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Abstract

Possible coding and scanning methods for two-dimensional position-sensing
are reviewed. Encoding schemes for one type of scanning method, namely
‘Window-scanning’, are examined in some detail.

1 Introduction

The purpose of this paper is to consider a number of general encoding
schemes for a two-dimensional position-sensing scheme. The general idea
of the scheme is to write a pattern onto a planar, rectangular surface in such
a way that, given any small part of the pattern (of pre-determined nature),
the exact location of this part-pattern on the surface can be determined.
That is to say, all sub-patterns of a certain type occur at most once in the
overall pattern. This then means that a relatively simple scanning device
can determine its position by examining any small sub-pattern.

The nature of the scanning device can vary considerably; this means
that there is a variety of types of sub-pattern for which surface patterns
must be constructed. To make the problem somewhat more difficult, for
most scanning methods currently envisaged it is unlikely that the precise
orientation will be known of the sub-pattern whose location is to be deter-
mined.

One obvious application for such position-sensing schemes is in two-
dimensional location resolution for Remote-guided vehicles. Use of special
sequences for one-dimensional position location for such vehicles has pre-
viously been discussed by Petriu et al., [1, 2].

This paper is concerned with coding schemes, i.e. with methods for

1



2 Coding schemes for two-dimensional position sensing

generating patterns and for subsequently decoding them. A brief survey of
the main possibilities for pattern generation and pattern scanning is given,
leading to an overview of what general types of coding scheme may be
required.

The second part of the paper looks at one type of coding scheme in
more detail, namely for ‘window-scanning’ schemes. The requirement for
this type of coding scheme leads naturally to the definition of a number of
combinatorial problems. Some of these problems have well-known complete
solutions, others have known partial solutions, whilst yet others have hardly
been studied at all. The companion problem to code design is that of
providing efficient decoding algorithms, i.e. providing a means to translate
from a detected surface pattern to the position of that pattern on the coded
surface. This problem has historically had little or no attention. Recent
work of Lloyd and Burns provides solutions in certain cases, but many
versions of the problem lack any efficient techniques.

In summary, the purpose of this paper is to present a practical coding
problem for which many of the coding and decoding problems currently
lack good solutions. However, it is the authors’ belief that this lack of
solutions is more due to the lack of attention that the problem has received
in the past, rather than to the intrinsic difficulty of the coding and decoding
problems.

2 A review of possible scanning and coding methods

2.1 General description of coding schemes

Pattern construction

There appears to be a variety of ways both to construct patterns, i.e. to
encode the surface, and to read sub-patterns from the surface. We start by
examining general properties of pattern design and scanning.

In all currently envisaged schemes, the surface is partitioned into a large
number of cells. Each of these cells is assigned an integral value, typically
in the range 0, 1, . . . , c− 1 for some small positive integer c (in which case
we say the pattern has c levels). The value of each cell is then written onto
the surface by some means, e.g. by using c distinct colours or grey scale
values. This may either involve ‘colouring’ the entire surface or simply
writing appropriate dots at regular intervals. In the discussion below we
refer to different cell colours with the intention of including the case where
grey scale values are used.

Types of pattern scanning

Many types of surface scanning scheme can be devised, although the tech-
nique we are particular concerned with here involves a scanner capable
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of reading the value assigned to a (small) number of cells simultaneously.
Of particular interest is the case where a scanner is capable of reading
enough cells to determine its position immediately. This type of scanning
is considered in more detail in Section 2.3 below.

Cell edge resolution

A major scanning problem we have not yet mentioned relates to the method
used to detect the edges of cells. We assume throughout this discussion
that the movement of the scanner is irregular, and hence cells will not be
traversed at an even rate. Hence in many application domains, timing
information cannot be used to recover cell transitions.

First suppose that cells are coloured by the positioning of an appropri-
ately coloured or shaded ‘dot’ in the centre of each cell. In this case, given
that all dots are a different colour to the background, edge detection is
not a problem. In some circumstances however, it may be necessary to use
cells which are coloured throughout their domain, i.e. the entire patterned
surface is coloured. In this case, adjacent cells will probably always need
to be coloured in different colours in order that a scanner can detect where
one cell ends and another begins.

2.2 Surface partitioning and patterning methods

In our general description of the scheme above, we did not describe how the
surface might be partitioned into cells. The most obvious approach is to
divide the surface into a regular grid. However, although we do not discuss
them here, other approaches may be preferable for practical reasons; for
example, it may be desirable to avoid cell boundaries forming continuous
lines across the surface.

The simplest regular division is probably what we refer to as the square
grid, where the rectangular surface is divided into an m by n grid of mn
square cells. Each cell is either coloured in its entirety or an appropri-
ately coloured dot (maybe round or maybe asymmetric to give orientation
information) is placed in the centre of each cell.

However this is not the only possibility. Two other obvious partitions
are the triangular and hexagonal grids, formed by dividing the plane into
congruent regular triangles and hexagons respectively. Both these grids
could potentially have advantages in certain situations.

• In the triangular grid, each cell has only three neighbours (together
with three other cells which it touches in a point). In a rectangular
grid each cell has four neighbour cells and four cells which it touches
in a point. Given a coding scheme in which each cell transition must
involve a colour change and in which each neighbour of a fixed cell
must have a different ‘colour’, a triangular grid offers the potential to
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design schemes with fewer colours. This could then reduce the cost
and complexity of the scanning device. One potential problem with
the triangular grid is the fact that sets of six cells meet in a point,
which could cause scanning problems.

• In a hexagonal grid, each cell has six neighbours (and no cells which
it touches in only a point). In certain scanning environments, the
hexagonal grid also offers the possibility of coding schemes with fewer
colours.

However, although triangular and hexagonal grids have these possible
advantages, encoding schemes are probably more difficult to find in these
two cases. Certainly all the existing theory of sequences and arrays with
‘window’ properties is directed towards rectangular arrays.

It is interesting and informative to consider the set of possible paths
between cells in each of the three types of grid described above.

• In a hexagonal grid the set of paths between cells forms a triangular
grid.

• In a triangular grid the set of paths between cells forms a hexagonal
grid (given that transitions between cells can only take place between
neighbouring cells, i.e. cells sharing an edge).

• In a square grid the set of paths between cells again forms a square
grid (as above provided that transitions between cells can only take
place between neighbouring cells).

2.3 Pattern scanning techniques

We now consider in a little more detail the approach to scanning a pattern
which forms the main focus of this paper. That is, we consider the situation
that arises when a scanner is used which is capable of ‘reading’ more than
one cell at a time. As previously mentioned, we are particularly interested
in the case where the scanner is capable of reading enough cells to determine
its position immediately. Clearly, schemes could be devised where a scanner
reads a number of cells, but the scanner position cannot be determined
until the scanner has examined two or more sets of cells; however, we do
not consider such schemes further here.

In the particular case where the scanner can examine a rectangular
grid of cells, we refer to the scheme as window scanning. More precisely,
we define window scanning as being that particular case of the general
position detection problem when the following hold.

• The scanner examines a rectangular sub-pattern (or window) of fixed
size (u by v say).
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• The window sub-pattern always uniquely defines the position of the
scanner in the pattern.

Now consider how the information provided by a multiple-cell scanner
might be used to provide the desired positional information. The first
problem for the scanner information processing hardware/software will be
deciding what angle the scanned pattern is at (that is, without reference
to the actual pattern of colours in the scanned cells).

In the case of a rectangular grid, where we assume that the process-
ing circuitry must resolve the scanned information into a rectangular sub-
pattern, three possibilities are as follows.

• The scanner is capable only of the minimum resolution, i.e. there will
be four possible orientations for the scanned sub-grid. This would
typically be the case where the colours are marked using circular,
square or other dots with 90 degree rotational symmetry.

• The scanner is capable of determining the orientation of the scanned
sub-grid to within two possibilities (0 or 180 degree rotation). This
would typically be the case where the colours are marked using ellip-
tical, rectangular or other dots with 180 degree rotational symmetry.

• The scanner is capable of determining the orientation of the scanned
sub-grid completely. This would typically be the case where the
colours are marked using asymmetric dots.

In the case of other grids (e.g. triangular or hexagonal grids) similar orien-
tation problems will arise.

Following this first stage of processing, the algorithm will then need to
examine the colouring of the cells in the scanned sub-grid. This information
must then be sufficient to determine uniquely the position of the scanned
sub-grid within the entire coded surface. Hence the degree to which the
orientation of the scanned pattern can be resolved without reference to the
cell colouring will determine what kind of encoding pattern is required.

2.4 Primary system objectives

As we have seen, many possibilities exist for both the general approach to
pattern scanning, and to designing patterns capable of yielding the desired
location information. However, there are a number of general criteria ap-
plying to all systems which can be used to measure their efficiency. Some
of the key criteria are as follows.

• The number of colours used should be minimised, primarily in order
to simplify the scanner design.

• The size of the sub-pattern that needs to be examined should be
minimised.
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• Minimal assumptions should be made regarding the type of path
followed by the scanner or the orientation of the window viewed by
the scanner.

The first two of these criteria should be read as being relative to the over-
all pattern size. Simple counting arguments indicate that the larger the
pattern size, the larger the number of colours and/or the sub-pattern size
will need to be.

3 Coding for window scanning schemes

In the remainder of this paper we consider the coding problem for one
particular type of scanning scheme, namely window scanning for square
grids. As has already been noted, in such a scheme the patterned surface
is divided into an m by n rectangular grid of mn square cells. Each cell
is marked in such a way that the scanner can detect which of c levels is
assigned to that cell (these levels being numbered 0, 1, . . . , c− 1). We refer
to a scheme as binary if c = 2, ternary if c = 3, and, in general, c-ary. We
also refer to the m by n rectangular pattern of values from {0, 1, . . . , c− 1}
used to determine the marking of the grid as a c-ary array.

As noted above, one of the main problems to be overcome in design-
ing patterns is the problem of determining both position and orientation
from the scanned sub-pattern. We consider three versions of the orien-
tation problem, schemes for the solution of which we call: 1-orientable,
2-orientable and 4-orientable arrays.

• 1-orientable arrays are designed to deal with the simplest case, i.e.
where only one possible orientation can occur. In other words, these
arrays are suitable only where the orientation of the scanned sub-
pattern can be determined completely by means other than that of
examining the scanned sub-pattern.

• 2-orientable arrays are for use where there are 2 possible orientations
for the window, namely ‘North’ or ‘South’ (i.e. up or down).

• 4-orientable arrays need to cope with the case where there are four
possible orientations for a scanned window, namely ‘North, ‘South’,
‘East’ or ‘West’.

3.1 Preliminary remarks

We next make some general observations applying to all the schemes we
consider in the remainder of this paper. We use m and n to denote the
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dimensions of the array and u and v to denote the dimensions of the scanned
window. For all schemes considered here, we assume that

u ≤ m

and
v ≤ n,

i.e. that the window will fit within the array being scanned. In the 4-
orientable case we must cope with the possibility that the scanned window
will be ‘sideways’ with respect to the array. Hence in this case we will also
assume that

u ≤ n

and
v ≤ m,

i.e. we assume that
max(u, v) ≤ min(m,n).

Each of the array design problems we consider here come in two flavours:
periodic and aperiodic. The aperiodic case is the one we have so far implic-
itly considered, i.e. where the array is written onto a planar surface and
the scanned sub-array is always completely within the borders of the array.

However, for theoretical and occasionally practical reasons, it is also
worth considering the periodic case. By theoretical reasons we mean that
not only does the theory of such arrays appear to be more tractable than
in the aperiodic case, but also existing construction methods are exclu-
sively designed for the periodic case. In the periodic case we consider the
array to be wrapped round on itself — in the one-dimensional case this
corresponds to writing the sequence on the outside of a cylinder, and in
the two-dimensional case to writing the array onto a torus. The window
can then be moved anywhere on the array which no longer has any ‘edges’.
It is also occasionally worth considering the case where one dimension is
regarded periodically and the other aperiodically, as would happen if a
two-dimensional array were written onto the outside of a cylinder.

Because of the practical importance of the aperiodic case, and because
of the theoretical importance of the periodic case, we consider both cases.
We show below that any periodic array can be used to construct a slightly
larger aperiodic array, and hence the study of the periodic case has practical
as well as theoretical interest.

3.2 Formal definitions

Before proceeding we give formal definitions for the objects considered here.
All these definitions will apply to c-ary m by n arrays, i.e. arrays
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A = (aij , 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1)

where each entry aij in the array satisfies 0 ≤ aij ≤ c−1. Note that it would
be quite simple to generalise these definitions to the multi-dimensional
case; however, since only the 1- and 2- dimensional cases are of immediate
practical application, we consider only those cases here.

If A is an m by n c-ary array, we define its u by v sub-arrays to be the
c-ary arrays

Ast = (a(st)
ij , 0 ≤ i ≤ u− 1, 0 ≤ j ≤ v − 1), 0 ≤ s ≤ m− 1, 0 ≤ t ≤ n− 1

defined by
a
(st)
ij = ai+s,j+t

where i + s is computed modulo m and j + t is computed modulo n.
Observe that in the aperiodic case we are only interested in those sub-

arrays Ast for which 0 ≤ s ≤ m− u and 0 ≤ t ≤ n− v. We call this subset
of sub-arrays the aperiodic sub-arrays.

1-orientable sequences and arrays

We can now define a 1-orientable aperiodic (u, v)-window array A = (aij)
to be a c-ary m by n array (m ≥ u, n ≥ v) with the property that all its u
by v aperiodic sub-arrays Ast, 0 ≤ s ≤ m − u, 0 ≤ t ≤ n − v are distinct.
I.e. Ast = As′t′ if and only if s = s′ and t = t′ (given 0 ≤ s, s′ ≤ m− u and
0 ≤ t, t′ ≤ n− v).

A 1-orientable aperiodic v-window sequence is then simply a 1 by n
1-orientable aperiodic (1, v)-window array.

Similarly we define a 1-orientable periodic (u, v)-window array A = (aij)
to be a c-ary m by n array (m ≥ u, n ≥ v) with the property that all its
u by v sub-arrays Ast, 0 ≤ s ≤ u − 1, 0 ≤ t ≤ v − 1 are distinct. I.e.
Ast = As′t′ if and only if s = s′ and t = t′ (given 0 ≤ s, s′ ≤ u − 1 and
0 ≤ t, t′ ≤ v − 1).

A 1-orientable periodic v-window sequence is then a 1 by n 1-orientable
periodic (1, v)-window array.

Observe that what Dénes and Keedwell, [3], call an m by n array having
the u by v window property is precisely a 1-orientable periodic (u, v)-window
array. Similarly what Dénes and Keedwell, [3], call a sequence having the
window property for windows of length v is precisely a 1-orientable periodic
v-window sequence.

2-orientable sequences and arrays

To give the definitions in the 2-orientable case, we first need an additional
definition. Given an m by n array A = (aij , 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1),
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we denote the rotation of A by 90 degrees by R90(A) and define it to be
the n by m array R90(A) = (a(90)

ij , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1) where

a
(90)
ij = am−1−j,i, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1.

We then write R180(A) for R90(R90(A)) and R270(A) for R90(R180(A)).
Finally observe that R360(A) = R90(R90(R90(R90(A)))) = A = R0(A).

We can now define a 2-orientable aperiodic (u, v)-window array A =
(aij) to be a c-ary m by n array (m ≥ u, n ≥ v) with the property that
the collection of arrays consisting of the u by v aperiodic sub-arrays of A
and the u by v aperiodic sub-arrays of R180(A) are all distinct.

A 2-orientable aperiodic v-window sequence is then simply a 1 by n
2-orientable aperiodic (1, v)-window array.

Similarly we define a 2-orientable periodic (u, v)-window array A = (aij)
to be a c-ary m by n array (m ≥ u, n ≥ v) with the property that the
collection of arrays consisting of the u by v sub-arrays of A and the u by v
sub-arrays of R180(A) are all distinct.

A 2-orientable periodic v-window sequence is then a 1 by n 2-orientable
periodic (1, v)-window array.

Observe that what Dai, Martin, Robshaw and Wild, [4], call an ori-
entable sequence of order n is precisely a (binary) 2-orientable periodic
n-window sequence.

4-orientable arrays

In much the same way as before we now define a 4-orientable aperiodic
(u, v)-window array A = (aij) to be a c-ary m by n array (min(m,n) ≥
max(u, v)) with the property that the collection of arrays consisting of the
u by v aperiodic sub-arrays of A, R90(A), R180(A) and R270(A) are all
distinct.

Similarly we define a 4-orientable periodic (u, v)-window array A = (aij)
to be a c-ary m by n array (min(m,n) ≥ max(u, v)) with the property that
the collection of arrays consisting of the u by v sub-arrays of A, R90(A),
R180(A) and R270(A) are all distinct.

Observe that 4-orientable sequences cannot exist, and so we do not
consider them further.

Constructing aperiodic window arrays from periodic window arrays

We now describe how any periodic s-orientable (u, v)-window sequence (or
array) can be transformed into an aperiodic s-orientable (u, v)-window se-
quence (or array) of slightly larger dimensions.

We first consider the sequence case. Suppose A = (ai) (0 ≤ i ≤ n−1) is
a sequence of length n. Then, given v satisfying 1 ≤ v ≤ n, let Ev(A) = (bj)
(0 ≤ j ≤ n + v − 2) be the sequence of length n + v − 1 defined by
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bj = aj mod n.

Note that E1(A) = A. Informally Ev(A) consists of A concatenated with
the first v − 1 terms of itself.

Now suppose A = (aij) (0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1) is an m by
n array. Then, given u and v satisfying 1 ≤ u ≤ m and 1 ≤ v ≤ n, let
Euv(A) = (bij) (0 ≤ i ≤ m+u−2 and 0 ≤ j ≤ n+v−2) be the (m+u−1)
by (n + v − 1) array defined by

bij = ai mod m,j mod n.

As previously observe that E1,1(A) = A.
We can now state the following.

Lemma 1. If A is a periodic s-orientable v-window sequence of length n
(s ∈ {1, 2}, n ≥ v), then Ev(A) is an aperiodic s-orientable v-window
sequence of length n + v − 1.

Similarly, if A is an m by n periodic s-orientable (u, v)-window array
(s ∈ {1, 2}, m ≥ u, n ≥ v), then Euv(A) is an (m + u− 1) by (n + v − 1)
aperiodic s-orientable (u, v)-window array.

Proof. All four cases of the result (i.e. s = 1 and s = 2 for sequences
and s = 1 and s = 2 for arrays) are proved in a similar way. To avoid
unnecessary duplication we consider one case only, namely s = 1 for arrays.
In this case it should be clear that the set of u by v sub-arrays of A is
identical to the set of u by v aperiodic sub-arrays of Euv(A). The result
follows immediately from the definitions. 2

The above elementary construction was previously described for the
case s = 1 by Kanetkar and Wagh, [5]. Finally observe that a similar
(although somewhat weaker) result holds for 4-orientable arrays, namely:

Lemma 2. If A is an m by n periodic 4-orientable (u, v)-window array
(min(m, n) ≥ max(u, v)), then Eww(A) is an (m + w − 1) by (n + w − 1)
aperiodic 4-orientable (u, v)-window array where w = min(u, v).

Comments on definitions

In the above definitions we have implicitly ruled out ‘self-symmetric’ u
by v sub-patterns from 2- and 4- orientable arrays. More precisely, it is
immediate from the definitions that the following hold.

• A 2-orientable periodic (aperiodic) (u, v)-window array can never
contain a u by v (aperiodic) sub-array Ast with the property that
R180(Ast) = Ast.
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• A 4-orientable periodic (aperiodic) (u, u)-window array can never
contain a u by u (aperiodic) sub-array Ast with the property that
R90(Ast) = Ast.

However, in practice it would appear that the existence of such sym-
metric patterns would not cause any problems for a position resolution
system (as long as the position only is needed and not the precise angle
of orientation of the scanning device). We can therefore conclude that the
above definitions are over-restrictive from the view-point of the practical
application.

Nevertheless, the above definitions appear to be the most natural from
a mathematical respect, and seem likeliest (at least intuitively) to yield
practical results in terms of methods of construction. We therefore pursue
the above definitions throughout this paper, albeit observing that alterna-
tive definitions allowing arrays containing symmetric sub-arrays appear to
be a good topic for future work.

4 1-orientable arrays

4.1 A fundamental inequality

We start by giving well-known fundamental bounds for the periodic and
aperiodic cases which can be derived by simple counting arguments.

Lemma 3. The following bound must be satisfied by any 1-orientable ape-
riodic (u, v)-window array, A:

(m− u + 1)(n− v + 1) ≤ cuv.

If an array meets the bound then the set of aperiodic u by v sub-arrays of
A will contain every possible c-ary u by v array exactly once.

Proof. By definition A has (m − u + 1)(n − v + 1) aperiodic sub-arrays
which must all be distinct. However, there are precisely cuv possible u by
v c-ary arrays. The bound and the assertion regarding arrays meeting the
bound follow. 2

Lemma 4. The following bound must be satisfied by any 1-orientable pe-
riodic (u, v)-window array, A:

mn ≤ cuv.

If an array meets the bound then the set of u by v sub-arrays of A will
contain every possible c-ary u by v array exactly once.

Proof. By definition A has mn periodic sub-arrays which must all be
distinct. However, there are precisely cuv possible u by v c-ary arrays. The
bound and the assertion regarding arrays meeting the bound follow. 2
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In the spirit of previous authors, e.g. Gordon, [6], we call a 1-orientable
aperiodic window array perfect if it meets the bound of Lemma 3, and we
similarly call a 1-orientable periodic window array perfect if it meets the
bound of Lemma 4. Reed and Stewart, [7], Gordon, [6], and Etzion, [8],
(amongst many others), call perfect binary 1-orientable periodic window
arrays perfect maps, whereas other authors, (e.g. Iványi, [9], who considers
the c-ary case, and Fan, Fan, Ma and Siu, [10]), call such arrays de Bruijn
arrays. This latter terminology derives from the well-established term de
Bruijn sequence which has long been used to describe perfect 1-orientable
periodic window sequences (see, for example, [11, 12, 13, 14, 15, 16, 17, 18]
in the binary case, and [19] in the c-ary case).

In addition, if a 1-orientable aperiodic window array satisfies (m− u +
1)(n− v + 1) = cuv − 1, i.e. one less than the maximum of Lemma 3, and
the ‘missing’ u by v array is the all-zero array, then we call it semi-perfect.
Similarly, a semi-perfect 1-orientable periodic window array is one which
satisfies mn = cuv − 1, i.e. one less than the maximum of Lemma 4, and
for which the ‘missing’ u by v array is the all-zero array. Semi-perfect 1-
orientable periodic window arrays are often called pseudo-random arrays
in the literature, see, for example, [8, 20]. However, this term is somewhat
confusing in that it is also often used in a more specialised way to mean
an array derived from an m-sequence (following MacWilliams and Sloane,
[21]). In fact, pseudo-random arrays in this latter sense are always examples
of pseudo-random arrays in the former sense.

Before proceeding we state the following result relating the existence of
perfect and semi-perfect periodic and aperiodic sequences and arrays.

Theorem 5.

(i) If A is a perfect periodic 1-orientable v-window sequence, then Ev(A) is
a perfect aperiodic 1-orientable v-window sequence. Similarly, if A is a
semi-perfect periodic 1-orientable v-window sequence, then Ev(A) is a semi-
perfect aperiodic 1-orientable v-window sequence.

(ii) If A is a perfect (or semi-perfect) periodic 1-orientable (u, v)-window array,
then Euv(A) is a perfect (or semi-perfect) aperiodic 1-orientable (u, v)-
window array.

(iii) There exists a (c − 1)-to-one correspondence between the set of all perfect
periodic 1-orientable v-window sequences and the set of all semi-perfect
periodic 1-orientable v-window sequences.

Proof.

(i) If A is a perfect periodic c-ary 1-orientable v-window sequence then, by
definition, it has length cv. By definition Ev(A) has length cv +v−1, is an
aperiodic 1-orientable v-window sequence by Lemma 1, and hence is perfect
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by definition. Similarly, if A is a semi-perfect periodic c-ary 1-orientable
v-window sequence then, by definition, it has length cv − 1. By definition
Ev(A) has length cv + v− 2 and does not contain the all-zero v-tuple as an
aperiodic sub-sequence, is an aperiodic 1-orientable v-window sequence by
Lemma 1, and hence is semi-perfect by definition.

(ii) If A is an m by n perfect periodic c-ary 1-orientable (u, v)-window array
then, by definition, mn = cuv. By definition Euv(A) is an m + u − 1
by n + v − 1 array, is an aperiodic 1-orientable (u, v)-window array by
Lemma 1, and hence is perfect by definition. The semi-perfect case follows
by an exactly analogous argument.

(iii) A perfect periodic 1-orientable v-window sequence (or, equivalently, a de
Bruijn sequence) has length 2v and (if considered as a ‘circular’ sequence)
will contain every binary v-tuple exactly once, and hence will contain pre-
cisely one sequence of v consecutive zeros (which will necessarily be pre-
ceded and succeeded by non-zero elements). It will also contain precisely
c − 2 sequences of v − 1 zeros, over and above the two embedded in the
sequence of v zeros.
Similarly, a semiperfect 1-orientable periodic v-window sequence will con-
tain precisely c − 1 sequences of v − 1 zeros (which will necessarily be
preceded and succeeded by non-zero elements) and no sequences of v zeros.
To obtain a semiperfect sequence from a perfect one it is only necessary
to omit one of the zeros from the (unique) sequence of zeros of length v,
and to obtain a perfect sequence from a semiperfect one the reverse pro-
cess can be followed, i.e. add a zero into any one of the c− 1 sequences of
zeros of length v − 1. It should be clear that this defines a (c − 1)-to-one
correspondence between the two types of sequence. 2

4.2 Window sequences

We first consider the case m = 1 (and hence u = 1), i.e. we look at window
sequences.

The binary case

We start by examining the binary case, i.e. c = 2. Construction methods
for perfect binary 1-orientable periodic v-window sequences (which must
satisfy n = 2v) are well-known; as we have already observed, such sequences
are normally known as de Bruijn sequences (following the work of de Bruijn
and Good in the 1940s, [22, 23]). Such sequences exist for every value of
v ≥ 1, and construction techniques for such sequences abound (see, for
example, [11, 12, 13, 14, 15, 16, 17, 18, 22, 24, 25]). Indeed, not only do
such sequences exist for every v, but the precise number of distinct such
sequences is known — it is 22v−1−v (see, for example, [14, 22, 24]).
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By Theorem 5(iii), semi-perfect sequences can be constructed using
exactly the same techniques. There is a particularly important family of
semi-perfect binary 1-orientable periodic window sequences, namely the
well known m-sequences. These sequences can be generated using linear
feedback shift registers equipped with feedback tap positions corresponding
to the non-zero coefficients of primitive polynomials over GF(2). A concise
review of some of the most significant properties of m-sequences can be
found in Macwilliams and Sloane, [21]. Using the 1-1 correspondence of
Theorem 5(iii), one can very easily derive a set of de Bruijn sequences from
these m-sequences.

We next consider the aperiodic case. By Theorem 5(i), perfect and
semiperfect binary aperiodic 1-orientable v-window sequences exist for ev-
ery v.

It is interesting to observe that the possibility of using 1-orientable
window sequences for position detection is well-known. It was discussed in
Bondy and Murty’s 15-year old book, [26], as well as in more recent papers
by Arazi, [27] and Petriu et al., [1, 2, 28, 29, 30, 31].

The c-ary case

Very similar results apply in the c-ary case. Perfect periodic c-ary 1-
orientable window sequences (which must satisfy n = cv) can be con-
structed for every c and v; such sequences are known as c-ary de Bruijn
sequences (or simply as de Bruijn sequences). Constructions which work
for any c and v were given in 1949 by Good, [23] and Rees, [32]. Since then
many other construction techniques have been devised; see, for example,
[19, 33, 34, 35, 36].

Theorem 5(iii) means that semiperfect c-ary 1-orientable periodic win-
dow sequences (which must satisfy n = cv−1) can be constructed for every
c and v.

When we consider the aperiodic case, as before we need only consider
Theorem 5(i). This result implies that perfect and semiperfect c-ary aperi-
odic 1-orientable v-window sequences exist for every c and v. In summary
therefore we have the following result:

Theorem 6. If c ≥ 2 and v ≥ 1 then the following sequences can be
constructed:

(i) A perfect c-ary 1-orientable periodic v-window sequence (having cv ele-
ments),

(ii) A semiperfect c-ary 1-orientable periodic v-window sequence (having cv−1
elements),

(iii) A perfect c-ary 1-orientable aperiodic v-window sequence (having cv +v−1
elements),
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(iv) A semiperfect c-ary 1-orientable aperiodic v-window sequence (having cv +
v − 2 elements).

The decoding problem

Given that an abundance of apparently ideal sequences exist for this partic-
ular case of the coding problem, one naturally asks whether simple solutions
also exist for the corresponding decoding problem. That is, given a par-
ticular v-window sequence and given a v-tuple, at what position does that
v-tuple lie in the sequence?

This problem has previously been considered by a number of authors,
including Arazi, [27] and Petriu, [2, 29, 30]. One simple solution (as men-
tioned for example in [27]) is to store a complete look-up table giving the
conversion from each v-tuple to its position in the sequence. This will re-
sult in a look-up table having cv entries, which would become prohibitively
expensive for large v.

In the (binary) m-sequence case, a simple alternative (see, for example,
[29]) would be to load the v-tuple into a shift register capable of generating
the m-sequence, and clock it until a fixed ‘reference’ v-tuple is reached.
The number of clocks required would indicate the position of the v-tuple
in the sequence. This approach would be too computationally expensive
for large v.

The two simple solutions outlined above are memory and processor
intensive respectively. A compromise between these two approaches has
been suggested by Petriu at al., [2, 30], appropriate again to the (binary)
m-sequence case. This compromise involves storing a limited look-up table
containing ‘milestone’ values. A v-tuple to be decoded is loaded into a
shift register and clocked until it is equal to one of the milestone values
for which a position value is stored. This simple solution gives a useful
compromise between storage and processing time; however, the product
of the storage and processing requirements remains proportional to 2v,
limiting its applicability to relatively small values of v.

For the binary case, Arazi, [27], suggests a radically different approach
which has the advantage of being computationally manageable for very
large v. However, this solution only applies where it is possible to look at v
non-consecutive bits of the sequence, as might be the case if the sequence
were to be used to determine the angle of a rotating shaft by examining
v out of 2v bits engraved around its circumference. Arazi constructs se-
quences for which the decoding problem is simple given that v bits with
fixed relative positions can be scanned.

None of the above approaches provide an efficient decoding algorithm
for sequences having large v and where a window of v bits is scanned.
In the binary case, the best known decoding method appears to be that
based on the work of Massey and Liu, [37], who, for the m-sequence case,
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showed that the decoding problem can be translated into the well known
and computationally tractable problem of extracting discrete logarithms in
the field GF(2k).

Very little is known about the decoding problem in the c-ary case
(c > 2). Indeed, in general the decoding problem only appears to have
been considered for certain special binary 1-orientable periodic window
sequences and arrays, although the methods that have been devised also
apply to the aperiodic sequences and arrays that can be derived from them.

4.3 Window arrays (m > 1)

The binary case

We next consider binary 1-orientable window arrays. As before we divide
this discussion into a number of cases.

Perfect periodic arrays

As described above, perfect binary 1-orientable periodic (u, v)-window ar-
rays are usually known as Perfect Maps, following the 1962 paper by Reed
and Stewart, [7]. In the context of such arrays, the question that naturally
arises is as follows. Given a pair u, v (u, v ≥ 1) for which possible pairs of
positive integers (m,n) satisfying mn = 2uv does there exist an m by n per-
fect binary periodic 1-orientable (u, v)-window array (or, using the notation
of Fan et al., [10], for which m,n does there exist an (m,n; u, v)-array)?

This question has only been partially answered. As Fan et al., [10] point
out, mn = 2uv is definitely not a sufficient condition for the existence of
an m by n perfect binary periodic 1-orientable (u, v)-window array. They
cite the case m = u = 2, n = 22s−1 and v = s, and point out that no such
array can exist since the set of 2 by s periodic sub-arrays must contain
the all zero sub-array zero times or at least twice. This argument can be
generalised to give Lemma 7 below.

Before proceeding, observe that the idea of using perfect maps for 2-
dimensional position detection dates back to the 1962 paper of Reed and
Stewart, [7]. What does seem to be novel is the idea of using 2- and 4-
orientable arrays for position detection where the orientation of the scanned
sub-array is unknown.

Lemma 7. If an m by n binary periodic 1-orientable (u, v)-window array
exists which has amongst its u by v periodic sub-arrays the all zero array
or the all one array, then

m > u or u = 1

and
n > v or v = 1.
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The construction results due to Ma, [38], Fan et al, [10] and Etzion, [8],
give the following summary of existence results for perfect periodic binary
1-orientable (u, v)-window arrays.

Theorem 8.

(i) Suppose there exists an m by n perfect periodic binary 1-orientable (u, v)-
window array A. Then

(a) if every column of A has the property that the sum of its elements is
even and m > u + 1 then there exists an m by 2vn perfect periodic
binary 1-orientable (u + 1, v)-window array, and

(b) if every column of A has the property that the sum of its elements
is odd then there exists a 2m by 2v−1n perfect periodic binary 1-
orientable (u + 1, v)-window array,

(Fan et al., [10] and Ma, [38]).

(ii) For any positive even integer v, there exists a 2v2/2 by 2v2/2 perfect periodic
binary 1-orientable (v, v)-window array (Fan et al., [10]).

(iii) For any pair of positive integers (u, v) there exists a 2k by 2uv−k perfect
periodic binary 1-orientable (u, v)-window array whenever u < 2k ≤ 2u

except when k = u and v = 2 (Etzion, [8]).

This is by no means a complete list of existence results for perfect
maps; for further information regarding the construction of these arrays
the reader is referred to the literature cited in the above theorem and to
[20]. It is interesting to observe that Theorem 8(i) implies that considerable
progress on the existence question for Perfect Maps may well be possible if
construction methods can be devised giving perfect maps with fixed column
sums modulo 2.

Semi-perfect periodic arrays

As previously described, semi-perfect (periodic) binary 1-orientable window
arrays are often known as Pseudo-random arrays. The existence question
for such arrays is as follows. Given a pair u, v (u, v ≥ 1) for which possible
pairs of positive integers (m, n) satisfying mn = 2uv − 1 does there exist
an m by n semi-perfect binary 1-orientable periodic (u, v)-window array?

This question also remains unanswered in general. The following result
summarises some of the main partial answers to the existence question.
Note that this result is not an exhaustive list of existence results — further
results can be found in two papers by Etzion, [8, 20].

Theorem 9.
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(i) Suppose u, v, m and n are positive integers where m|(2u − 1) and

n =
2uv − 1

m
.

If these integers satisfy m|2s − 1 only if s ≥ u then there exists an m by n
semi-perfect periodic binary 1-orientable (u, v) window array (Etzion, [8],
Theorem 5).

(ii) For every pair of positive integers (u, v) there exists an m by n semi-perfect
periodic binary 1-orientable (u, v)-window array for some co-prime pair
(m,n) satisfying mn = 2uv − 1 (Gordon, [6]).

(iii) Suppose u′, v, m, n and k are positive integers satisfying:

(a) m|(2u′ − 1),

(b) 1 ≤ k ≤ φ(m)/u′,

(c) n = (2ku′v − 1)/m, and

(d) m|2s − 1 only if s ≥ u′.

Then an m by n semi-perfect periodic binary 1-orientable (ku′, v)-window
array can be constructed (Etzion, [8], Theorem 7).

(iv) For any pair of positive integers (u, v) an m by n semi-perfect binary 1-
orientable periodic (u, v)-window array can only exist if m > u or u = 1
and n > v or v = 1 (from Lemma 7 above).

Nomura et al., [39], first constructed arrays having the parameters of
Theorem 9(i) for the case gcd(m,n) = 1. Note also that a simple con-
struction of arrays having the parameters of Theorem 9(i) for the case
m = 2u − 1 and gcd(m,n) = 1 can be found in Macwilliams and Sloane,
[21]. We conclude this discussion of periodic binary 1-orientable window
arrays by mentioning that a number of other ‘sub-perfect’ periodic arrays
have been constructed by Dénes and Keedwell, [3] and Etzion, [8, 20].

Perfect aperiodic arrays

We devote the remainder of this section to a consideration of aperiodic
arrays. We start by considering the perfect case. Observe that, by Theo-
rem 5(ii), the existence of an m by n perfect periodic 1-orientable (u, v)-
window array implies the existence of an m+u−1 by n+v−1 perfect aperi-
odic 1-orientable (u, v)-window array. However, the reverse is not true, i.e.
there exist values of m, n, u, v (where 2uv = mn) for which there does exist
an m+u−1 by n+v−1 perfect aperiodic 1-orientable (u, v)-window array
but for which there does not exist an m by n perfect periodic 1-orientable
(u, v)-window array. This can be seen from the example of a 3 by 9 per-
fect aperiodic 1-orientable (2, 2)-window array given in Figure 1, since by
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Lemma 7, there cannot exist a 2 by 8 perfect periodic 1-orientable (2, 2)
window array. Other examples of aperiodic window arrays for which the
corresponding periodic window arrays cannot exist are given in Figures 2
and 3.




1 1 1 1 0 0 0 0 1
1 1 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0 0




Figure 1. 3 by 9 perfect aperiodic 1-orientable (2, 2)-window array




0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0
0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0
1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 1




Figure 2. 3 by 34 perfect aperiodic 1-orientable (2, 3)-window array




0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0
0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0
0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1




Figure 3. 4 by 33 perfect aperiodic 1-orientable (3, 2)-window array

Apart from these examples, further perfect aperiodic arrays not derived
from periodic arrays can be obtained from the following two elementary
construction methods.

Construction A. Suppose m,n, v are positive integers satisfying n ≥ v
and m(n− v + 1) = 2v. We construct an m by n binary array. Suppose A
is a (binary) de Bruijn sequence of length 2v (i.e. a perfect binary periodic
1-orientable v-window sequence). Partition the sequence into m segments
S0, S1, . . . , Sm−1 each of length n − v + 1 (this is possible since we have
assumed that m(n− v + 1) = 2v). To each segment adjoin the next v − 1
bits of the sequence A (where necessary working cyclically) to obtain m
sub-sequences of A: T0, T1, . . . , Tm−1 each of length n. Arrange these sub-
sequences in any order to form the m rows of an m by n array.
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Construction B. Suppose n, u, v are positive integers satisfying n ≥ v
and n− v + 1 = 2uv. We construct a u by n binary array. Let c = 2u, and
suppose A is a c-ary de Bruijn sequence of length cv = 2uv (i.e. a perfect
c-ary periodic 1-orientable v-window sequence). Then, by Theorem 5(i),
Ev(A) is a perfect aperiodic 1-orientable v-window sequence, which we
write as (ai), (0 ≤ i ≤ 2uv + v − 2). Since c = 2u, each element of (ai) can
be written as a u-bit binary tuple, bi say (using the binary representation of
ai with, if necessary, leading zeros added). Finally, define a u by 2uv +v−1
binary array which has bi as column i (0 ≤ i ≤ 2uv + v − 2).

Theorem 10.

(i) Suppose that m,n, v are positive integers satisfying n ≥ v and m(n−v+1) =
2v, and that B is an m by n array constructed using Construction A. Then
B is an m by n perfect aperiodic 1-orientable (1, v)-window array.

(ii) Suppose that n, u, v are positive integers satisfying n ≥ v and n−v+1 = 2uv,
and that C is a u by n array constructed using Construction B. Then C is
a u by n perfect aperiodic 1-orientable (u, v)-window array.

Proof.

(i) Suppose A is the binary de Bruijn sequence of length 2v used to construct
B. Suppose c is any binary v-tuple. Then, by the de Bruijn property, c
occurs at a unique position in A. The element of A corresponding to the
first bit of c will (trivially) occur in a unique (n − v + 1)-bit segment, Sj

say. It should be clear that c will then occur in Tj , and hence in B. Thus
every binary v-tuple occurs at least once in B, and hence exactly once in
B (since B contains precisely m(n − v + 1) = 2v aperiodic sub-arrays of
size 1 by v).

(ii) Suppose A is the c-ary de Bruijn sequence of length 2uv used to construct
C (where c = 2u). It should be clear that there is a 1-1 correspondence
between the set of all u by v binary arrays and the set of all c-ary v-tuples.
Hence, since every c-ary v-tuple occurs precisely once in A, every u by v
binary array will occur uniquely as an aperiodic sub-array of C. 2

We conclude this discussion of perfect aperiodic binary window arrays
by giving a table of all possible parameter sets for perfect periodic and
aperiodic binary 1-orientable (u, v)-window arrays for uv ≤ 6, u ≤ v and,
where u = v, m ≤ n. For each parameter set we indicate the status of
the existence question for both types of array, where whenever an array
is marked as non-existent this follows from Lemma 7. Note that those
parameter sets corresponding to de Bruijn sequences (i.e. m = u = 1) have
been omitted from the table. Note also that an 8 by 8 perfect periodic
1-orientable (2, 3)-window array can be constructed using Theorem 8(i)(b)
since a 4 by 4 perfect periodic 1-orientable (2, 2)-window array exists with
all column sums odd (see, for example, Fan et al., [10], Example 5.6).
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Table 1. Existence of small perfect binary 1-orientable window arrays

uv u v mn m n m by n m + u− 1 by n + v − 1
(2uv) Periodic Aperiodic

2 1 2 4 2 2 Non-existent (2×3) Exists (10(i))
4 1 Non-existent (4×2) Exists (10(i))

3 1 3 8 2 4 Exists (8(iii)) (2×6) Exists (10(i))
4 2 Non-existent (4×4) Exists (10(i))
8 1 Non-existent (8×3) Exists (10(i))

4 1 4 16 2 8 Exists (8(iii)) (2×11) Exists (10(i))
4 4 Non-existent (4×7) Exists (10(i))
8 2 Non-existent (8×5) Exists (10(i))
16 1 Non-existent (16×4) Exists (10(i))

2 2 16 1 16 Non-existent (2×17) Exists (10(ii))
2 8 Non-existent (3×9) Exists (Fig. 1)
4 4 Exists (8(ii)) (5×5) Exists (5(ii))

5 1 5 32 2 16 Exists (8(iii)) (2×20) Exists (10(i))
4 8 Exists (8(iii)) (4×12) Exists (10(i))
8 4 Non-existent (8×8) Exists (10(i))
16 2 Non-existent (16×6) Exists (10(i))
32 1 Non-existent (32×5) Exists (10(i))

6 1 6 64 2 32 Exists (8(iii)) (2×37) Exists (10(i))
4 16 Exists (8(iii)) (4×21) Exists (10(i))
8 8 Exists (8(iii)) (8×13) Exists (10(i))
16 4 Non-existent (16×9) Exists (10(i))
32 2 Non-existent (8×7) Exists (10(i))
64 1 Non-existent (16×6) Exists (10(i))

2 3 64 1 64 Non-existent (2×66) Exists (10(ii))
2 32 Non-existent (3×34) Exists (Fig. 2)
4 16 Exists (8(iii)) (5×18) Exists (5(ii))
8 8 Exists (8(i)(b)) (9×10) Exists (5(ii))
16 4 Exists (8(iii)) (17×6) Exists (5(ii))
32 2 Non-existent (33×4) Exists (Fig. 3)
64 1 Non-existent (65×3) Exists (10(ii))

Semi-perfect aperiodic arrays

Semi-perfect aperiodic binary 1-orientable window arrays can again be
derived from the corresponding semi-perfect periodic arrays using Theo-
rem 5(ii). However, as in the perfect case, we can construct semi-perfect
aperiodic arrays for parameter sets for which periodic arrays cannot ex-
ist. The following two construction methods are simple modifications to
Constructions A and B described above.

Construction C. Suppose m,n, v are positive integers satisfying n ≥ v
and m(n − v + 1) = 2v − 1. We construct an m by n binary array. Sup-
pose A is a semi-perfect binary periodic 1-orientable v-window sequence
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(which must have length 2v − 1). Partition the sequence into m segments
S0, S1, . . . , Sm−1 each of length n − v + 1 (this is possible since we have
assumed that m(n − v + 1) = 2v − 1). To each segment adjoin the next
v− 1 bits of the sequence A (where necessary working cyclically) to obtain
m sub-sequences of A: T0, T1, . . . , Tm−1 each of length n. Arrange these
sub-sequences in any order to form the m rows of an m by n array.

Construction D. Suppose n, u, v are positive integers satisfying n ≥ v and
n− v + 1 = 2uv − 1. We construct a u by n binary array. Let c = 2u, and
suppose A is a semi-perfect c-ary periodic 1-orientable v-window sequence
(which must have length cv − 1 = 2uv − 1). Then, by Theorem 5(i), Ev(A)
is a semi-perfect aperiodic 1-orientable v-window sequence, which we write
as (ai), (0 ≤ i ≤ 2uv + v − 3). Since c = 2u, each element of (ai) can be
written as a u-bit binary tuple, bi say (using the binary representation of
ai with, if necessary, leading zeros added). Finally, define a u by 2uv +v−2
binary array with bi as column i (0 ≤ i ≤ 2uv + v − 3).

Theorem 11.

(i) Suppose that m,n, v are positive integers satisfying n ≥ v and m(n−v+1) =
2v − 1, and that B is an m by n array constructed using Construction C.
Then B is an m by n semi-perfect aperiodic 1-orientable (1, v)-window
array.

(ii) Suppose that n, u, v are positive integers satisfying n ≥ v and n− v + 1 =
2uv − 1, and that C is a u by n array constructed using Construction D.
Then C is a u by n semi-perfect aperiodic 1-orientable (u, v)-window array.

Proof.

(i) Suppose A is the binary sequence of length 2v used to construct B. Suppose
c is any non-zero v-tuple. Then, by the semi-perfect property, c occurs at
a unique position in A. The element of A corresponding to the first bit
of c will (trivially) occur in a unique (n − v + 1)-bit segment, Sj say. It
should be clear that c will then occur in Tj , and hence in B. Thus every
non-zero binary v-tuple occurs at least once in B, and hence exactly once
in B (since B contains precisely m(n−v +1) = 2v−1 aperiodic sub-arrays
of size 1 by v).

(ii) Suppose A is the c-ary sequence of length 2uv−1 used to construct C (where
c = 2u). It should be clear that there is a 1-1 correspondence between the
set of all non-zero u by v binary arrays and the set of all non-zero c-ary
v-tuples. Hence, since every non-zero c-ary v-tuple occurs precisely once in
A, every non-zero u by v binary array will occur uniquely as an aperiodic
sub-array of C. 2

Other semi-perfect aperiodic arrays have been constructed by a number
of authors. Of particular note are the following.
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• Nomura et al., [39], consider infinite 2-dimensional arrays in which
every (m+u−1) by (n+v−1) sub-array contains every non-zero u by v
matrix exactly once; they call such arrays Maximum Area Matrices.
Clearly these arrays have the property that every (m + u − 1) by
(n + v − 1) sub-array forms a semi-perfect aperiodic window array.
Moreover, if the infinite array is also periodic with period m by n,
then every m by n sub-array forms a semi-perfect periodic window
array. They construct many such arrays.

• Banerji, [40], constructs two infinite families of semi-perfect aperiodic
arrays by folding m-sequences. One family has the same parameters
as those given by Construction D (see Theorem 11(ii)).

• Kanetkar and Wagh, [5], generalise the method of Banerji, [40], to
construct many semi-perfect aperiodic window arrays using ‘folded’
m-sequences. In particular they construct arrays for every possible
parameter set with uv ≤ 15 and claim, without proof, that their
methods can be used to construct arrays for every possible parameter
set allowed by the definition.

We conclude this discussion of semi-perfect aperiodic binary window
arrays by giving a table of all possible parameter sets for semi-perfect pe-
riodic and aperiodic binary 1-orientable (u, v)-window arrays for uv ≤ 6,
u ≤ v and, where u = v, m ≤ n. For each parameter set we indicate the
status of the existence question for both types of array, where, whenever
an array is marked as non-existent, this follows from Theorem 9(iv). Note
that those parameter sets corresponding to semi-perfect binary sequences
(i.e. m = u = 1) have been omitted from the table.

Finally observe that ‘sub-perfect’ aperiodic window arrays can be con-
structed from known ‘sub-perfect’ periodic window arrays using Theo-
rem 5(ii).

The c-ary case

As before we consider the periodic and aperiodic cases separately.

Periodic c-ary arrays

We start by generalising Lemma 7 to give a necessary condition for the ex-
istence of a periodic c-ary 1-orientable (u, v)-window array which contains
a ‘constant’ u by v sub-array.

Lemma 12. If an m by n c-ary periodic 1-orientable (u, v)-window array
exists which has amongst its u by v periodic sub-arrays a u by v array all
of whose entries are identical, then
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Table 2. Existence of small semi-perfect binary 1-orientable window arrays

uv u v mn m n m by n m + u− 1 by n + v − 1
Periodic Aperiodic

2 1 2 3 3 1 Non-existent (3×2) Exists (11(i))

3 1 3 7 7 1 Non-existent (7×3) Exists (11(i))

4 1 4 15 3 5 Exists (9(i)) (3×8) Exists (11(i))
5 3 Non-existent (5×6) Exists (11(i))
15 1 Non-existent (15×4) Exists (11(i))

2 2 15 1 15 Non-existent (2×16) Exists (11(ii))
3 5 Exists (9(i)) (4×6) Exists (5(ii))

5 1 5 31 31 1 Non-existent (31×5) Exists (11(i))

6 1 6 63 3 21 Exists (9(i)) (3×26) Exists (11(i))
7 9 Exists (9(i)) (7×14) Exists (5(ii))
9 7 Exists (9(iii)) (9×12) Exists (5(ii))
21 3 Non-existent (21×8) Exists (11(i))
63 1 Non-existent (63×6) Exists (11(i))

2 3 63 1 63 Non-existent (2×65) Exists (11(ii))
3 21 Exists (9(i)) (4×23) Exists (5(ii))
7 9 ? (8×11) Exists ([5])
9 7 Exists (9(i)) (10×9) Exists (5(ii))
21 3 Non-existent (22×5) Exists ([5])
63 1 Non-existent (64×3) Exists (11(ii))

m > u or u = 1

and
n > v or v = 1.

Proof. Suppose A is an m by n c-ary periodic 1-orientable (u, v)-window
array with m = u > 1, and suppose there exists a u by v periodic sub-array
all of whose entries are identical. Using the notation of Section 3.2, suppose
the sub-array is Ast, where 0 ≤ s ≤ m− 1 and 0 ≤ t ≤ n− 1. Then, since
m = u, the sub-arrays Awt will contain the same entries as Ast for every w
(0 ≤ w ≤ m−1). But since all the entries of Ast are equal, this means that
A contains m identical periodic sub-arrays, contradicting the definition of
periodic window array. Hence m > u or u = 1.

A similar argument shows that n > v or v = 1 and the lemma follows.
2.

There are few explicit constructions for c-ary perfect arrays (c > 2),
although it would appear that many of the constructions for the binary
case can be generalised with little effort (see, in particular, Etzion, [8]).
Some of the known results on this problem can be summarised as follows.

Theorem 13.
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(i) Given any positive integers u, v, c (c ≥ 2) there exists an m by n perfect
periodic c-ary 1-orientable (u, v)-window array for some m,n (Iványi, [9]).

(ii) Given any positive integer u and any odd c, then there exists a cu by cu

perfect periodic c-ary 1-orientable (u, 2)-window array (Etzion, [8]).

(iii) For any pair of positive integers (u, v) an m by n perfect periodic c-ary
1-orientable (u, v)-window array can only exist if

(a) m > u or u = 1, and

(b) n > v or v = 1

(from Lemma 12 above).

Some literature also exists on the construction of c-ary semi-perfect
arrays (c > 2). In particular note the papers of Etzion, [8], Nomura et al.,
[39], and MacWilliams and Sloane, [21]. The following result summarises
some of the main known existence results regarding semi-perfect periodic
c-ary 1-orientable window arrays.

Theorem 14.

(i) Suppose q is a prime power and u, v and m are positive integers where
m|(qu − 1). Let

n =
quv − 1

m
.

If these integers satisfy

(a) m|qk − 1 only if k ≥ u, and

(b) gcd(m,n) = 1,

then there exists an m by n semi-perfect periodic binary 1-orientable (u, v)
window array (Nomura et al., [39]).

(ii) For any pair of positive integers (u, v) an m by n semi-perfect binary 1-
orientable periodic (u, v)-window array can only exist if m > u and n > v
(from Lemma 12 above).

Note that Dénes and Keedwell, [3] consider ‘sub-perfect’ c-ary window
arrays.

Aperiodic c-ary arrays

As in the binary case, Theorem 5(ii) enables the construction of perfect
and semi-perfect aperiodic c-ary window arrays from periodic ones. Con-
structions A, B, C and D can all be generalised to the c-ary case to give
further aperiodic arrays. Finally observe that the constructions of Nomura
et al, [39], Banerji, [40] and Kanetkar and Wagh, [5] all generalise to the
q-ary case, where q is a prime power.
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The decoding problem

The only work that appears to have been done on the decoding problem for
arrays (as opposed to sequences) is the recent result of Lloyd and Burns,
[41]. Generalising the work of Massey and Liu, [37], Lloyd and Burns
show how to reduce the problem of decoding the Pseudorandom Arrays
of MacWilliams and Sloane (with the (k1, k2)-window property) to the
problem of finding the discrete logarithm of an element in GF(2k1k2).

5 2-orientable arrays

5.1 A fundamental inequality

As in the 1-orientable case, we start by deriving simple combinatorial
bounds on the sizes of periodic and aperiodic 2-orientable window arrays.
However, an important difference here is that, unlike the 1-orientable case
where perfect arrays of unbounded size exist, these bounds are not tight in
general.

Lemma 15. The following bound must be satisfied by any m by n aperiodic
2-orientable (u, v)-window array:

(m− u + 1)(n− v + 1) ≤ cuv − cb(uv+1)/2c

2
.

Proof. As noted in Section 3.2, a 2-orientable array can never contain any
self-symmetric sub-arrays. Of all the cuv possible u by v c-ary sub-arrays,
precisely cb(uv+1)/2c of them are self-symmetric. This is because a u by v
array B = (bij) is self-symmetric if and only if R180(B) = B, i.e. if and
only if bu+1−i,v+1−j = bij for every i, j, (0 ≤ i ≤ u− 1, 0 ≤ j ≤ v − 1).

Hence
cuv − cb(uv+1)/2c

of the u by v arrays are candidates for sub-arrays of a 2-orientable array.
Now, by definition, an m by n array has (m− u + 1)(n− v + 1) aperiodic
sub-arrays. By definition of 2-orientable, the collection containing the ape-
riodic sub-arrays of A and R180(A) must all be distinct, and this collection
contains 2(m− u + 1)(n− v + 1) arrays. Hence

2(m− u + 1)(n− v + 1) ≤ cuv − cb(uv+1)/2c.

The result now follows. 2.

Lemma 16. The following bound must be satisfied by any m by n periodic
2-orientable (u, v)-window array:

mn ≤ cuv − cb(uv+1)/2c

2
.
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Proof. By definition, an m by n array has mn sub-arrays. Following the
same argument as in the proof of lemma 15, we have

2mn ≤ cuv − cb(uv+1)/2c.

The result now follows. 2.

In the periodic binary sequence case, an improved bound has recently
been obtained by Dai et al., [4]. Similar improved bounds can almost
certainly be obtained for the c-ary periodic sequence case and the periodic
array case (both binary and c-ary). The aperiodic case is somewhat more
difficult to handle; however, no doubt some results can also be obtained
here.

Before proceeding we give an example of a periodic binary 2-orientable
5-window sequence (of length 6), given in Figure 4, which actually meets
the new bound of Dai et al., [4].

(
1 1 0 1 0 0

)

Figure 4. The unique periodic binary 2-orientable 5-window sequence of
length 6

5.2 Existence of 2-orientable window sequences

Periodic sequences

We start by considering the binary case. Apart from sequences obtained
from computer searches (for small window length v), a recent construction
method by Dai et al., [4] yields the best known sequences for almost all
values of v; these sequences are asymptotically optimal in length. Very
little work appears to have been done on the c-ary case. However, it would
seem likely that the construction of Dai et al., [4], can be generalised to
give c-ary periodic 2-orientable window sequences.

Aperiodic sequences

Just as in the 1-orientable case, by Lemma 1 aperiodic 2-orientable win-
dow sequences can be derived from periodic sequences, and thus the con-
struction of Dai et al., [4] can be applied to give aperiodic binary window
sequences. Apart from similar derivations from periodic sequences, no gen-
eral construction methods for aperiodic 2-orientable window sequences are
known. The table given in Figure 3 (derived by computer search) lists the
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lengths of the longest known such sequences for 4 ≤ v ≤ 16. For v in the
range 4 ≤ v ≤ 7 the length given is the length of the longest such sequence,
since for these values an exhaustive search has been completed.

Table 3. Existence of small binary aperiodic 2-orientable window se-
quences

window size (v) sequence length (n)
4 8
5 14
6 26
7 48
8 108
9 210
10 440
11 872
12 1860
13 3710
14 7400
15 15467
16 31766

Even less work appears to have been done on the c-ary case (c > 2).

5.3 Existence of 2-orientable window arrays

Very little work has been done on this topic for either the periodic or the
aperiodic case. However, examples can be derived from the following simple
construction technique.

Construction E. Suppose A = (ai), (0 ≤ i ≤ m − 1) is a c-ary periodic
1-orientable u-window sequence of length m (u > 1). Suppose B = (bj),
(0 ≤ j ≤ n−1) is a d-ary periodic 2-orientable v-window sequence of length
n (v > 1). Then construct an m by n array E = (eij), (0 ≤ i ≤ m− 1, 0 ≤
j ≤ n− 1), as follows. Let

eij = dai + bj

for every i, j, (0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1).

Theorem 17. If E is constructed using Construction E, then it is an m
by n (cd)-ary periodic 2-orientable (u, v)-window array.
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Proof. First observe that, since 0 ≤ ai ≤ c − 1 and 0 ≤ bj ≤ d − 1 for
every i, j, (0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1), we immediately have

0 ≤ eij ≤ d(c− 1) + d− 1 = cd− 1

and hence E is a (cd)-ary array.
We need to show that the periodic sub-arrays of E and R180(E) are all

distinct. To do this we need to consider two cases.

(a) Two sub-arrays of E. Suppose X = (es+i,t+j) and Y = (es′+i,t′+j) (0 ≤
i ≤ u − 1, 0 ≤ j ≤ v − 1) are u by v sub-arrays of E (where, if necessary,
s + i and s′ + i are reduced modulo m and t + j and t′ + j are reduced
modulo n).
If X = Y then

es+i,t = es′+i,t′

for every i, (0 ≤ i ≤ u− 1). Thus, by definition of E,

as+i = as′+i

for every i, (0 ≤ i ≤ u−1). Hence s = s′, since A is 1-orientable. Similarly,

es,t+j = es′,t′+j

for every j, (0 ≤ j ≤ v − 1). Thus, by definition of E,

bt+j = bt′+j

for every j, (0 ≤ j ≤ v − 1). Hence t = t′, since B is 2-orientable. Hence
X and Y must be the same sub-array of E.

(b) One sub-array of E and one sub-array of R180(E). Suppose X = (es+i,t+j)
is a u by v sub-array of E and Y = (es′+u−1−i,t′+v−1−j) is a u by v sub-
array of R180(E), (0 ≤ i ≤ u− 1, 0 ≤ j ≤ v − 1). If X = Y then

es+i,t+j = es′+u−1−i,t′+v−1−j

for every i, j, (0 ≤ i ≤ u− 1, 0 ≤ j ≤ v − 1). Thus, in particular,

es,t+j = es′,t′+v−1−j

for every j, (0 ≤ j ≤ v − 1). Thus, by definition of E,

bt+j = bt′+v−1−j

for every j, (0 ≤ j ≤ v− 1). But this contradicts the assumption that B is
a 2-orientable v-window sequence.

The result follows. 2
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3 3 2 3 2 2
3 3 2 3 2 2
1 1 0 1 0 0
1 1 0 1 0 0




Figure 5. 4 by 6 periodic 4-ary 2-orientable (2,5)-window array

As an example of the above construction consider the array derived
by setting A = (1100) and B = (110100), where A is a periodic binary
1-orientable 2-window sequence and B is a periodic binary 2-orientable
5-window sequence. The resulting 4 by 6 periodic 4-ary 2-orientable (2,5)-
window array is given in Figure 5.

The periodic arrays derived from the above construction method can
also be transformed into aperiodic arrays using Lemma 1. Finally observe
that, although the above construction is useful in that it does provide
examples of 2-orientable arrays, these examples are far from optimal, and
there is clearly a need for more research in this area.

6 4-orientable arrays

6.1 A fundamental inequality

As before we start by giving simple combinatorial inequalities governing
the sizes of periodic and aperiodic 4-orientable window arrays. As in the
2-orientable case, in general these bounds are not tight.

Lemma 18. The following bound must be satisfied by any m by n aperiodic
4-orientable (u, v)-window array:

2(mn + uv − 1)− (m + n + 2)(u + v − 2) ≤ cuv − cb(uv+1)/2c

2
.

Proof. As noted in Section 3.2, a 4-orientable array can never contain any
self-symmetric sub-arrays, i.e. arrays which map onto themselves under a
rotation of 90, 180 or 270 degrees. Clearly, if an array maps onto itself
under a rotation of 90 or 270 degrees then it will map onto itself under
a rotation of 180 degrees. Hence, of all the cuv possible u by v c-ary
sub-arrays, precisely cb(uv+1)/2c of them are self-symmetric (as in the 2-
orientable case).

Hence
cuv − cb(uv+1)/2c

of the u by v arrays are candidates for sub-arrays of a 4-orientable array
or one of its rotations. Now, by definition, an m by n array has (m −
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u + 1)(n − v + 1) aperiodic sub-arrays. Hence the collection of aperiodic
sub-arrays of an m by n array and its rotations by 90, 180 and 270 degrees
contains a total of

2((m− u + 1)(n− v + 1) + (m− v + 1)(n− u + 1))

arrays.
Since they must all be distinct we have

4(mn + uv − 1)− 2(m + n + 2)(u + v − 2) ≤ cuv − cb(uv+1)/2c.

The result now follows. 2.

Lemma 19. The following bound must be satisfied by any m by n periodic
4-orientable (u, v)-window array:

mn ≤ cuv − cb(uv+1)/2c

4
.

Proof. By definition, an m by n array has mn sub-arrays. Hence the
collection of sub-arrays of an m by n array and its rotations by 90, 180 and
270 degrees contains a total of 4mn arrays. Following the same argument
as in the proof of lemma 18 we have

4mn ≤ cuv − cb(uv+1)/2c,

and the result now follows. 2.

6.2 Existence of 4-orientable window arrays

We start by repeating the observation (made in Section 3.2 above) that 4-
orientable sequences cannot exist. On the other hand, 4-orientable arrays
certainly do exist, as shown by the following.

Theorem 20. Suppose E is constructed from A and B using Construc-
tion E, where A is a c-ary periodic 2-orientable u-window sequence of length
m (u > 1), B is a d-ary periodic 2-orientable v-window sequence of length
n (v > 1) and min (m,n) ≥ max (u, v). Then E is an m by n (cd)-ary
periodic 4-orientable (u, v)-window array.

Proof. First observe that, by Theorem 17, E is a 2-orientable (cd)-ary
array. In addition, since A is 2-orientable, we may apply the dual of Theo-
rem 17, and hence R90(E) is also 2-orientable. Hence, to prove the desired
result, we need only consider the following case.



32 Coding schemes for two-dimensional position sensing

Suppose that X = (es+i,t+j) is a u by v sub-array of E and that Y =
(et′+j,s′+u−1−i) is a u by v sub-array of R90(E), (0 ≤ i ≤ u − 1, 0 ≤ j ≤
v − 1). If X = Y then

es+i,t+j = et′+j,s′+u−1−i

for every i, j, (0 ≤ i ≤ u− 1, 0 ≤ j ≤ v − 1). Thus, in particular,

es,t+j = et′+j,s′

for every j, (0 ≤ j ≤ v − 1). Thus, by definition of E,

bt+j = bs′

for every j, (0 ≤ j ≤ v − 1). Since v > 1, by repeating this argument
for every possible value of t (0 ≤ t ≤ v − 1) we can show that B must
be a constant sequence. But this contradicts the assumption that B is a
2-orientable v-window sequence.

The result now follows. 2

As an example of the above construction consider the array derived by
setting A = B = (110100), where A = B is a periodic binary 2-orientable
5-window sequence. The resulting 6 by 6 periodic 4-ary 4-orientable (5,5)-
window array is given in Figure 6.




3 3 2 3 2 2
3 3 2 3 2 2
1 1 0 1 0 0
3 3 2 3 2 2
1 1 0 1 0 0
1 1 0 1 0 0




Figure 6. 6 by 6 periodic 4-ary 4-orientable (5,5)-window array

The periodic arrays derived from the above construction method can
also be transformed into aperiodic arrays using Lemma 2. Finally observe
that, just as in the 2-orientable case, although the above construction is
useful in that it does provide examples of 4-orientable arrays, these exam-
ples are far from optimal.

7 Other versions of the problem

We conclude this paper by briefly mentioning one way in which the combi-
natorial problem considered above could be generalised. We have consid-
ered an application of window sequences and arrays and surveyed known
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construction and decoding techniques. We have restricted our attention
to the one and two dimensional cases, although the definitions could very
easily be generalised to the multi-dimensional case.

It is not inconceivable that three and higher dimensional window arrays
could find an application, although very little is known about the existence
and construction of such arrays. It would appear likely that much of the
theory for 2-dimensional arrays would translate directly into corresponding
results for the multi-dimensional case, although this remains to be seen.
The only published work in this area would appear to be that of Green, [42],
who generalises the Pseudorandom Array construction of MacWilliams and
Sloane, [21], to the multi-dimensional case, and that of Iványi, [43], who
constructs three-dimensional perfect periodic 1-orientable window arrays.
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