
Client-based CardSpace-OpenID Interoperation

Haitham S. Al-Sinani? and Chris J. Mitchell

Information Security Group
Royal Holloway, University of London

[Haitham.Al-Sinani.2009, C.Mitchell]@rhul.ac.uk

Abstract. We propose a novel scheme to provide interoperability be-
tween two of the most widely discussed identity management systems,
namely CardSpace and OpenID. In this scheme, CardSpace users are able
to obtain an assertion token from an OpenID-enabled identity provider,
the contents of which can be processed by a CardSpace-enabled rely-
ing party. The scheme, based on a browser extension, is transparent to
OpenID providers and to the CardSpace identity selector, and only re-
quires minor changes to the operation of the CardSpace relying party.

1 Introduction

To mitigate identity-oriented attacks, a number of identity management systems
(e.g. CardSpace, OpenID, etc.) have been proposed. An identity provider (IdP)
in such systems supplies a user agent (UA) with an authentication token that can
be consumed by a relying party (RP). Whilst one RP might support CardSpace,
another might only support OpenID. To make these systems available to the
largest possible group of users, interoperability between such systems is needed.

We consider CardSpace-OpenID interoperation because of OpenID’s wide
adoption; complementing this, the wide use of Windows, recent versions of which
incorporate CardSpace, means that enabling interoperation between the two sys-
tems is likely to be of significance for large numbers of identity management users
and service providers. CardSpace-OpenID interoperation is particularly attrac-
tive since both schemes support user attribute exchange. In addition, supporting
interoperation on the client could be practically useful, because IdPs/RPs might
not accept the burden of supporting two identity systems unless there is a signifi-
cant financial incentive. Client-based interoperation means that the performance
of the server is not affected, since the overhead is handled by the client.

2 CardSpace and OpenID

2.1 CardSpace

CardSpace is Microsoft’s implementation of a digital identity metasystem, in
which digital identities are represented to users as Information Cards (or In-
foCards). There are two types of InfoCards: personal (self-issued) cards and

? This author is sponsored by the Diwan of Royal Court, Sultanate of Oman.



managed cards, issued by remote IdPs. Personal cards are created by users them-
selves, and the claims listed in such cards are asserted by the self-issued identity
provider (SIIP) that co-exists with the CardSpace identity selector (or just the
selector) on the user machine [1]. The integration scheme uses CardSpace per-
sonal cards to make information provided by OPs available to CardSpace RPs.

The personal card protocol operates as follows, in the case where the RP
does not employ a security token service (STS).

1. UA → RP. HTTP/S request: GET (login page).
2. RP → UA. HTTP/S response. A login page is returned containing the

CardSpace-enabling tags in which the RP security policy is embedded.
3. User → UA. The RP page offers the option to use CardSpace; selecting this

option activates the selector, which is passed the RP policy. If this is the first
time that this RP has been contacted, the selector will display the identity of
the RP and give the user the option to either proceed or abort the protocol.

4. Selector → User. The selector highlights InfoCards matching the policy.
5. User → Selector. The user chooses (or creates) a personal card. The user can

preview the card to ensure that they are willing to release the claim values.
6. Selector 
 SIIP. The selector sends a Request Security Token (RST) to the

SIIP, which responds with a Request Security Token Response (RSTR).
7. UA → RP. The RSTR is passed to the UA, which forwards it to the RP.
8. RP → User. The RP validates the token, and, if satisfied, grants access.

The PPID is an identifier linking an InfoCard to an RP. When a user first
uses a personal card at a particular RP, CardSpace generates a card-site-specific
PPID by combining the card ID1 with data taken from the RP certificate, and a
card-site-specific signature key pair by combining the card master key with data
taken from the RP certificate. The PPID could be used on its own as a shared
secret to authenticate a user to an RP. However, it is recommended that the
associated (public) signature verification key should be used to verify the signed
security token to provide a more robust authentication method [1].

2.2 OpenID

OpenID is a decentralised user authentication scheme supporting remote single
sign-on to multiple websites using a single digital identity. Two ‘major’ OpenID
versions have been released: OpenID 1.1 [2], and OpenID 2.0 [3]; fortunately v2.0
is backward compatible with v1.1. OpenID 2.0 uses two types of user identifier:
URLs and XRIs. A user could adopt a self-owned URL, or register a (new) URL
at an OP. OpenID operates as follows (the use of TLS/SSL is recommended).

1. UA → RP. HTTP/S request: GET (login page).
2. RP → UA. HTTP/S response. A login page is returned containing a form.
3. User → UA. The user enters their OpenID identifier into the OpenID form.
4. RP: OP Discovery. The RP uses the identifier to discover the user’s OP.

1 During card creation, a card ID and master key are created and stored.



– HTML-based discovery (OpenID 1.1/2.0). The RP requests an
HTML document identified by the user’s OpenID URL; such a document
contains the information necessary to discover the required OP.

– XRDS-based discovery (OpenID 2.0). The RP requests an XRDS
document containing the data necessary to discover the OP. If the user’s
identifier is an XRI, the RP will retrieve an XRDS document identified
by the XRI; if it is a URL, the RP will use Yadis to retrieve an XRDS
document, and, if this fails, the RP will revert to HTML-based discovery.

5. RP 
 OP (optional). The RP and OP agree a shared secret key to be used
for a specified period of time to MAC-protect exchanged messages. This
(back-channel) request-response process, known as the ‘association’ mode,
requires the two parties to be able to store the secret.

6. RP-OP Interaction. The RP and OP can communicate in either ‘checkid im-
mediate’ mode, involving direct RP-OP communications without user inter-
action, or ‘checkid setup’ mode, where the user is interactively involved. The
‘checkid setup’ mode is more commonly used; if ‘checkid immediate’ mode
fails, the scheme reverts to ‘checkid setup’ mode. If using ‘checkid immediate’
mode, the RP directly sends the OP an OpenID authentication request, and
the OP directly replies with an OpenID authentication response; step 9 then
takes place. However, if using ‘checkid setup’ mode, the RP redirects the
user to the OP with an OpenID authentication request, and step 7 follows.

7. OP 
 User. If necessary, the OP authenticates the user. If successful, the OP
constructs an OpenID assertion token, including user credentials/attributes,
a freshly-generated nonce, a current time-stamp, and a MAC computed on
the token. If a shared key was agreed in step 5, the OP uses it to generate
the MAC; otherwise the OP employs an internally-generated MAC key. The
OP requests permission to send the assertion token to the requesting RP.

8. OP → UA → RP. The OP redirects the user back to the RP with a positive
or negative OpenID authentication response.

9. RP → User. The RP verifies the MAC-protected OpenID authentication
response, and, if satisfied, grants access. If a shared secret was previously
agreed (see step 5), the RP uses its copy to verify the MAC. If not, the
RP must make an extra request to the OP to verify the MAC, typically
via a TLS/SSL channel. This request-response process is known as the
‘check authentication’ mode, and is adopted in the integration scheme.

3 The Integration Scheme

The parties involved are a CardSpace-enabled RP, a CardSpace-enabled UA (e.g.
a suitable web browser), an OP, and a browser extension implementing the pro-
tocol described below. The scheme has the following operational requirements.

– The user must have accounts with the CardSpace RP and the OP (thus the
OP can authenticate the user). The RP and the user must trust the OP.

– Prior to use, the user must create a personal card, referred to here as an
IDcard, containing the following data items in specific fields (the choice of



which is implementation-specific): the user’s OpenID identifier; a predefined
sequence of characters (e.g. ‘OpenID’) used to trigger the browser extension
and indicate which OpenID version to use; and the OP URL.

– The CardSpace RP must not employ an STS; instead, it must express its
policy using HTML/XHTML, and selector-RP interactions must be based
on HTTP/S via a browser (a simpler and probably more common scenario).
This is because the scheme uses a (JavaScript-based) browser extension, and
is incapable of managing the communications with an STS.

– The RP must accept an unsigned SAML token which includes OP-asserted
attributes and the signed RSTR containing the card-RP-specific PPID.

The novel protocol operates as follows. Steps 1, 2, and 4–7 are the same as
steps 1, 2, and 3–6, respectively, of the personal card protocol given in section 2.1.

3. Browser extension → UA. The extension performs the following steps.

(a) It scans the login page to detect whether the RP website supports
CardSpace; if so, it proceeds, otherwise it terminates.

(b) It examines the RP policy to check whether the use of personal cards is
acceptable. If so, it proceeds; otherwise it terminates, giving CardSpace
the opportunity to operate normally.

(c) It keeps a local copy of any RP-requested claims.
(d) It modifies the policy to include the claim types employed in the IDcard.

8. Selector→ Browser Extension. Unlike in the ‘standard’ case, the RSTR does
not reach the RP; instead the extension intercepts it and temporarily stores
it. It then determines the communication protocol (HTTP or HTTPS) in
use2. If the RP uses HTTP, the extension uses the RSTR’s contents to
construct an OpenID authentication request3, which it forwards to the ap-
propriate OP, having discovered its address from the RSTR. On the other
hand, if the RP uses HTTPS, the browser extension:

(a) asks the user to enter his/her OpenID identifier and uses the supplied
OpenID identifier to perform OP discovery (see section 2.2); and

(b) constructs an OpenID authentication request (precisely as in the HTTP
case), which it forwards to the discovered OP.

In both cases the format of the OP authentication request will depend on
the version of OpenID being used. In both cases the more commonly used
OpenID ‘check setup’ mode is adopted (the ‘check immediate’ mode is not
supported as it requires back-channel RP-IdP communication).

9. OP 
 User. If necessary, the OP authenticates the user. If successful, the
OP requests permission to send the OpenID token to the RP return-page.

2 The protocol operates slightly differently depending on whether the RP uses HTTP
or HTTPS. This is because, if HTTPS is used, the selector will encrypt the RSTR
using the site’s public key, and the browser extension does not have access to the
corresponding private key. Hence, it will not know whether to trigger the integration
protocol, and will be unable to obtain the user’s OpenID identifier; such issues do
not occur if HTTP is used since the selector will not encrypt the RSTR.

3 This will indicate the RP-requested attributes which are to be asserted by the OP.



10. OP → UA → RP. The OP redirects the UA back to the RP return-page
with a positive or negative OpenID authentication response4 depending on
whether or not the user granted permission in step 9.

11. Browser Extension → UA. The extension verifies the MAC-protected OpenID
token by interacting with the OP using the ‘check authentication’ mode via a
TLS/SSL channel. If successful, it constructs a CardSpace-compatible SAML
token5, and forwards it to the RP. If unsuccessful, the extension terminates.

12. RP → User. The RP verifies the SAML token (including verifying the RSTR
signature, PPID, nonce, time-stamps, etc.), and, if satisfied, grants access.

4 Security Analysis

The unsigned browser extension-generated SAML token (referred to as the ‘user
token’) includes the PPID, the OP-asserted user attributes, the signed SIIP-
issued RSTR, and (optionally) the MAC-protected OP-issued token. The RP
compares the SIIP-asserted PPID (and the public key) in the user token with its
stored values and verifies the digital signature. The RP can optionally verify the
MAC in the OP-issued token, which is embedded unchanged in the user token;
for the RP to verify the MAC, the extension must skip the verification process
and the RP must interact with the OP via the ‘check authentication’ mode.

It is infeasible for a malicious entity to fabricate a user token to masquerade as
a legitimate party since it will not have access to three key token components: the
PPID; the SIIP-signed RSTR, which is only issued if the appropriate InfoCard
is selected on the correct platform; and the MAC-protected OP-issued token,
which is only issued if the genuine user has been authenticated by the OP. In
addition, nonces and time-stamps are used to prevent replay attacks, and RPs
can also employ IP address validation. The use of SSL/TLS on the OP-client
and RP-client channels is strongly recommended.

The selector identifies the RP to the user and indicates whether or not they
have visited that particular RP before; if this RP is being visited for the first
time, CardSpace requests the user’s permission to proceed. This helps to support
mutual authentication since the user and the RP are both identified to each other
(a security gain over ‘native’ OpenID, which does not identify the RP).

The scheme mitigates the risk of phishing, because the redirect to the OP6 is
initiated by the browser extension and not by the RP, i.e. the RP cannot redirect
the user to an OP of its choosing. By contrast, in OpenID a malicious RP could
redirect a user to a fake OP, which might capture the user credentials.

Finally, the scheme allows the user attributes to be remotely stored at the
OP; this has potential security advantages over storing the attributes locally on
the user machine, as is currently the case with CardSpace SIIP-issued attributes.

4 The RP will receive the OP-issued token unchanged (embedded in the URL); however
it is assumed that the RP will ignore it because of its inability to process the token.

5 Observe that this (unsigned) SAML token will contain the user attributes as asserted
by the OP and the digitally-signed SIIP-issued RSTR (which contains the PPID).

6 In HTTP mode the OP address is retrieved from the IDcard as entered by the user.



5 Related Work

A somewhat similar scheme [4] has been proposed to support CardSpace-Liberty
interoperation. However, unlike the scheme proposed here, the CardSpace-Liberty
integration scheme is not transparent to the IdPs, does not support the exchange
of identity attributes, and does not support HTTPS-enabled websites.

Kim et al. [5] have proposed an OpenID authentication method using an
identity selector. The scheme uses a specially modified identity selector to enable
OpenID authentication, unlike our scheme which uses an unmodified selector.

Microsoft and OpenID have announced plans (http://www.guardian.co.
uk/technology/blog/2007/feb/07/openidgetsab) to enable a level of inter-
operation. A stated aim of this effort is to reduce the risk of phishing in OpenID
by enabling an OpenID user to employ CardSpace when authenticating to an
OP. The scheme proposed here inherently protects against phishing (see sec-
tion 4), and also supports the use of CardSpace to authenticate to OPs.

6 Conclusions

We have proposed a means of interoperation between two leading identity sys-
tems, namely CardSpace and OpenID. CardSpace users are able to obtain an
assertion token from an OpenID provider, the contents of which can be processed
by a CardSpace-enabled relying party. The scheme is transparent to OpenID
providers and identity selectors, uses a browser extension, and requires only
minor changes to a CardSpace relying party. It uses the selector interface to in-
tegrate OpenID providers with CardSpace relying parties, using personal cards.

The integration scheme takes advantage of the similarity between the OpenID
and the CardSpace frameworks, and this should help to reduce the effort required
for full system integration. A full version of this paper, including a description
of a prototype implementation, is available [6].

References

1. Mercuri, M.: Beginning Information Cards and CardSpace: From Novice to Profes-
sional. Apress, New York (2007)

2. Recordon, D., Fitzpatrick, B.: OpenID Authentication 1.1. (2006) http://openid.
net/specs/openid-authentication-1_1.html.

3. OpenID Community: OpenID Authentication 2.0 — Final. (2007) http://openid.
net/specs/openid-authentication-2_0.html.

4. Al-Sinani, H.S., Alrodhan, W.A., Mitchell, C.J.: CardSpace-Liberty integration
for CardSpace users. In Klingenstein, K., Ellison, C.M., eds.: Proceedings of the
9th Symposium on Identity and Trust on the Internet, (IDtrust’10), Gaithersburg,
Maryland, USA, April 13–15, 2010, ACM, New York, NY, 12–25 (2010)

5. Kim, S.H., et al.: OpenID Authentication Method Using Identity Selector. United
States, Patent Application Publication, Pub. No. US 2009/0249078 A1. (2009)

6. Al-Sinani, H.S., Mitchell, C.J.: CardSpace-OpenID Integration for CardSpace Users.
Technical Report: RHUL–MA–2011–12 (Department of Mathematics, Royal Hol-
loway, University of London). (2011)


