dis-

covered use cross-site scripting (XSS) and CSRFs, well-established and widely exploited at-

tack techniques.

As was the case for the vulnerabilities identified in OAuth 2.0 implementations, these prob-

lems would not have arisen if the system did not rely on a completely ‘passive’ browser,

which simply executes remotely provided JavaScript and performs redirects as requested. Of

course, in all cases so far identified, careful implementation of the schemes would also have

avoided the problems, but the possibility of further flaws remains, and it seems inherently

risky for users to rely on all the many RPs implementing identity management systems as

carefully as is necessary.

3 Uni-IdM: a New Approach to ID Management

3.1 Rationale

Identity management systems are in many cases based on web browser redirections, as is the

case for OpenID Connect and OAuth 2.0; as a result such systems are vulnerable to phishing

attacks [Jaru03]. A means of mitigating such attacks is therefore needed. One general ap-

proach to mitigating such phishing attacks is to incorporate a client-based user agent into the

identity management system, e.g. as is the case for the now-defunct CardSpace and Higgins.

It is also possible to equip a redirection-based identity management system with a client-based

user agent, which can help to reduce the threat of phishing attacks [AlMi12]. Recently a new

scheme has been proposed [LiMi15b] which adopts this latter approach by integrating the

OpenID Connect identity management system with client functionality both in order to reduce

the risk of phishing attacks and to improve the usability of the system.

As noted above, since OpenID Connect is based on web browser redirections, and does not

depend on any client-based components, it is therefore vulnerable to phishing attacks; e.g. a

malicious relying party could redirect a user to a fake OpenID Connect provider which is un-

der the control of the relying party. This would enable the relying party to collect sensitive

user information, such as the account name and password of the user's OpenID Connect ac-

count at the impersonated provider. The effects of user credential theft could be very serious,

potentially enabling unauthorised access to all the RP user accounts which the user has linked

to the OP. Moreover, as we have observed above, many widely used practical implementa-

tions of both OAuth 2.0 and OpenID Connect possess vulnerabilities exacerbated by the lack

of control on the user platform.

In some identity management systems, e.g. CardSpace and Higgins, a client-based user agent

is used. Such an agent has a range of practical advantages including ease of use, greater user

control, and resistance to certain classes of phishing attacks. However, it would appear that

no systems of this general type have been widely adopted; indeed, Microsoft no longer sup-

ports CardSpace. Also these schemes typically require the use of specific protocols between

the main parties, preventing their use with other identity management systems. Instead, iden-

tity management schemes based on web browser redirections have become widely used, not

least because of their ease of deployment. Given the security advantages of client-based func-

tionality, there is a potentially significant benefit to be gained from devising a way of adding

Addressing threats to real-world identity management systems 7

client-based functionality to these widely used redirect-based systems, particularly as it offers

the possibility of combating phishing fraud and other frauds arising from RP implementation

vulnerabilities (e.g. allowing CSRF attacks).

3.2 Uni-IdM – How it Works

Al-Sinani and Mitchell [AlMi12] proposed a client-based identity management tool which

they called IDSpace. The idea underlying IDSpace is to provide a client-based environment

which can operate with a wide variety of identity management protocols, and can also replace

the CardSpace and/or Higgins agents. The primary goal of IDSpace is to provide a single,

consistent and user-comprehensible interface to a wide range of identity management sys-

tems, and, through the deployment of trusted client functionality, to reduce the threats of

phishing and other attacks.

For a variety of reasons the IDSpace architecture requires two separate software components:

a browser extension and separate client software which executes independently of the brows-

er. This complicates both installation and operation because of the need for the two compo-

nents to intercommunicate. The newly proposed Uni-IdM scheme [LiMi15b], implements the

same concept as IDSpace but follows a somewhat different architectural approach by imple-

menting all the functionality within a browser extension. As a browser extension written in

JavaScript, Uni-IDM is inherently portable, and could be implemented on a range of brows-

ers, host operating systems and platform types with minimal modification. The Uni-IdM

scheme has been prototyped for OpenID Connect [LiMi15b], but is designed to operate with a

multiplicity of identity management systems.

Uni-IdM stores information about individual relationship between the end user and an IdP in a

logical entity known as a uCard. A uCard specifies the type of identity management system

with which the uCard can be used, and also the types of personal information held by the IdP

on behalf of the end user. It does not contain potentially sensitive personal information, such

as an account name or password. uCards are stored in the protected Uni-IdM card store. The

credential store stores sensitive data associated with the uCards in the card store, such as per-

sonal information, user account names and passwords, and certificates. A variety of measures

could be used to protect the card store and credential store, such as authenticated encryption,

logical protection and/or physical protection.

The Uni-IdM content scanner searches the login page of an RP web-site in order to discover

which identity management systems it supports. It sends the results of the search to the Uni-

IdM card selector, which provides an interface enabling the user to interact with Uni-IDM. It

displays the identity (address) of the RP website to the user, and if it is the first time that the

user has visited the RP website (possibly indicating phishing) it enables the user to either ter-

minate or continue. It further allows the user to manage his or her uCards, including creating,

reviewing, modifying and deleting them, and it indicates which identity management systems

are supported by the RP (in the case of the prototype, only OpenID Connect is supported). If

the user has previously visited the RP website, it displays all the available uCards to the user;

otherwise it requires the user to choose an identity management system and then create a

uCard for the user-selected system.

The system automatically manages the submission of user credentials to the OP, and also the

transfer of the id token from the OP to the RP. That is, HTTP redirections and the operations

of any RP-provided JavaScript are controlled by the Uni-IdM plug-in, inherently protecting

against certain classes of attack. These functions enable the user to achieve control over what

information is sent to whom, and also prevents a range of attacks of the type discussed above.

8 Addressing threats to real-world identity management systems

3.3 Analysis

As the URL of the OpenID Connect OP is known to the Uni-IDM, once support for OpenID

Connect is detected by Uni-IDM, it compares the known URL with the URL of the OP to

which the browser is directing the user; only if the two URLs share the same domain will it

submit the user's credential to the OP on behalf of the user. If a malicious RP website tries to

redirect the user to a ‘fake’ OP under its control, Uni-IDM will terminate the process and will

warn the user of a potential attack. This effectively mitigates the threat of phishing attack.

Many RPs put a specific OpenID Connect logo on their login page to indicate that they sup-

port OpenID Connect. In normal use the user must find the logo and click it in order to first

initiate log-in to the RP using OpenID Connect; subsequently log-ins will take place automat-

ically and, as a result, the user loses all control over the process. However, each RP designs

its own website, and so the precise details of how a user initiates an OpenID Connect login

will vary. This has the effect of downgrading the user experience because of the lack of a

consistent login procedure, compounded by the subsequent lack of any control over continued

use of the chosen OpenID Connect OP. However, Uni-IDM inherently provides a consistent

user experience through the use of the card selector interface, and enables continued control

over the login process. Whenever a user visits a RP which supports OpenID Connect, Uni-

IDM will scan the DOMs of the login page and, assuming OpenID Connect support is identi-

fied, Uni-IDM will trigger its card selector; the user does not have to examine the website to

find the OpenID Connect button, and always interacts with the card selector for the purposes

of identity management. This improves the user experience for RP websites which support

identity management systems, and also provides a consistent interface for the user. Moreover,

it also gives the user a simple way of understanding exactly which authentication system is

being used at all times.

As the Uni-IDM browser extension must scan every browser-rendered web page to find

whether the page supports OpenID Connect, this might affect the performance of the web

browser. However, tests using a Uni-IDM prototype have shown that this is not a big issue.

Perhaps the most serious possible limitation of Uni-IDM relates to the need for it to automati-

cally detect whether or not RP websites support OpenID Connect. As websites implement

support for the system in a range of different ways, e.g. using tags such as ‘iframe’ or ‘img’,

the indicators used by the content scanner to search for support of OpenID Connect will also

need to vary. As a result it is challenging for Uni-IDM to be designed to correctly detect all

RPs which support OpenID Connect, requiring extensive testing on a site by site basis. Fur-

ther details of experiments testing this are given in the paper describing the system [Li-

Mi15b].

4 Conclusions
We have briefly reviewed the operation of the OAuth 2.0 and OpenID Connect systems, both

of which are widely used today to support identity management services, notably those pro-

vided by Facebook and Google. We also summarised some of the recent findings regarding

vulnerabilities in real-world implementations of the many websites which rely on these ser-

vices. Whilst the problems we have discussed could be mitigated by more careful implemen-

tations, serious risks remain. Firstly, phishing attacks are not addressed by OAuth 2.0 and

OpenID Connect, even when correctly implemented. Secondly, CRSF and XSS attacks can

be performed in many ways, and vulnerabilities to such attacks are difficult to completely

eradicate. As a result, some other method of improving the security of the operation of these

systems is required, not least because of their very widespread use.

Addressing threats to real-world identity management systems 9

We have further described the operation of one system designed to mitigate these vulnerabili-

ties, namely the Uni-IdM system [LiMi15b]. This is an evolution of the IDSpace system,

proposed in 2012, [AlMi12]. Uni-IdM seeks to give users greater control over the identity

management process through a simple browser plugin. This both enables the user to exert

greater control over the identity management process, and mitigates a range of possible at-

tacks, whilst remaining completely transparent to both RPs and IdPs.

This is, of course, just one possible approach to the long-term problem of improving opera-

tional security for identity management systems. As observed above, in practice these sys-

tems appear to be far from secure despite their widespread use, and hence this area is in ur-

gent need of further research and development.

References

[AlMi12] Al-Sinani, Haitham S. and Mitchell, Chris J. A universal client-based identity

management tool. In: Proc. EuroPKI 11. Editors: S. Petkova-Nikova, A. Pasha-

lidis and G. Pernul, Springer-Verlag, 2012, p. 49-74.

[Hard12] Hardt, D. The OAuth 2.0 Authorization Framework. IETF RFC 6749, 2012.

[Jaru03] Jarupunphol, P. A critical analysis of 3-D Secure. In: Proceedings of the 3rd

Electronic Commerce Research and Development (E-COM-3). 2003, p. 87-94.

[JoSB14] Jones, M., Sakimura, N., and Bradley, J. JSON Web Token (JWT). IETF RFC

draft, 2014.

[LiMi14] Li, Wanpeng and Mitchell, Chris J. Security issues in OAuth 2.0 SSO imple-

mentations. In: Proc. ISC 2014. Editors: Chow, S. S. M., Camenisch, J., Hui, L.

C. K., and Yiu, S.-M., Springer-Verlag, 2014, p. 529-541.

[LiMi15a] Li, Wanpeng and Mitchell, Chris J. Analysing the security of Google OpenID

Connect. Preprint available from the authors, 2015.

[LiMi15b] Li, Wanpeng and Mitchell, Chris J. Enhancing user security for OpenID Con-

nect. Preprint available from the authors, 2015.

[SBJ+14] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B. and Mortimore, C.

OpenID Connect Core 1.0. The OpenID Foundation, 2014.

[SuBe12] Sun, S.T. and Beznosov, K. The devil is in the (implementation) details: An

empirical analysis of OAuth SSO systems. In: Proc. CCS '12. Editors: Yu, T.,

Danezis, G., and Gligor, V. D., ACM, 2012, p. 378-390.

[WaCW12] Wang, R., Chen, S., and Wang, X. Signing me onto your accounts through Fa-

cebook and Google: A traffic-guided security study of commercially deployed

single-sign-on web services. In: Proc. IEEE Symposium on Security and Priva-

cy 2012. IEEE, 2012, p.365-379.

Index

authentication, cross-site request forgery, cross-site scripting, identity management, OAuth,

OpenID, privacy, security

