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Abstract

A c-ary Perfect Factor is a set of uniformly long cycles whose ele-

ments are drawn from a set of size c, in which every possible v-tuple

of elements occurs exactly once. In the binary case, i.e. where c = 2,

these perfect factors have previously been studied by Etzion, [2], who

showed that the obvious necessary conditions for their existence are in

fact sufficient. This result has recently been extended by Paterson, [4],

who has shown that the necessary existence conditions are sufficient

whenever c is a prime power. In this paper we conjecture that the same

is true for arbitrary values of c, and exhibit a number of constructions.

We also construct a family of related combinatorial objects, which we

call Perfect Multi-factors.
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Index Terms: de Bruijn graph, de Bruijn sequence, window se-

quence.

1 Introduction

Perfect factors were introduced, in the binary case, by Etzion, [2], who used

them to construct a certain class of (binary) Perfect Maps. In doing so

Etzion succeeded in showing that all the possible binary Perfect Factors

exist. In this paper we are concerned with Perfect Factors over arbitrary

finite alphabets. The motive for constructing these objects is two-fold.

Firstly, they can be used in an obvious generalisation of Etzion’s construction

to construct non-binary Perfect Maps; for further details see [4]. Perfect

Maps, both binary and non-binary, have possible application in the field of

automatic position sensing, see, for example, [1].

Secondly, they are of interest in their own right as natural generalisations

of the classical de Bruijn sequences, about which much has been written.

As described in [4], they also have applications in other areas, including the

construction of de Bruijn sequences with minimal linear complexity.

1.1 Preliminary remarks and notation

We are concerned here with c-ary periodic sequences, where by the term c-

ary we mean sequences whose elements are drawn from the set {0, 1, . . . , c−

1}. We refer throughout to c-ary cycles of period n, by which we mean

cyclic sequences (s0, s1, . . . , sn−1) where si ∈ {0, 1, . . . , c − 1} for every i,

(0 ≤ i < n).

If t = (t0, t1, . . . , tv−1) is a c-ary v-tuple (i.e. ti ∈ {0, 1, . . . , c−1} for every i,

(0 ≤ i < v)), and s = (s0, s1, . . . , sn−1) is a c-ary cycle of period n (n ≥ v),
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then we say that t occurs in s at position j if and only if

ti = si+j

for every i, (0 ≤ i < v), where i+ j is computed modulo n.

If s and s′ are two v-tuples, then we write s+ s′ for the v-tuple obtained by

element-wise adding together the two tuples. Similarly, if k is any integer,

we write ks for the tuple obtained by element-wise multiplying the tuple

s by k. Again, if we write t = s mod k, then t is the tuple obtained by

reducing every element in s modulo k. An exactly analogous interpretation

should be used for arithmetic operations on cycles.

Given a cycle s = (si), (0 ≤ i < n), and any integer k, we define Tk(s) to

be the cyclic shift of s by k places. I.e. if we write s′ = (s′i) = Tk(s) then

s′i+k = si, (0 ≤ i < n)

where i+ k is calculated modulo n.

Suppose u = (u0, u1, . . . , un−1) and u′ = (u′0, u
′
1, . . . , u

′
n′−1) are c-ary cycles

of periods n and n′ respectively. Then define the concatenation of u and u′,

written

u||u′

to be a c-ary cycle of period n+ n′

s = (s0, s1, . . . , sn+n′−1) = u||u′,

where

si =

 ui if 0 ≤ i < n

u′i−n if n ≤ i < n+ n′

We also need some notation linking sets of c-ary cycles with matrices.

Suppose that A = {a0,a1, . . . ,acv−1} is a set of cv c-ary cycles of pe-

riod n. Then let XA be the cv × n matrix with row i equal to ai, (0 ≤
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i ≤ cv − 1). Conversely, suppose that X is a cv × n matrix. Then let

AX = {aX0 ,aX1 , . . . ,aXcv−1} be the set of c-ary cycles (of length n) defined so

that aXi is equal to row i of X (0 ≤ i ≤ cv − 1).

We use the following matrix notation. Suppose X and Y are matrices of

dimensions s × t and s × u respectively. Then Z = (X|Y) denotes the

s× t+ u matrix whose first t columns are the columns of X and whose last

u columns are the columns of Y. For any matrix X , the transpose of X is

denoted by X T .

Finally note that, throughout this paper, the notation (m,n) represents the

Greatest Common Divisor of m and n (given that m,n are a pair of positive

integers).

1.2 Fundamentals

We can now define the combinatorial objects which are the main focus of

this paper.

Definition 1.1 Suppose n, c and v are positive integers (where we also

assume that c ≥ 2). An (n, c, v)–Perfect Factor, or simply a (n, c, v)–PF, is

then a set of cv/n c-ary cycles of period n with the property that every c-ary

v-tuple occurs in one of these cycles.

Note that, because we insist that a Perfect Factor contains exactly cv/n

cycles, and because there are clearly cv different c-ary v-tuples, each v-tuple

will actually occur exactly once somewhere in the set of cycles. Also observe

that a (cv, c, v)–PF is simply a c-ary span v de Bruijn sequence.

Example 1.2 The following three cycles form a (3, 3, 2)–PF.(
0 0 1

)
,

(
1 1 2

)
,

(
2 2 0

)
.
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The following necessary conditions for the existence of a Perfect Factor are

trivial to establish.

Lemma 1.3 Suppose A is a (n, c, v)–PF. Then

1. n|cv, and

2. v < n ≤ cv.

We now state our main conjecture regarding the existence of Perfect Factors.

Conjecture 1.4 The necessary conditions specified in Lemma 1.3 are suf-

ficient for the existence of a Perfect Factor.

Etzion, [2], showed that Conjecture 1.4 is true in the binary case, i.e. c = 2.

Paterson, [4], has recently shown that Conjecture 1.4 is true whenever c = pα

for p any prime and α a positive integer. In this paper, as an effort towards

establishing this conjecture, we demonstrate some constructions for c-ary

Perfect Factors for general c.

2 Perfect Multi-factors

Before giving our first method of construction for Perfect Factors, we define

a related set of combinatorial objects which will be of some use in their

construction.

Definition 2.1 Suppose m, n, c and v are positive integers satisfying m|cv

and c ≥ 2. An (m,n, c, v)–Perfect Multi-factor, or simply a (m,n, c, v)–

PMF, is a set of cv/m c-ary cycles of period mn with the property that for

every c-ary v-tuple t and for every integer j in the range 0 ≤ j < n, t occurs

at a position p ≡ j (mod n) in one of these cycles.
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Note that, because we insist that a PMF contains exactly cv/m cycles (each

of length mn and hence ‘containing’ mn v-tuples), and because there are

clearly cv different c-ary v-tuples, each v-tuple will actually occur exactly n

times in the set of cycles, once in each of the possible position congruency

classes (mod n).

Remark 2.2 It should be clear that an (m, 1, c, v)–PMF is precisely equiv-

alent to an (m, c, v)–PF.

We next give a simple example of a PMF which is not a PF.

Example 2.3 The following two cycles form a (2, 3, 2, 2)–PMF.(
0 0 0 0 1 1

)
,

(
1 0 1 1 1 0

)
.

The following necessary conditions for the existence of a Perfect Multi-factor

are trivial to establish.

Lemma 2.4 Suppose A is an (m,n, c, v)–PMF. Then

(i) m|cv, and

(ii) (a) m = 1 and v ≤ mn, or

(b) m > 1 and v < mn.

This leads to our second existence conjecture.

Conjecture 2.5 The necessary conditions specified in Lemma 2.4 for the

existence of an (m,n, c, v)–PMF are sufficient.

Remark 2.6 By Remark 2.2 above, it should be clear that Conjecture 2.5

implies Conjecture 1.4.
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3 Constructing Perfect Multi-factors with m = 1

In this section we consider the construction of Perfect Multi-factors for the

special case m = 1. Because of the importance of this special case we repeat

some of the above discussion in a simpler form.

Definition 3.1 Suppose n, c and v are positive integers (where we also as-

sume that c ≥ 2). A (1, n, c, v)–Perfect Multi-factor, or simply a (1, n, c, v)–

PMF, is a set of cv c-ary cycles of period n with the property that for every

c-ary v-tuple t and for every integer j in the range 0 ≤ j < n, t occurs at

position j in one of these cycles.

Note that, because we insist that a Perfect Multi-factor with m = 1 contains

exactly cv cycles, and because there are clearly cv different c-ary v-tuples,

each v-tuple will actually occur exactly n times in the set of cycles, once in

each of the possible positions.

Example 3.2 The following four cycles form a (1, 3, 2, 2)–PMF.(
0 0 0

)
,

(
0 1 1

)
,

(
1 0 1

)
,

(
1 1 0

)
.

Example 3.3 The following nine cycles form a (1, 3, 3, 2)–PMF.(
0 0 1

)
,

(
1 0 0

)
,

(
0 1 0

)
,(

1 1 2

)
,

(
2 1 1

)
,

(
1 2 1

)
,(

2 2 0

)
,

(
0 2 2

)
,

(
2 0 2

)
.

The following necessary condition for the existence of a Perfect Multi-factor

in the case m = 1 is a trivial consequence of Lemma 2.4.

Lemma 3.4 Suppose A is a (1, n, c, v)–PMF. Then

v ≤ n.
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As we show below, this necessary condition is also sufficient for the existence

of a PMF with m = 1. We first give an elementary construction for Perfect

Multi-factors. In essence, it consists of taking as cycles every possible v-

tuple.

Construction 3.5 Suppose c and v are positive integers satisfying c ≥ 2.

Suppose also that T = {ti : 0 ≤ i < cv} is the set of all c-ary v-tuples. Then

let B = {si : 0 ≤ i < cv} be the set of c-ary cycles of period v with the

property that ti occurs in si at position 0 for every i, (0 ≤ i < cv).

Theorem 3.6 Suppose B is a set of cv cycles constructed using Construc-

tion 3.5. Then B is an (1, v, c, v)–PMF.

Proof Consider any c-ary v-tuple u = (u0, u1, . . . , uv−1), and any position

j (0 ≤ j < v). Let u′ = T−j(u). Then u′ is a c-ary v-tuple and hence must

‘equal’ one cycle in B, sk say. If we let sk = (a0, a1, . . . , av−1) then

ai = ui−j

for every i (0 ≤ i < v), where i− j is calculated modulo v. Hence

ai+j = ui

for every i (0 ≤ i < v), where i+ j is calculated modulo v, i.e. u occurs at

position j in sk, and the result follows. 2

Example 3.7 The following set of cycles B, constructed using Construc-

tion 3.5, is a (1, 2, 3, 2)–PMF.(
0 0

)
,

(
0 1

)
,

(
0 2

)
,

(
1 0

)
,

(
1 1

)
,

(
1 2

)
,

(
2 0

)
,

(
2 1

)
,

(
2 2

)
.

We now give the main results of this section.
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Lemma 3.8 Suppose B is an (1, v, c, v)–PMF for some positive integers v, c

(where c ≥ 2). Let

xT
0 ,x

T
1 , . . . ,x

T
v−1

be the column vectors of XB. Suppose also that t ≥ 1, and let Y be a c-ary

matrix of dimensions cv × t having column vectors xT
v+j, (0 ≤ j ≤ t − 1).

Hence xi is a c-ary vector of length cv for every i, (0 ≤ i ≤ v + t− 1)).

Then, if for every j and s, (0 ≤ j ≤ v − 1, 0 ≤ s ≤ v + t − 1), there exist

integers e
(s)
ij , (0 ≤ i ≤ v − 1), such that

xj =
v−1∑
i=0

e
(s)
ij xs+i mod c

where the subscript s+ i is computed modulo v+ t, then A(XB |Y) is a (1, v+

t, c, v)–PMF.

Proof Let

xi = (xi,0, xi,1, . . . , xi,cv−1)

for every i, (0 ≤ i ≤ v + t− 1).

Now choose any s, (0 ≤ s ≤ v + t− 1), and suppose that

(xs,p, xs+1,p, . . . , xs+v−1,p) = (xs,q, xs+1,q, . . . , xs+v−1,q)

for some p, q ∈ {0, 1, . . . , cv−1}, and where the subscripts s+i are computed

modulo v + t. We need to show that p = q, and hence that at any position

s, no two of the c-ary v-tuples in A(XB |Y) are the same—the result will then

follow from Definition 3.1.

By the assumption, if j satisfies 0 ≤ j ≤ v − 1, then there exist e
(s)
ij such

that

xj =
v−1∑
i=0

e
(s)
ij xs+i.

Hence

xj,p =
v−1∑
i=0

e
(s)
ij xs+i,p =

v−1∑
i=0

e
(s)
ij xs+i,q = xj,q.
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Hence

(x0,p, x1,p, . . . , xv−1,p) = (x0,q, x1,q, . . . , xv−1,q).

But, since B is an (1, v, c, v)–PMF, we must have p = q, and the result

follows. 2

Lemma 3.9 Suppose v, c, t are positive integers (c ≥ 2). Further suppose

that X is a c-ary matrix of dimensions cv × v having column vectors

xT
0 ,x

T
1 , . . . ,x

T
v−1

whose first v rows are equal to Iv, and that Y is a c-ary matrix of dimensions

cv × t having column vectors

xT
v ,x

T
v+1, . . . ,x

T
v+t−1

where

Y = XD mod c (1)

and D = (dij) (0 ≤ i ≤ v−1, 0 ≤ j ≤ t−1), is a c-ary matrix of dimensions

v × t.

Then, for every j and s, (0 ≤ j ≤ v − 1, 0 ≤ s ≤ v + t − 1), there exist

integers e
(s)
ij , (0 ≤ i ≤ v − 1), such that

xj =
v−1∑
i=0

e
(s)
ij xs+i mod c

where the subscript s+ i is computed modulo v+ t, if and only if every v× v

sub-matrix of (Iv|D|Iv) is invertible over the ring of v × v matrices modulo

c (where Iv is the v × v identity matrix).

Proof If s satisfies 0 ≤ s ≤ v + t − 1, then let Xs be the v × v matrix

consisting of columns s, s+1, . . . , s+v−1 of the matrix (X|Y|X ), where the

columns of this latter matrix are numbered from 0 up to 2v+ t−1 inclusive.
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It is immediate to see that, for any s satisfying 0 ≤ s ≤ v + t − 1, there

exists integers e
(s)
ij , (0 ≤ i ≤ v − 1), such that

xj =
v−1∑
i=0

e
(s)
ij xs+i mod c

where the subscript s+i is computed modulo v+t, if and only if there exists

a c-ary v × v matrix Es = (e
(s)
ij ) such that

X = XsEs mod c.

Now, if s satisfies 0 ≤ s ≤ v + t, then let Fs be the v × v matrix consisting

of columns s, s + 1, . . . , s + v − 1 of (Iv|D|Iv), where the columns of this

latter matrix are numbered from 0 up to 2v + t − 1 inclusive. Then it is

straightforward to see that

{Fs : 0 ≤ s ≤ v + t}

is the set of all v × v sub-matrices of (Iv|D|Iv).

It should be clear that, by equation (1),

X (Iv|D|Iv) = (X|Y|X ) mod c

and hence

XFs = Xs mod c (2)

for every s satisfying 0 ≤ s ≤ v + t− 1.

Next observe that Fv+t = Iv and hence is trivially invertible. We now show

that, if s is any integer satisfying 0 ≤ s ≤ v + t− 1, then Fs is invertible if

and only if there exists a c-ary v × v matrix Es such that

X = XsEs mod c,

and the desired result follows.

Choose s such that 0 ≤ s ≤ v + t− 1.
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First suppose Fs is invertible, i.e. suppose that there exists a c-ary v × v

matrix Gs such that

FsGs = Iv mod c.

Hence, by equation (2),

X = XsGs mod c

as required.

Second suppose that there exists a c-ary v × v matrix Es such that

X = XsEs mod c.

Then, by equation (2)

X = XFsEs mod c.

But, by assumption, the first v rows of X are equal to Iv and hence we have

Iv = FsEs mod c

and hence Fs is invertible.

The result follows. 2

Lemma 3.10 Suppose c ≥ 2, v and t are positive integers, and suppose X

is a c-ary v×t matrix. Then every v×v sub-matrix of (Iv|X |Iv) is invertible

in the ring of v × v matrices modulo c if and only if every t× t sub-matrix

of (It|X T |It) is invertible in the ring of t× t matrices modulo c.

Proof We assume every t× t sub-matrix of (It|X T |It) is invertible.

If s satisfies 0 ≤ s ≤ v + t, let Cs be the v × v matrix consisting of columns

s, s+1, . . . , s+v−1 of the matrix (Iv|X |Iv), where the columns of this latter

matrix are numbered from 0 up to 2v+ t− 1 inclusive. It is straightforward

to see that

{Cs : 0 ≤ s ≤ v + t}
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is the set of all v × v sub-matrices of (Iv|X |Iv). We need to show that As

is invertible for every s (0 ≤ s ≤ v + t), and the result will follow.

Without loss of generality suppose that s satisfies 0 ≤ s ≤ v. We need to

consider two cases.

• s ≤ t. By our assumption, the t × t matrix consisting of columns

s, s+ 1, . . . , s+ t− 1 of (It|X T |It) is invertible. This matrix contains

the last t − s columns of It and the first s columns of X T . Hence

the s × s matrix consisting of the first s rows and columns of X T is

invertible, and thus the s× s matrix consisting of the first s rows and

columns of X is invertible. Since As is nothing more than the last

v − s columns of Iv and the first s columns of X it follows that As is

invertible.

• s > t. Again by our assumption, the t× t matrix consisting of columns

s, s+ 1, . . . , s+ t− 1 of (It|X T |It) is invertible. Since t < s ≤ v, this

consists of columns s − t, s − t + 1, . . . , s − 1 of X T , and hence this

t× t sub-matrix of X T is invertible. This implies that the t× t matrix

containing rows s− t, s− t+1, . . . , s− 1 of X is invertible. Now As is

the concatenation of the last v − s columns of Iv, all t columns of X

and the first s− t columns of Iv, and hence As is invertible.

The result follows by substituting v for t (and vice versa) in the above

argument. 2

Definition 3.11 If the v × t matrix X has the property that every v × v

sub-matrix of (Iv|X |Iv) is invertible in the ring of v× v matrices modulo c,

we say that X has Property X.

Lemma 3.12 Suppose c ≥ 2, v and t are positive integers. Then there

exists a c-ary v × t matrix D with Property X.
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Proof We prove this by induction on max{v, t}. If v = t = 1 then D = (1)

trivially has Property X. Now suppose a matrix with Property X exists for

every v, t satisfying max{v, t} < L for some positive integer L > 1. We now

show that a matrix with Property X exists if L = max{v, t}.

First note that if L = v = t then D = IL clearly has Property X.

Next suppose L = t > v. Let t = cv + d, where c > 0 and 0 ≤ d < v. There

are two cases to consider.

• If d = 0 let D equal Iv concatenated with itself c times, i.e.

D = (Iv|Iv| · · · |Iv)

and D has Property X.

• If d > 0 then, by the inductive hypothesis, there exists a c-ary v × d

matrix Y such that every v × v sub-matrix of (Iv|Y|Iv) is invertible.

Let D equal Iv concatenated with itself c times, concatenated with Y,

i.e.

D = (Iv|Iv| · · · |Iv|Y)

and D has Property X.

Finally suppose t < v = L. By the above argument there exists an t × v

matrix E with Property X. But, by Lemma 3.10 this means that the v × t

matrix D = ET also has Property X and the result follows. 2

We can now state the main result of this section, showing that the necessary

conditions of Lemma 3.4 are sufficient for the existence of a Perfect Multi-

factor in the special case m = 1.

Theorem 3.13 Suppose n, c, v are positive integers (c ≥ 2 and n ≥ v).

Then there exists a (1, n, c, v)–PMF.
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Proof First let n = v + t. If t = 0 (i.e. if n = v) then the theorem follows

immediately from Theorem 3.6. Hence suppose that t ≥ 1.

By Lemma 3.12 there exists a c-ary v × t matrix, D say, with Property X.

By Theorem 3.6 there exists an (1, v, c, v)–PMF, B say. By appropriate re-

ordering of the elements of B (if necessary), we can ensure that the first v

rows of XB are equal to Iv. Now let

Y = XB.D mod c,

and by Lemma 3.9 there exist integers e
(s)
ij , (0 ≤ i ≤ v − 1), such that

xj =
v−1∑
i=0

e
(s)
ij xs+i mod c

where the subscript s+ i is computed modulo v + t. Hence, by Lemma 3.8,

A(XB |Y) is an (1, v + t, c, v)–PMF, as required. 2

Remark 3.14 It should be clear that the above proof is actually construc-

tive, i.e. it provides a simple recipe for the construction of a PMF with any

desired parameters (given m = 1).

Example 3.15 Consider the case v = 3, t = 2 and c = 2. Following the

proof of Theorem 3.13, we first need a 2-ary 3 × 2 matrix D with property

X. Using the proof of Lemma 3.12 we obtain:

D =


1 0

0 1

1 1

 .

Using Construction 3.5 we obtain the following set of 8 cycles constituting

a (1, 3, 2, 3)–PMF, B say:(
0 0 0

)
,

(
0 0 1

)
,

(
0 1 0

)
,

(
0 1 1

)
,(

1 0 0

)
,

(
1 0 1

)
,

(
1 1 0

)
,

(
1 1 1

)
.
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Hence

XB =



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


and

Y = XBD =



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




1 0

0 1

1 1

 =



0 0

1 1

0 1

1 0

1 0

0 1

1 1

0 0



mod 2.

Thus

(XB|Y) =



0 0 0 0 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0

1 0 1 0 1

1 1 0 1 1

1 1 1 0 0


and the following eight binary cycles form a (1, 5, 2, 3)–PMF:(

0 0 0 0 0

)
,

(
0 0 1 1 1

)
,

(
0 1 0 0 1

)
,

(
0 1 1 1 0

)
,(

1 0 0 1 0

)
,

(
1 0 1 0 1

)
,

(
1 1 0 1 1

)
,

(
1 1 1 0 0

)
.

16



4 Constructing Perfect Multi-factors for every m

We now demonstrate some constructions for Perfect Multi-factors for general

m.

4.1 Some elementary constructions

We start by giving two elementary construction techniques.

Construction 4.1 Suppose A = {a0,a1, . . . ,acv/n−1} is an (n, c, v)–PF,

and let m be any positive integer satisfying m|n. Then define B to be the

following set containing cv/m cycles:

B = {Tk(ai) | 0 ≤ k < n/m, 0 ≤ i < cv/n}.

Theorem 4.2 Suppose B is a set of cycles constructed from A (an (n, c, v)–

PF) using Construction 4.1. Then B is an (m,n/m, c, v)–PMF.

Proof Consider any c-ary v-tuple t = (t0, t1, . . . , tv−1), and any integer j

(0 ≤ j < n/m). Now, since A is a Perfect Factor, t must occur in a cycle of

A; without loss of generality suppose t occurs at position h in cycle ak. If

we let ak = (a0, a1, . . . , an−1), then, by definition,

ti = ai+h, (0 ≤ i < v)

where i+ h is calculated modulo n.

Now let q = j − h mod (n/m) (i.e. 0 ≤ q < n/m) and also let p = q + h.

Consider Tq(ak), which, by definition, is a member of B. By definition, if

we let Tq(ak) = (a′0, a
′
1, . . . , a

′
n−1), then

a′i+q = ai

for every i (0 ≤ i < n), where i + q is calculated modulo n. Hence, since

q = p− h,

a′i+p = ai+h = ti
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for every i (0 ≤ i < v), where i + p and i + h are calculated modulo n.

Hence, by definition, t occurs at position p of Tq(ak). But

p = q + h ≡ (j − h) + h = j (mod n/m),

and the result follows. 2

Example 4.3 Suppose A is the following (4, 2, 3)–PF.(
0 0 0 1

)
,

(
1 1 1 0

)
.

Let m = 2. Then B, constructed using Construction 4.1, is a (2, 2, 2, 3)–

PMF and is as follows.(
0 0 0 1

)
,

(
1 0 0 0

)
,

(
1 1 1 0

)
,

(
0 1 1 1

)
.

We next have:

Construction 4.4 Suppose that

A = {ui : 0 ≤ i < cv/m}

is an (m,n, c, v)–PMF and that β is a positive integer satisfying (β,m) = 1,

i.e. β is co-prime to m. Then let

B = {si : 0 ≤ i < cv/m}

be a set of c-ary cycles of period mβn defined so that si is equal to ui

concatenated with itself β times.

Theorem 4.5 Suppose B is constructed from an (m,n, c, v)–PMF A using

Construction 4.4 (with some value of β co-prime to m). Then B is an

(m,βn, c, v)–PMF.

Proof Consider any c-ary v-tuple t = (t0, t1, . . . , tv−1), and any integer j

(0 ≤ j < βn). Suppose j′ = j mod n.

18



Now, by definition of PMF, t occurs at some position p ≡ j′ mod n in one

cycle, uk say, of A. Hence, by definition, t will occur at every position in

the set

P = {p, p+mn, p+ 2mn, . . . , p+ (β − 1)mn}

in cycle sk of B. We next observe that the elements of P are all distinct

modulo βn. This follows since suppose

p+ µmn ≡ p+ µ′mn (mod βn)

where 0 ≤ µ, µ′ < β. Hence βn|(µ′−µ)mn, i.e. β|(µ′−µ)m. But we assumed

that (β,m) = 1 and hence β|(µ′ − µ). Finally note that |µ′ − µ| < β and

hence µ = µ′.

It is also straightforward to verify that the elements of P are all congruent

to j modulo n. Hence, since |P | = β, it follows that exactly one element of

P is congruent to j modulo βn, and the result follows. 2

Example 4.6 Let A be the (2, 2, 2, 3)–PMF of Example 4.3, i.e. A contains

the four cycles:(
0 0 0 1

)
,

(
1 0 0 0

)
,

(
1 1 1 0

)
,

(
0 1 1 1

)
.

Then B, derived using Construction 4.4 with β = 3, is a (2, 6, 2, 3)–PMF,

and is as follows:(
0 0 0 1 0 0 0 1 0 0 0 1

)
,

(
1 0 0 0 1 0 0 0 1 0 0 0

)
,(

1 1 1 0 1 1 1 0 1 1 1 0

)
,

(
0 1 1 1 0 1 1 1 0 1 1 1

)
.

4.2 The main result

We now present a method for constructing a Perfect Multi-factor withm > 1

from a Perfect Multi-factor with m = 1. This construction method can be

divided into two main parts:
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• Partitioning the cycles of the perfect multi-factor with m = 1 into

(equally-sized) subsets, and

• Joining together the cycles within each subset of the partition to form

the cycles of a new Perfect Multi-factor.

4.2.1 Notation and definitions

We now define some connectedness relationships between sets of cycles. First

we have:

Definition 4.7 Suppose that X = {a0,a1, . . . ,as−1} is some set of c-ary

cycles with the property that each cycle ai has length a positive integer mul-

tiple of n, (rin say), for some n ≥ v ≥ 1 (where c ≥ 2). In addition let

ai = (ai,0, ai,1, . . . , ai,rin−1)

for every i, (0 ≤ i < s). Then, for any i, j, (i, j ∈ {0, 1, . . . , s−1}), say that

ai and aj are (n, v)–adjacent, or simply write

ai
n,v∼ aj

if and only if there exists some t and α, (0 ≤ t < n, 0 ≤ α < rj), such that

(ai,t, ai,t+1,, . . . , ai,t+v−2) = (aj,t−αn, aj,t−αn+1,, . . . , aj,t−αn+v−2),

i.e. if and only if ai and aj agree in some consecutive v− 1 positions, given

aj is cyclically shifted by some multiple of n positions.

This then leads naturally to the following.

Definition 4.8 Suppose that X = {a0,a1, . . . ,as − 1} is some set of c-ary

cycles with lengths a multiple of n ≥ v ≥ 1 (where c ≥ 2). Then, for any i, j,
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(i, j ∈ {0, 1, . . . , s − 1}), say that ai and aj are (n, v)–connected, or simply

write

ai
n,v
≈ aj

if and only if there exist some ai0 ,ai1 , . . . ,aiz ∈ X, (z ≥ 0)), such that

(i) i0 = i,

(ii) iz = j, and

(iii) aik
n,v∼ aik+1

for every k, (0 ≤ k < z).

This then enables us to state the following.

Definition 4.9 Suppose that X = {a0,a1, . . . ,as − 1} is some set of c-ary

cycles with lengths a multiple of n ≥ v ≥ 1 (where c ≥ 2). The X is said to

be (n, v)–connected if and only if ai
n,v
≈ aj for every pair ai,aj ∈ X.

4.2.2 Preliminaries

Suppose c ≥ 2, n ≥ 1 and v ≥ 1.

First suppose that A = {a0,a1, . . . ,acv−1} is an (1, n, c, v)–PMF. Suppose

moreover that

ai = (ai,0, ai,1, . . . , ai,n−1)

for every i, (0 ≤ i < cv).

We next create a set of v different partitions of A into equally sized subsets

by considering the (v − 1)-tuples occurring at certain positions within the

cycles of A. More formally, suppose j satisfies

0 ≤ j < v,

and partition the cycles {a0,a1, . . . ,acv−1} into cv−1 subsets

B
(j)
0 , B

(j)
1 , . . . , B

(j)
cv−1−1
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in such a way that if ai ∈ B
(j)
s and ai′ ∈ B

(j)
s′ then

(ai,j , ai,j+1, . . . , ai,j+v−2) = (ai′,j , ai′,j+1, . . . , ai′,j+v−2)

if and only if s = s′. Since A is a Perfect Multi-factor, it is immediate to

see that

|B(j)
i | = c

for every i, j (0 ≤ i < cv−1, 0 ≤ j < v).

Next suppose m|cv, and let m0,m1, . . . ,mv−1 be defined so that

(i) mi|c for every i (0 ≤ i < v), and

(ii)
∏v−1

i=0 mi = m.

In addition, if 1 ≤ i < v, let ri =
∏i−1

j=0mj , and put r0 = 1. Correspondingly,

if 0 ≤ i < v, let qi = cv/ri. Note that we immediately have rv = m and

qv = cv/m.

Finally, for every i (0 ≤ i < v), let

E
(i)
0 , E

(i)
1 , . . . , E

(i)
cv/mi−1

be an arbitrary sub-partition of

B
(i)
0 , B

(i)
1 , . . . , B

(i)
cv−1−1

into c/mi(c
v−1) = cv/mi subsets, each of size mi. Hence, for every j, (0 ≤

j < cv/mi), there exists a k, (0 ≤ k < cv−1), such that

E
(i)
j ⊆ B

(i)
k .

We can now proceed with the description of an algorithm which uses an

(1, n, c, v)–PMF to construct an (m,n, c, v)–PMF. We use the notation and

definitions given above throughout the discussion of this derivation method.
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4.2.3 Partitioning a Perfect Multi-factor

We first describe an (iterative) algorithm for partitioning the cycles of A

into cv/m subsets with m cycles in each. The algorithm is iterated a total

of v times, with i (the iterative index) ranging from 0 up to v − 1, and at

each stage a partition Ai of the cycles of A is transformed into a partition

Ai+1, where each member of Ai+1 is obtained by taking a union of members

of Ai.

We describe below a single step of this algorithm, i.e. how the partition Ai+1

is derived from Ai. We first need the following.

Definition 4.10 If 0 ≤ i < v and Ai = {Ai,0, Ai,1, . . . , Ai,qi−1} is a parti-

tion of the cycles of A, then it is said to be a (i, ri, v)–Partition if and only

if for every s, (0 ≤ s < qi):

(i) Ai,s is (n, v)–connected,

(ii) |Ai,s| = ri, and

(iii) If at,at′ ∈ Ai,s then

(at,i−1, at,i, . . . , at,v−2) = (at′,i−1, at′,i, . . . , at′,v−2).

I.e. all cycles in Ai,s agree in positions {i− 1, i, . . . , v − 2}.

Algorithm 4.11 Suppose i satisfies 0 ≤ i < v and suppose also that

Ai = {Ai,0, Ai,1, . . . , Ai,qi−1}

is an (i, ri, v)–Partition of the cycles of A. Then

let Zi,0 = ∅;

for j = 0 to qi+1 − 1 do
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choose some element, Ai,fj say, from Ai −Zi,j (where

0 ≤ fj < qi);

choose some cycle, agj ∈ Ai,fj , and suppose agj ∈ E
(i)
hj
;

let

Ai+1,j =
∗∪
s

Ai,s

where
∪∗

s denotes the union over all s, (0 ≤ s < qi),

such that

Ai,s ∩E
(i)
hj

̸= ∅; (3)

let

Zi,j+1 = Zi,j ∪ {Ai,s : 0 ≤ s < qi, Ai,s ∩ E
(i)
hj

̸= ∅};

Lemma 4.12 Suppose Ai+1 has been obtained from an (i, ri, v)–Partition

Ai using Algorithm 4.11 (where 0 ≤ i < v). Then Ai+1 is a (i+ 1, ri+1, v)–

Partition of the cycles of A.

Proof We start by observing that, by definition, the subsets Ai+1,j , (0 ≤

j < qi+1), are disjoint.

We next claim that

|Ai,s ∩ E
(i)
t | ≤ 1

for every s, t, (0 ≤ s < qi, 0 ≤ t < cv/mi). To establish this, suppose

ax,ay ∈ Ai,s ∩ E
(i)
t for some s, t. Then ax,ay ∈ Ai,s, and hence ax and ay

agree in positions {i − 1, i, . . . , v − 2}. But we also have ax,ay ∈ E
(i)
t ⊆

B
(i)
k for some k, (0 ≤ k < cv−1), and hence ax and ay agree in positions

{i, i+1, . . . , i+ v− 2}. Hence, since 0 ≤ i < v, ax and ay agree in positions

{i− 1, i, . . . , i+ v− 2}, and so, since A is an (1, n, c, v)–PMF, we must have

x = y, and the desired result follows.

Next observe that, by Algorithm 4.11

Ai+1,j =
∗∪
s

Ai,s
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where
∪∗

s denotes the union over all s, (0 ≤ s < qi), satisfying (3). Now,

since

|Ai,s ∩ E
(i)
hj
| ≤ 1

for every s, (0 ≤ s < qi), there must be precisely |E(i)
hj
| terms in the union

defining Ai+1,j , and hence

|Ai+1,j | = |E(i)
hj
|.|Ai,s| = miri = ri+1

as required for Definition 4.10(ii).

In addition, since we have already observed that the subsets Ai+1,j , (0 ≤

j < qi+1), are disjoint, it immediately follows that Ai+1 is a partition of the

cycles of A (since qi+1ri+1 = cv).

We next consider any two cycles in Ai+1,j (for some j satisfying 0 ≤ j <

qi+1). We need to show that they agree in positions {i, i + 1, . . . , v − 2} in

order to satisfy Definition 4.10(iii). As before, by definition,

Ai+1,j =
∗∪
s

Ai,s

where
∪∗

s denotes the union over all s, (0 ≤ s < qi), satisfying (3). Now

the elements of E
(i)
hj

all agree in positions {i, i + 1, . . . , i + v − 2} (since

E
(i)
hj

⊆ B
(i)
k for some k, (0 ≤ k < cv−1)). Moreover, by the assumption

that Ai is an (i, ri, v)–Partition, the elements of Ai,s all agree in positions

{i− 1, i, . . . , v − 2} for any s, (0 ≤ s < qi). Hence the elements of Ai+1,j all

agree in positions

{i, i+ 1, . . . , i+ v − 2} ∩ {i− 1, i, . . . , v − 2} = {i, i+ 1, . . . , v − 2}

as required.

It remains for us to show that Ai+1,s is (n, v)–connected (and hence satisfies

Definition 4.10(i)). As before, by definition,

Ai+1,j =
∗∪
s

Ai,s
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where
∪∗

s denotes the union over all s, (0 ≤ s < qi), satisfying (3). Let

axs ∈ Ai,s ∩ E
(i)
hj

for every s satisfying (3). Now since axs ∈ E
(i)
hj

for every

s satisfying (3) (and since E
(i)
hj

⊆ B
(i)
k for some k (0 ≤ k < cv−1)) we must

have

axs

n,v∼ axs′

for every pair s, s′ satisfying (3). Since, by assumption, Ai,s is (n, v)–

connected for every s, it follows immediately that Ai+1,j is (n, v)–connected.

The Lemma now follows. 2

4.2.4 Merging the cycles

We can now state our main result.

Theorem 4.13 Suppose n, c, v, t are positive integers (c ≥ 2, n ≥ v and

t|cv). Suppose also that A = {a0,a1, . . . ,acv−1} is an (1, n, c, v)–PMF. Let

X = {X0, X1, . . . , Xcv/t−1} be a partition of the cycles of A into cv/t subsets

of t cycles each, and suppose finally that Xi is (n, v)–connected for all i,

(0 ≤ i < cv/t). Then there exists a (t, n, c, v)–PMF.

Before giving a proof of this result we need the following definition.

Definition 4.14 Suppose

a0 = (a0,0, a0,1, . . . , a0,r0n−1) and a1 = (a1,0, a1,1, . . . , a1,r1n−1)

are c-ary cycles of lengths r0n and r1n respectively (where c ≥ 2, n, r0

and r1 are positive integers). Suppose, moreover, that a0 and a1 are (n, v)–

adjacent. Hence there exist integers p and α, (0 ≤ p < n, 0 ≤ α < r1), such

that

(a0,p, a0,p+1, . . . , a0,p+v−2) = (a1,p−αn, a1,p−αn+1, . . . , a1,p−αn+v−2).
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Then define (a0|a1)αnp to be the following c-ary cycle of length (r0 + r1)n.

Let (a0|a1)αnp = (c0, c1, . . . , c(r0+r1)n−1) where, if p− αn ≥ 0:

ci =



a0,i if 0 ≤ i < p

a1,i−αn if p ≤ i < (r1 + α)n

a1,i−(r1+α)n if (r1 + α)n ≤ i < p+ r1n

a0,i−r1n if p+ r1n ≤ i < (r0 + r1)n

and if p− αn < 0:

ci =



a0,i if 0 ≤ i < p

a1,i+(r1−α)n if p ≤ i < αn

a1,i−αn if αn ≤ i < p+ r1n

a0,i−r1n if p+ r1n ≤ i < (r0 + r1)n

Proof of Theorem 4.13 For each Xi ∈ X we can construct a cycle

bi of length nt by concatenating the cycles in Xi. More formally, given i,

(0 ≤ i < cv/t), perform the following algorithm:

choose ai,0 ∈ Xi;

let Yi,0 = {ai,0};

let bi,0 = ai,0;

for j = 0 to t− 1 do

choose ai,j+1 ∈ Xi − Yi,j such that ai,j+1
n,v∼ bi,j ;

let bi,j+1 = (ai,j+1|bi,j)
αn
p for some p, α (which exist

since ai,j+1
n,v∼ bi,j);

let Yi,j+1 = Yi,j ∪ {ai,j+1};

The end result of the above algorithm will be a c-ary cycle, bi = bi,t, of

length nt.

To prove that this algorithm runs to completion we need to show that, for

every j, there exists an ai,j+1 ∈ Xi − Yi,j such that ai,j+1
n,v∼ bi,j . To
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establish this we consider the set

Zj = Xi − Yi,j ∪ {bi,j}

for every j, (0 ≤ j < t), and claim that Zj is (n, v)–connected for every j.

We show this by induction.

First note that

Z0 = Xi − Yi,0 ∪ {bi,0} = X0

which is (n, v)–connected by assumption. Secondly suppose that Zj is (n, v)–

connected for some j satisfying 0 ≤ j < t. By definition

Zj+1 = Zj − {ai,j+1,bi,j} ∪ {bi,j+1}

where

bi,j+1 = (ai,j+1|bi,j)
αn
p

for some p, α. Given any cycle y, it should be clear that

• if y
n,v∼ ai,j+1 then y

n,v∼ (ai,j+1|bi,j)
αn
p , and

• if y
n,v∼ bi,j then y

n,v∼ (ai,j+1|bi,j)
αn
p ,

and hence Zj+1 is (n, v)–connected, and thus the induction is complete.

Now, since we have established that Xi−Yi,j ∪{bi,j} is (n, v)–connected for

every j, it should be clear that, for every j there exists ai,j+1 ∈ Xi − Yi,j

such that ai,j+1
n,v∼ bi,j , as required.

We have thus established that the above algorithm, when supplied with a

partition of the specified type, will produce a set B = {b0,b1, . . . ,bcv/t−1}

of c-ary cycles of length t. We now claim that this set constitutes the desired

(t, n, c, v)–PMF.

Choose any c-ary v-tuple, t say, and any integer j, (0 ≤ j < n). We need to

find a cycle bi such that t occurs in bi at a position q ≡ j (mod n). Now,

28



since A is an (1, n, c, v)–PMF, t occurs in a cycle in A, ai say, at position j.

Moreover, since X is a partition of the cycles of A, ai occurs in a (unique)

element of X , Xs say. Hence, ai was used in the construction of bs.

Now, given any pair of tuples x,y of lengths a multiple of n and with the

property that x
n,v∼ y, it is certainly that case that if t occurs in position q

in x, then

• t occurs at a position q′ ≡ q (mod n) in (x|y)αnp , and

• t occurs at a position q′′ ≡ q (mod n) in (y|x)α′n
p .

Hence t occurs at a position q ≡ j (mod n) in bs.

The proof is now complete. 2

4.2.5 Examples

Remark 4.15 It should be clear that Example 2.3 (a (2, 3, 2, 2)–PMF) can

be derived using the above construction from the (1, 3, 2, 2)–PMF of Exam-

ple 3.2 (with m = 2).

Example 4.16 As a further example of the above technique we let c = 2,

v = 3 and m = n = 4 and show how a (4, 4, 2, 3)–PMF can be constructed

from a (1, 4, 2, 3)–PMF.

Let m0 = 2, m1 = 1 and m2 = 2, and hence r0 = 1, r1 = r2 = 2, q0 = 8 and

q1 = q2 = 4. Let A be the following (4, 2, 3)–PMF:(
0 0 0 0

)
,

(
0 0 1 1

)
,

(
0 1 0 1

)
,

(
0 1 1 0

)
,(

1 0 0 1

)
,

(
1 0 1 0

)
,

(
1 1 0 0

)
,

(
1 1 1 1

)
.

Then the partitions (B
(j)
i ), (0 ≤ i < 3, 0 ≤ j < 2) are as follows:

B
(0)
0 = {

(
0 0 0 0

)
,

(
0 0 1 1

)
},
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B
(0)
1 = {

(
0 1 0 1

)
,

(
0 1 1 0

)
},

B
(0)
2 = {

(
1 0 0 1

)
,

(
1 0 1 0

)
},

B
(0)
3 = {

(
1 1 0 0

)
,

(
1 1 1 1

)
},

B
(1)
0 = {

(
0 0 0 0

)
,

(
1 0 0 1

)
},

B
(1)
1 = {

(
0 0 1 1

)
,

(
1 0 1 0

)
},

B
(1)
2 = {

(
0 1 0 1

)
,

(
1 1 0 0

)
},

B
(1)
3 = {

(
0 1 1 0

)
,

(
1 1 1 1

)
},

B
(2)
0 = {

(
0 0 0 0

)
,

(
1 1 0 0

)
},

B
(2)
1 = {

(
0 1 0 1

)
,

(
1 0 0 1

)
},

B
(2)
2 = {

(
0 1 1 0

)
,

(
1 0 1 0

)
},

B
(2)
3 = {

(
0 0 1 1

)
,

(
1 1 1 1

)
}.

Now since m0 = m2 = 2 and m1 = 1, we have

(E
(0)
i ) = (B

(0)
i ),

(E
(2)
i ) = (B

(2)
i ),

and

E
(1)
0 = {

(
0 0 0 0

)
}, E

(1)
1 = {

(
1 0 0 1

)
},

E
(1)
2 = {

(
0 0 1 1

)
}, E

(1)
3 = {

(
1 0 1 0

)
},

E
(1)
4 = {

(
0 1 0 1

)
}, E

(1)
5 = {

(
1 1 0 0

)
},

E
(1)
6 = {

(
0 1 1 0

)
}, E

(1)
7 = {

(
1 1 1 1

)
}.

Following Algorithm 4.11 we have

A1 = A2 = (E
(0)
i ),
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and

A3 =
{
(

0 0 0 0

)
,

(
0 0 1 1

)
,

(
1 1 0 0

)
,

(
1 1 1 1

)
},

{
(

0 1 0 1

)
,

(
0 1 1 0

)
,

(
1 0 0 1

)
,

(
1 0 1 0

)
}.

Merging the elements within the two classes of A3 we obtain

B =


(

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

)
,(

0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0

)
 .

4.2.6 Implications

The following summarises what types of PMF can be constructed using the

technique described above.

Corollary 4.17 Suppose n, c, v are positive integers (c ≥ 2 and n ≥ v).

Then there exists an (m,n, c, v)–PMF for every positive integer m satisfying

m|cv.

Proof By Theorem 3.13 there exists an (1, n, c, v)–PMF,A = {a0,a1, . . . ,acv−1}

say. Let A0 = {A0,0, A0,1, . . . , A0,cv−1} be the ‘trivial’ partition of the cycles

of A defined by

A0,i = {ai}

for every i, (0 ≤ i < cv).

First observe that A0 is a (0, r0, v)–Partition of the cycles of A. To show

this we need only check that, for every s, (0 ≤ s < cv):

(i) A0,s is (n, v)–connected (this is trivially true since |A0,s| = 1),

(ii) |A0,s| = 1 (true by definition), and

(iii) if at,at′ ∈ A0,s then at and at′ must agree in positions {−1, 0, . . . , v−

2}, i.e. in positions {0, 1, . . . , v − 2} and in position n − 1 (this again

holds trivially since |A0,s| = 1).
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Hence if we apply Algorithm 4.11 v times to A0 to obtain the partition

Av = {Av,0, Av,1, . . . , Av,qv−1},

then, by Lemma 4.12, Av is an (v, rv, v)–Partition of the cycles of A. That

is Av is a partition of the cycles of A into qv = cv/m subsets of rv = m

cycles each. Moreover, each Av,i is (n, v)–connected. The result now follows

immediately on application of Theorem 4.13. 2

Remark 4.18 Hence Conjecture 2.5 is true for all sufficiently large values

of n.

5 Constructing Perfect Factors from Perfect Multi-

factors

We now show how Perfect Multi-factors may be used in conjunction with

Perfect Factors to construct other Perfect Factors. We have the following.

Construction 5.1 Suppose that

A = {ui : 0 ≤ i < cv/n}

is an (n, c, v)–PF. Suppose also that

A′ = {vi : 0 ≤ i < dv/m}

is an (m,n, d, v)–PMF.

For each cycle ui of A, concatenate it with itself m times to obtain the cycle

wi having period mn. Now let

B = {sij : 0 ≤ i < cv/n, 0 ≤ j < dv/m}

be the set of cycles of period mn defined by

sij = wi + cvj .
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Theorem 5.2 Suppose B is constructed from an (n, c, v)–PF and an (m,n, d, v)–

PMF using Construction 5.1. Then B is an (mn, cd, v)–PF.

Proof Consider any (cd)-ary v-tuple, x say. Then let

y = x mod c.

Then y is a c-ary v-tuple and hence occurs in some cycle of A, say at position

j in cycle uk. Now let

z = (x− y)/c;

this is simple to do in integers since every element of x − y must be a

multiple of c. It should also be clear that z is a d-ary v-tuple, and hence

occurs at position d ≡ j (mod n) in some cycle in A′, say vk′ . It is now

straightforward to check that x appears at position d in the cycle skk′ of B.

Hence every (cd)-ary v-tuple occurs in at least one cycle, and the result then

follows on observing that there are precisely (cd)v/mn cycles in B, each of

length mn. 2

Example 5.3 Let A be the (3, 3, 2)–PF of Example 1.2, i.e. A contains the

cycles

u0 =

(
0 0 1

)
, u1 =

(
1 1 2

)
, u2 =

(
2 2 0

)
.

Hence, given m = 2, the concatenated cycles w0, w1, w2 are as follows:

w0 =

(
0 0 1 0 0 1

)
, w1 =

(
1 1 2 1 1 2

)
, w2 =

(
2 2 0 2 2 0

)
.

Let A′ be the (2, 3, 2, 2)–PMF of Example 2.3, i.e. A′ contains the cycles

v0 =

(
0 0 0 0 1 1

)
, v1 =

(
1 0 1 1 1 0

)
.

Then B, derived using Construction 5.1 is a (6, 6, 2)–PF, and is as follows:

s00 =

(
0 0 1 0 3 4

)
, s01 =

(
3 0 4 3 3 1

)
,

s10 =

(
1 1 2 1 4 5

)
, s11 =

(
4 1 5 4 4 2

)
,

s20 =

(
2 2 0 2 5 3

)
, s21 =

(
5 2 3 5 5 0

)
.
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Remark 5.4 Construction 5.1 of [3] can be regarded as a special case of

Construction 5.1 above.

6 Combining two Perfect Factors

We now present a method for combining two Perfect Factors to produce a

new Perfect Factor. As we show in the proof of Theorem 6.2 below, this

construction can be regarded as the result of combining Constructions 4.1,

4.4 and 5.1.

Construction 6.1 Suppose that

A = {ui : 0 ≤ i < cv/n}

is an (n, c, v)–PF. Suppose also that

A′ = {vj : 0 ≤ j < dv/n′}

is an (n′, d, v)–PF.

For each cycle ui of A, concatenate it with itself n′/(n, n′) times, to obtain

the cycle wi having period nn′/(n, n′), (0 ≤ i < cv/n). In a similar way, for

each cycle vj of A′, concatenate it with itself n/(n, n′) times, to obtain the

cycle xj having period nn′/(n, n′), (0 ≤ j < dv/n′). Finally let

B = {sijh : 0 ≤ i < cv/n, 0 ≤ j < dv/n′, 0 ≤ h < (n, n′)}

be the set of cycles of period nn′/(n, n′) defined by

sijh = wi + cTh(xj).

Theorem 6.2 Suppose B is constructed from A (an (n, c, v)–PF) and A′

(an (n′, d, v)–PF) using Construction 6.1. Then B is an (nn′/(n, n′), cd, v)–

PF.
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Proof As in the definition of the construction, suppose

A′ = {vj : 0 ≤ j < dv/n′}.

We first apply Construction 4.1 to A′, setting m = n′/(n, n′). The resulting

set of cycles, which we call C, is defined by

C = {yjh = Th(vj) | 0 ≤ h < (n, n′), 0 ≤ j < dv/n′}.

By Theorem 4.2, C is an (n′/(n, n′), (n, n′), d, v)–PMF.

Next apply Construction 4.4 to C, setting β = n/(n, n′) and observing that

(n/(n, n′), n′/(n, n′)) = 1.

The resulting set of cycles, which we call D, is defined by

D = {zjh : 0 ≤ h < (n, n′), 0 ≤ j < dv/n′}

where zjh = yjh concatenated with itself n/(n, n′) times. By Theorem 4.5,

D is an (n′/(n, n′), n, d, v)–PMF.

Finally, apply Construction 5.1 to A and D, to produce the set of cycles

B = {wi + czjh : 0 ≤ i < cv/n, 0 ≤ h < (n, n′), 0 ≤ j < dv/n′},

where wi is equal to ui concatenated with itself n′/(n, n′) times. By Theo-

rem 5.2, B is an (nn′/(n, n′), cd, v)–PF.

Finally observe that, if xj is defined as in Construction 6.1 above, then

zjh = Th(xj)

for every j, h, (0 ≤ h < (n, n′), 0 ≤ j < dv/n′), and the result follows. 2

Example 6.3 Let A be the following (4, 2, 2)–PF (a 2-ary span 2 de Bruijn

sequence):

u0 =

(
0 0 1 1

)
.
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Let A′ be the (6, 6, 2)–PF constructed in Example 5.3, as follows

v0 =

(
0 0 1 0 3 4

)
, v1 =

(
3 0 4 3 3 1

)
,

v2 =

(
1 1 2 1 4 5

)
, v3 =

(
4 1 5 4 4 2

)
,

v4 =

(
2 2 0 2 5 3

)
, v5 =

(
5 2 3 5 5 0

)
.

Hence since n = 4 and n′ = 6, we have nn′/(n, n′) = 12. Thus we have

w0 =

(
0 0 1 1 0 0 1 1 0 0 1 1

)
.

We also have

x0 =

(
0 0 1 0 3 4 0 0 1 0 3 4

)
, x1 =

(
3 0 4 3 3 1 3 0 4 3 3 1

)
,

x2 =

(
1 1 2 1 4 5 1 1 2 1 4 5

)
, x3 =

(
4 1 5 4 4 2 4 1 5 4 4 2

)
,

x4 =

(
2 2 0 2 5 3 2 2 0 2 5 3

)
, x5 =

(
5 2 3 5 5 0 5 2 3 5 5 0

)
.

Hence B, derived using Construction 6.1, is a (12, 12, 2)–PF, and is as fol-

lows:

s000 =
(
0 0 3 1 6 8 1 1 2 0 7 9

)
, s010 =

(
6 0 9 7 6 2 7 1 8 6 7 3

)
,

s020 =
(
2 2 5 3 8 10 3 3 4 2 9 11

)
, s030 =

(
8 2 11 9 8 4 9 3 10 8 9 5

)
,

s040 =
(
4 4 1 5 10 6 5 5 0 4 11 7

)
, s050 =

(
10 4 7 11 10 0 11 5 6 10 11 1

)
,

s001 =
(
8 0 1 3 0 6 9 1 0 2 1 7

)
, s011 =

(
2 6 1 9 6 6 3 7 0 8 7 7

)
,

s021 =
(
10 2 3 5 2 8 11 3 2 4 3 9

)
, s031 =

(
4 8 3 11 8 8 5 9 2 10 9 9

)
,

s041 =
(
6 4 5 1 4 10 7 5 4 0 5 11

)
, s051 =

(
0 10 5 7 10 10 1 11 4 6 11 11

)
.

We conclude this section by observing that Paterson, [4], has recently also

devised a distinct method of combining two Perfect Factors, with the result

that the following theorem is true.

Theorem 6.4 (Paterson (1992), [4]) If there exists an (n, c, v)–PF and

an (n′, c′, v)–PF, where (c, c′) = 1, then there also exists an (nn′, cc′, v)–PF.
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7 Summary and conclusions

We conclude this paper by considering how far we have gone towards estab-

lishing Conjecture 1.4, i.e. for which values of n, c and v we can construct

an (n, c, v)–PF.

7.1 The existence result

Before giving our main existence result, we need to establish some notation.

Suppose n, c and v are positive integers satisfying n|cv, n > v and c > 1.

Suppose further that

c =
∏
i∈F

pαi
i ,

and that

n =
∏

i∈G⊆F

pβi
i ,

where pi (i ∈ F ) are distinct primes and αi and βi are positive integers (hence

G contains the indices of those primes occurring with a positive exponent

in the prime decomposition of n). Note that it should be clear that, since

n|cv, we must have βi ≤ vαi for every i ∈ G. Finally define H to be the

following subset of G:

H = {i ∈ G : (pi)
βi > v}.

Theorem 7.1 Using the above notation, an (n, c, v)–PF can be constructed

for any n, c, v satisfying n|cv, n > v and c > 1, as long as H ̸= ∅.

Proof Choose i ∈ H and let γi = min{βi, v}. The we immediately have

pγii ≥ min{pβi
i , pvi } > v

(since pi ≥ 2, v ≥ 1 and i ∈ H). Hence, by Etzion, [2], and Paterson, [4],

there exists a (pγii , pi, v)–PF.
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If c = pi (and hence n = pγii ) then we are done. Hence suppose that c > pi,

and then we have c/pi ≥ 2, pγii ≥ v, and

(
n

pγii
) | ( c

pi
)v,

and hence, by Corollary 4.17, there exists an (n/pγii , pγii , c/pi, v)–PMF.

If this PMF is combined with the above-mentioned (pγii , pi, v)–PF using

Construction 5.1, then, by Theorem 5.2 the result will be a (n, c, v)–PF, as

required. 2

Remark 7.2 The above result only requires a method for constructing an

(n, c, v)–PF for any n satisfying v < n|cv and for any prime c, not the more

powerful result proved by Paterson, [4], that such a PF exists for any c a

prime power.

Corollary 7.3 Conjecture 1.4 is true for v = 2 and any n and c.

Proof Since n ≥ 3, it follows that H ̸= ∅ and the result follows. 2

7.2 Open cases

We conclude this note by considering the ramifications of Theorem 7.1 for

small values of c and v (c not a prime power and v ≥ 3). For each pair (c, v)

that we consider, the existence question for every value of n which satisfies

the necessary conditions of Lemma 1.3 is considered.

7.2.1 Example I: (n, 6, 3)–PFs

The 13 possible values for n are 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108 and

216. Perfect Factors for all but the second value exist by Theorem 7.1. If

n = 6 then observe that the condition of Theorem 7.1 is not satisfied, since

in this case H = ∅. Hence the existence of a (6, 6, 3)–PF remains an open

question.
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7.2.2 Example II: (n, 10, 3)–PFs

The 14 possible values for n are 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200,

250, 500 and 1000. Perfect Factors for all values exist by Theorem 7.1.

7.2.3 Example III: (n, 12, 3)–PFs

The 25 possible values for n are 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54,

64, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864 and 1728. For 24 of these

values (namely all but 6) we have H ̸= ∅, i.e. the condition of Theorem 7.1

is satisfied. Hence the existence of a (6, 12, 3)–PF is an open question.

7.2.4 Example IV: (n, 6, 4)–PFs

The 21 possible values for n are 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 81,

108, 144, 162, 216, 324, 432, 648 and 1296. For 19 of these values (namely all

but 6 and 12) we have H ̸= ∅, i.e. the condition of Theorem 7.1 is satisfied.

Hence the existence of a (6, 6, 4)–PF and a (12, 6, 4)–PF remain an open

question.

7.2.5 Example V: (n, 12, 4)–PFs

The 41 possible values for n are 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64,

72, 81, 96, 108, 128, 144, 162, 192, 216, 256, 288, 324, 384, 432, 576, 648,

768, 864, 1152, 1296, 1728, 2304, 2592, 3456, 5184, 6912, 10368 and 20736.

For 39 of these values (namely all but 6 and 12) we have H ̸= ∅, i.e. the

condition of Theorem 7.1 is satisfied. Hence the existence of a (6, 12, 4)–PF

and a (12, 12, 4)–PF remain an open question.
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