SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2011; 00:1-13
DOI: 10.1002/sec

Enabling Interoperation Between Shibboleth and Information Card
Systems
Haitham S. Al-Sinani and Chris J. Mitchell

Information Security Group
Royal Holloway, University of London
[Haitham.Al-Sinani.2009, C.Mitchell]@rhul.ac.uk

ABSTRACT

Whilst the growing number of identity management systems have the potential to reduce the threat of identity
attacks, major deployment problems remain because of the lack of interoperability between such systems. In
this paper we propose a scheme to provide interoperability between two widely discussed identity systems,
namely Shibboleth and an Information Card system such as CardSpace or Higgins. When using this scheme,
Information Card users are able to obtain an assertion token from a Shibboleth-enabled identity provider
that can be processed by an Information Card-enabled relying party. The scheme is based on a browser
extension and operates with both the CardSpace and the Higgins identity selectors without any modification.
We specify the operation of the scheme and also describe an implementation of a proof-of-concept prototype.
Additionally, security and operational analyses are provided. Copyright (© 2011 John Wiley & Sons, Ltd.

KEYWORDS

Identity Management; CardSpace; Shibboleth; Interoperation; Browser Extension

Received . ..

1. INTRODUCTION

A number of identity management systems have
been designed in order to simplify management
of identities and mitigate identity-oriented attacks,
e.g. CardSpace [1], Shibboleth [2], OpenID [3], and
OAuth [4]. Most identity management architec-
tures [5, 6, 7] involve the following main roles:

e the identity provider (IdP), which issues a
security token to a user;

e the service provider, or relying party (RP)
in CardSpace terminology, which consumes
the security token issued by the IdP in order
to identify the user, before granting him/her
access; and

e the user, or principal in Liberty/Shibboleth
terminology. The user employs a user agent
(UA), i.e. software such as a web browser
which sends requests to, and receives responses
from, web servers. Typically, the UA processes
protocol messages on behalf of the user, and
prompts the user to make decisions, provide
secrets, etc.

An IdP supplies a UA with a security token that
can be consumed by a particular RP. Whilst one RP

Copyright © 2011 John Wiley & Sons, Ltd.
Prepared using secauth.cls [Version: 2010/06,/28 v2.00]

might solely support an Information Card system,
another might only support Shibboleth. Therefore,
to make these systems available to the largest
possible group of users, effective interoperability
between systems is needed. In this paper we
investigate a case involving an Information Card-
enabled RP, a Shibboleth-enabled IdP, and a UA
that is only Information Card-enabled. The goal is
to develop an approach to integration that is as
transparent as possible to IdPs, RPs and identity
selectors.

The scheme operates with a variety of Information
Card-based systems, including CardSpace (described
in section 2.1) and Higgins [8]. For simplicity
of presentation, we restrict our description to
the scheme’s operation with CardSpace, a widely
discussed example of an Information Card-based
system.

We consider CardSpace-Shibboleth interoperation
because of the latter’s wide adoption (notably
by educational institutions — see section 2.2.1).
Complementing this, the wide use of Windows,
recent versions of which incorporate CardSpace,
means that enabling interoperation between the
two systems is likely to be of significance for

large numbers of identity management users
and RPs. CardSpace-Shibboleth interoperation is
also attractive since both schemes support user
authentication as well as exchange of user attributes.
In addition, they both support SAML tokens.

The remainder of the paper is organised as follows.
Section 2 presents an overview of CardSpace and
Shibboleth, and section 3 describes the proposed
integration scheme. In section 4, we outline certain
advantages of the scheme. Section 5 considers
possible extensions, and, in section 6, we discuss
implementation issues. In section 7 we describe
a prototype realisation, and section 8 highlights
possible areas for related work. Finally, section 9
concludes the paper. Some of the contents of this
paper were presented at ACNS ’11, Malaga, Spain,
June 2011.

2. CARDSPACE AND SHIBBOLETH

2.1. CardSpace

2.1.1. Introduction

CardSpace provides a secure and consistent
way for users to control and manage personal
information, to review personal data before sending
it to a website, and to verify the identity of visited
websites. It also enables websites to obtain data
from users, e.g. to support user authentication and
authorisation.

Digital identities are represented to users as
Information Cards (or InfoCards), XML-based files
that list the types of claim made by one party about
itself or another party. The concept is inspired by
real-world cards, such as driving licences and credit
cards. A user can employ one InfoCard with multiple
websites, or can use separate InfoCards at different
websites, helping to enhance user privacy and
security. There are two types of InfoCards: personal
(self-issued) cards, and managed cards issued by
remote IdPs. Personal cards are created by users
themselves, and the claims listed in such an InfoCard
are asserted by the self-issued identity provider
(SIIP) that co-exists with the CardSpace identity
selector (or just the selector) on the user machine.
InfoCards, personal or managed, do not contain
sensitive information, but instead carry metadata
indicating the types of personal data associated with
this identity, and from where assertions regarding
this data can be obtained. The data referred to by
personal cards is stored on the user machine, whereas
the data referred to by a managed card is held by the
IdP that issued it [1, 9, 10].

By default, CardSpace is supported by Internet
Explorer from version 7 onwards. Extensions to other
browsers, such as Firefox and Safari, also exist. An
updated version, CardSpace 2.0 Beta 2, was released,

although Microsoft announced in early 2011 that
it will not ship; instead Microsoft has released a
technology preview of U-Prove [11, 12]. In this paper,
unless explicitly stated, we refer throughout to the
CardSpace version that is shipped by default as part
of Windows Vista and Windows 7, that is available as
a free download for XP and Server 2003, and which
has been approved as an OASIS standard [13].

2.1.2. Operational Protocol

In order to maximise interoperability with non-
Windows platforms, CardSpace has been specif-
ically designed to wuse open standards-based
protocols, mnotably the WS-* standards includ-
ing WS-Policy/WS-Security Policy [14, 15], WS-
MetadataExchange [16], WS-Trust [17] and WS-
Security [18]. Note that HTML/XHTML and/or
HTTP/S can be used in place of most of these
standards; e.g. instead of using WS-Policy/WS-
SecurityPolicy, a website can simply describe its
policy in HTML/XHTML.

The integration scheme makes use of CardSpace
personal cards, and so we next describe their
operation. Note that the scheme does not affect the
use of managed cards.

The selector allows a user to create a personal
card and populate its fields with self-asserted claims.
CardSpace restricts the contents of personal cards
to non-sensitive data in the form of 14 editable
claim types, namely First Name, Last Name,
Email Address, Street, City, State, Postal Code,
Country/Region, Home Phone, Other Phone, Mobile
Phone, Date of Birth, Gender and Web Page. Data
inserted in personal cards is stored in encrypted form
by the SIIP on the user machine.

When using personal cards, CardSpace adopts
the following protocol. We describe the protocol for
the case where the RP does not employ a security
token service (STS), software responsible for security
policy and token management within an IdP and,
optionally, within an RP [19, 20].

1. UA — RP: HTTP/S Request. The user
employs a UA to navigate to a CardSpace-
protected web page.

2. RP — UA: HTTP/S Response. A login page
is returned containing the CardSpace-enabling
tags in which the RP security policy is
embedded.

3. User — UA. The RP page offers the option to
use CardSpace; selecting this option activates
the selector, which is passed the RP policy.
If this is the first time that this RP has been
contacted, the selector will display the identity
of the RP, giving the user the option to either
proceed or abort the protocol.

4. Selector — InfoCards. The selector, after
evaluating the RP policy, highlights those

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

InfoCards matching the policy and greys out
the rest. InfoCards previously used for this RP
are displayed in the upper half of the selector
screen.

5. User — Selector. The user chooses a personal
card. Alternatively, the user could create and
choose a new personal card. The user can
preview the card (with its associated claims)
to ensure that they are willing to release
the claim values. Of the claims specified in
an InfoCard, only those requested in the RP
policy will be passed to the requesting RP.

6. Selector = SIIP. The selector creates and
sends an XML-based Request Security Token
(RST) to the SIIP, which responds with an
XML-based Request Security Token Response
(RSTR).

7. Selector — UA — RP. The RSTR (i.e. the
SITP-generated SAML token) is passed to the
UA, which forwards it to the RP.

8. RP — UA. The RP verifies the token, and, if
satisfied, grants access.

2.1.3. Private Personal ldentifiers (PPIDs)

When a user creates a new personal card,
CardSpace generates an ID and a master key
for this card. The card ID is a globally unique
identifier (GUID), and the master key is 32 bytes
of random data. When a user first uses a personal
card at a particular RP, CardSpace generates a site-
specific PPID by combining the card ID with data
taken from the RP certificate, and a site-specific
signature key pair by combining the card master key
with data taken from the RP certificate. The RP
domain name and/or IP address is used if no RP
certificate is available.

Since the PPID and key pair are RP-specific, the
PPID does not function as a global user identifier,
helping to enhance user privacy and reduce the
impact of PPID compromise. The selector displays
a shortened version of the PPID to protect against
social engineering attacks and improve readability.

When a user first interacts with an RP using
CardSpace, the RP retrieves the PPID and the
public key from the received SAML token, and stores
them. If a personal InfoCard is re-used at a site,
the supplied security token will contain the same
PPID and public key as used previously, and will
be signed using the corresponding private key. The
RP compares the received PPID and public key with
its stored values, and verifies the digital signature.

The PPID could be used on its own as a shared
secret to authenticate a user to an RP. However, it is
recommended that the associated (public) signature
verification key, as held by the RP, should always be
used to verify the signed security token to provide a
more robust authentication method [1].

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

2.1.4. Proof of Ownership

In many identity management systems it is
important for the user to have the means to prove
to an RP that it owns the assertion generated by an
IdP; such mechanisms are often referred to as proof-
of-possession methods.

A SAML token can be coupled with cryptographic
evidence to demonstrate the sender’s rightful
possession of the token [19, 20]. To achieve this, a
security token can be associated with symmetric or
asymmetric proof keys. If a symmetric key token is
requested by the RP, a shared secret proof key is
established between the selector and the CardSpace-
enabled IdP [21], which is then revealed to the RP.
If an asymmetric key token is requested, the selector
generates an ephemeral RSA key pair and sends
the public part of the key (along with a supporting
signature proving ownership of the corresponding
private key) to the CardSpace-enabled IdP [21]. If
approved by the IdP, the public part is then sent to
the RP in the SAML token and the private part of
the RSA key pair is used by the client to prove the
subject’s rightful possession of the security token.
Although the use of such a key may not be as efficient
as the symmetric approach, it helps to protect user
privacy since the RP identity does not need to be
disclosed to the IdP.

Note that the default behaviour of the selector is
different in the special case of browser-based client
interactions with a website, in which case ‘bearer’
tokens are requested. Because a web browser is only
capable of submitting a token to a website passively
over HTTP without any proof-of-possession, bearer
tokens with no proof keys are used [19, 20].

2.2. Shibboleth

2.2.1. Introduction

The Shibboleth specifications define a set of
interactions between an IdP and an RP to support
single sign-on and attribute exchange [2]. It is
estimated that over 4 million university students,
staff, and faculty are involved in Shibboleth
federations (see http://en.wikipedia.org/wiki/
Shibboleth_(Internet2)). In addition to IdPs
and RPs, the Shibboleth architecture includes an
optional component called WAYF (Where Are You
From), supporting IdP discovery. Alternatively, the
role of the this component can be taken by the RP.
Shibboleth supports the following profiles.

e Browser Post Profile. In this profile the
SAML messages exchanged between the IdP
and RP are embedded in HTML forms, which
can be sent automatically by JavaScript-
enabled browsers. The scheme proposed here
supports this profile.

e Artifact Profile. This profile involves
embedding an artifact (i.e. an opaque

reference) in a URL exchanged between
the IdP and RP via browser redirection.
It also requires direct (back-channel) RP-
IdP communication, where the RP uses the
artifact to retrieve the full SAML assertion
from the IdP. As it requires direct RP-IdP
communication, which is inconsistent with
the CardSpace approach (in which RP-1dP
interactions pass via the selector on the user
machine), the integration scheme does not
support this profile.

2.2.2. Protocol Operation

We next describe the Shibboleth protocol,
covering the main differences between the two
profiles introduced above.

1. UA — RP. The user employs a UA to navigate
to a Shibboleth-protected web page.

2. RP — UA. The RP generates an authentica-
tion request and redirects the UA to either a
WAYTF service or directly to an IdP. A WAYF
service is typically used if the RP wishes to
delegate the task of IdP discovery.

3. UA = WAYF (optional). If a WAYF service is
used, it interacts (via unspecified means) with
the UA to allow the user to select an IdP. The
WAYF service then redirects the UA to the
user-selected IdP with the RP’s authentication
request. Note that the WAYF component can
offer the user the option to store their choice
of IdP for subsequent logins.

4. IdP = User. If necessary, the IdP authen-
ticates the user by some means outside the
scope of Shibboleth. (Authentication may be
unnecessary if a valid authentication session
already exists.)

5. IdP—UA—RP. The IdP generates a digitally-
signed SAML assertion (if the browser post
profile is used) or a SAML artifact (if the
artifact profile is used) and redirects the UA
to the RP. Note that the SAML assertion may
assert attributes in addition to asserting that
the user has been authenticated. Note also
that, if the browser post profile is used, the
next step is skipped.

6. RP=IdP (optional). The RP uses the artifact
received in the previous step to issue an
attribute query to the IdP, which directly
responds with a SAML response message.
Note that this communication takes place via
a mutually-authenticated back-channel.

7. RP— UA. The RP verifies the token, and, if
satisfied, grants access.

Two ‘major’ Shibboleth versions have been
released, namely Shibboleth 1.3, which builds on
the SAML 1.1 specifications [2, 22, 23], and
Shibboleth 2.0 (http://shibboleth.internet?2.

edu/shib-v2.0.html#new), which builds on the
SAML 2.0 standards; v2.0 is backward compatible
with v1.3.

2.2.3. Attributes

Shibboleth uses the SAML attribute request
protocol to allow attribute sharing between IdPs
and RPs. Such an attribute exchange is, how-
ever, optional since an RP may choose to request
only an authentication assertion. Approximately 40
attributes have been defined as ‘common’ iden-
tity attributes, including the six ‘highly recom-
mended’ attributes, namely givenName, sn (sur-
name), cn (common name), eduPersonScopedAffili-
ation, eduPersonPrincipalName and eduPersonTar-
getedID [23].

2.2.4. Proof of Ownership

As stated earlier, Shibboleth 2.0 builds on
SAML 2.0, which offers three proof-of-possession
methods (also referred to as subject confirmation
methods): Holder-of-Key (HoK), Sender-Vouches,
and bearer [24]. The HoK method [25] can be used to
address both the symmetric and asymmetric proof-
of-possession requirements of a CardSpace-enabled
RP.

2.3. Comparison

Table I compares the CardSpace and Shibboleth
systems [10, 26].

3. THE INTEGRATION SCHEME

The parties involved are a CardSpace-enabled RP, a
CardSpace-enabled UA (e.g. a suitable web browser
such as Internet Explorer), a Shibboleth-enabled
IdP, and a browser extension implementing the
protocol described below.

3.1. Preconditions

The scheme has the following requirements.

e The user must have an existing relationship
with both the RP and the IdP (thus the IdP
will have a means of authenticating the user).
Note that both the RP and the user must trust
the IdP.

e The RP must not employ an STS. Instead,
the RP must express its security policy using
HTML/XHTML, and interactions between
the selector and the RP must be based
on HTTP/S via a web browser (a simpler
and probably more common scenario for RP
interactions). This is because the scheme uses
a browser extension, and is thus incapable of

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

managing the necessary communications with
an RP-STS.

e To enable IdP-discovery, the browser exten-
sion must be able to operate a WAYF-like
component and offer the user the option to
store their choice of IdP for future logins.

e The RP must incorporate three pieces of
functionality outside of that normally required
of a CardSpace-enabled RP:

— it must be capable of processing SAML
2.0 tokens;

— it must be willing to accept, and be
capable of processing, a ‘CardSpace-like’
SAML token provided by the browser
extension, which includes a signed SAML
assertion generated by an IdP and a
signed SAML assertion generated by the
SITP on the client machine; and

— it must be capable of verifying the
IdP’s signature on a SAML assertion, as
included in the SAML token provided by
the extension.

e The IdP must be prepared to provide SAML
assertions for RPs for which a federation
agreement does not exist for the user
concerned. It is thus not necessary for the user
to Shibboleth-federate the IdP with the RP
(which would be difficult to achieve given that
we are not requiring the RP to be Shibboleth-
enabled).

3.2. Operation

The protocol operates as follows, with step numbers
as shown in Fig. 1. Steps 1, 2, and 4-7 of the
integration scheme are the same as steps 1, 2, and
3-6, respectively, of the CardSpace personal card
protocol given in section 2.1.2, and hence are not
described again here.

3. Browser Extension — UA. The extension
performs the following steps.

(a) It scans the login page to detect whether
the RP website supports CardSpace. If
so, it proceeds; otherwise it terminates.

(b) It examines the RP policy to check
whether the use of personal cards is
acceptable. If so, it proceeds; otherwise
it terminates, giving CardSpace the
opportunity to operate normally.

(c) It temporarily keeps a local copy of any
RP-requested claims.

8. Selector — UA — IdP. Unlike in the
‘standard’ case, the RSTR is not sent to the
RP; instead the browser extension intercepts
the RSTR and performs the following steps.

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

(a) It asks the wuser whether the use
of Shibboleth-based authentication is
required. If so, it proceeds; otherwise
it terminates, giving CardSpace the
opportunity to operate normally. Note
that the browser extension could offer
the user the option to store their answer
for subsequent logins at this RP.

(b) It displays a WAYF-like component to
allow the user to select the appropriate
IdP. Note that the browser extension
could offer the user the option to store
their selection for subsequent logins at
this RP.

(¢) It constructs a SAML authentication
request, and forwards it to the user-
selected IdP. Note that this request
will also indicate the RP-requested
user attributes (if any) which are to
be asserted by the IdP. The browser
extension will know what they are since
they were stored by it in step 3c.

9. IdP = User. If necessary, the IdP authenti-
cates the user. If successful, the IdP generates
and returns a digitally-signed SAML token to
the UA, containing an authentication state-
ment and, possibly, an attribute statement.

10. Browser Extension — UA — RP. The
extension generates an unsigned SAML token
(with a nonce and time-stamp) that contains
both the (digitally-signed) SIIP-issued RSTR
as well as the (digitally-signed) Shibboleth-
issued token. The UA then forwards the
browser extension-generated SAML token
to the RP, optionally after first obtaining
permission from the user.

11. RP — User. The RP verifies the received
SAML token (including verifying the RSTR
signature, PPID, the Shibboleth-enabled IdP’s
signature, nonces, time-stamps, etc.), and, if
satisfied, grants access.

If an attribute assertion is required, the RP
could, in step 11, compare the (locally-stored) SITP-
asserted attributes with the (remotely-stored) IdP-
asserted attributes. Such a procedure potentially
gives the RP added guarantees about the validity
of these attributes.

Given that we have assumed that the RP supports
SAML 2.0 tokens, the RP can therefore use the
Shibboleth/SAML 2.0-supported HoK [25] method
(which can be symmetric or asymmetric) to express
its proof-of-possession requirements. However, a
symmetric proof key should only be used if the user
is willing to disclose the identity of the RP to the
IdP, and if the RP holds a valid certificate. For

browser-based applications (and also where no proof-
of-possession is needed), the scheme supports bearer
tokens [19, 21, 24].

Note that the additional steps above can be
integrated into the CardSpace framework relatively
easily, as the prototype implementation shows.

4. ADVANTAGES OF THE SCHEME

We next describe possible advantages of the scheme.

4.1. Defeating Phishing

The scheme mitigates the risk of phishing. This is
because the user interacts with a browser extension-
operated WAYF running on the user machine to
select the IdP. Hence, the RP will not be able
to redirect the user to an IdP of its choosing. By
contrast, in OpenlD, Liberty and in some Shibboleth
scenarios (e.g. where a WAYF component is not
used), a malicious RP could redirect a user to a fake
IdP, which might capture the user credentials [27].

4.2. Integration at the Client Side

IdPs and RPs may not wish to accept the
burden of supporting two identity management
systems simultaneously, unless there is a significant
financial incentive. Currently, major Internet players
do not support interoperation between identity
management systems. As a result, a client-side
technique for supporting interoperation could be
practically useful. Such a technique could avoid the
impact on the performance of the server (since the
overhead is handled by the client), and could also
reduce the load on the network.

5. POSSIBLE EXTENSIONS

5.1. Scope

The scheme proposed here applies to users of
Information Card-enabled RPs (such as CardSpace).
Since CardSpace users are currently only capable of
retrieving security tokens from CardSpace-enabled
IdPs, the scheme extends this capability to enable
such users to obtain security tokens from non-
Information Card-enabled IdPs, such as Shibboleth-
enabled IdPs.

Interoperation between a CardSpace-enabled IdP
and a Shibboleth-enabled RP is not supported.
Indeed, without technical co-operation from the
bodies responsible for developing the Shibboleth and
CardSpace specifications, it appears likely to be
difficult to implement bidirectional interoperation.

5.2. SAML-Compliant IdPs

Although the scheme is presented as Shibboleth-
specific, we suspect that a modified version of
the scheme could also be applied to other SAML-
compliant IdPs. Given that SAML 2.0 builds on
SAML 1.1, Liberty ID-FF 1.2 and Shibboleth 1.3,
a mapping may be possible.

Modifying the scheme to interoperate with
any SAML-aware IdP would clearly increase its
applicability; this remains possible future work. Note
that the scheme as defined here operates with a
variety of Information Card-based systems, including
CardSpace and Higgins.

5.3. U-Prove Tokens

U-Prove [11, 12, 28] is an anonymous credential
system, support for which has been incorporated in
CardSpace 2.0 [29].

At the heart of the U-Prove technology is the
notion of a U-Prove token, a cryptographically
protected container of user attribute information of
any type. Given that CardSpace supports tokens
of any type, the scheme presented here can be
extended to support U-Prove tokens. Indeed, the
user experience is precisely the same when using a
card supporting U-Prove [28].

The protocol specified in section 3.2 can be
extended to support the transfer of U-Prove tokens.
In addition to supporting a SAML-based RSTR,
the protocol can also be configured to support a U-
Prove-based RSTR, which is also XML-encoded.

Note that, in CardSpace version 2.0, U-Prove
tokens can only be chosen by selecting managed
cards (as opposed to personal cards). This means
that U-Prove tokens cannot be supported by the
current scheme since it does not cover the case
where the RP policy specifies use of a managed
card (see section 2.1.2). However, we believe that the
scheme could relatively easily be modified to support
RP policies which request U-Prove tokens. (The U-
Prove token can be identified by the URI: http://
schemas.xmlsoap.org/ws/2010/03/uprove/token.)

6. IMPLEMENTATION ISSUES

6.1. Token Storage and Forwarding

The means by which the security token is forwarded
to the RP and how/where the RSTR token is stored
must be chosen carefully. We refer to the numbered
protocol steps given in section 3.2.

The responsibility for delivering the security token
could be given to the IdP (as is normally the
case when using the browser post profile). In this
case the RP address could be added to the SAML
authentication request (as prepared in step 8) so

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

that the IdP knows to which RP it must forward
the token (again as is normally the case for the
Shibboleth profiles). Although this would avoid the
need for changes to the normal operation of the
IdP and would potentially also help auditing, such
an approach has privacy implications since the IdP
would learn the identity of the RP.

As a result, as specified in step 10 of the proposed
scheme, the responsibility for sending the security
token to the RP is given to the UA. Thus a means is
required for giving the browser extension the address
of the RP, so that it can forward the token. We next
consider three possible ways in which the RP address
might be made available.

e The RP address could be stored in the browser
extension itself. Whilst this puts the user in
control, it is not user-friendly, as it would
require users to manually add the address
of each RP into the code of the browser
extension.

e After the security token is returned from
the IdP, the browser extension could ask the
user to enter the RP address, e.g. using a
JavaScript pop-up box or an HTML form.
However, this approach is inconvenient, since
again it would require users to manually enter
the the address of each RP.

e The browser extension could store the RP
address as well as the RSTR message in
encrypted form in one or more cookies as
part of step 3, so that the browser extension
is able to obtain them in step 10. In order
to adhere to cookie security rules [30], this
must be done in such a way that the browser
believes it is communicating with the same
domain when the cookie is set and when it is
retrieved. Note that creation of and access to
the cookie is handled by the browser extension
transparently to RPs and IdPs.

To achieve this, the browser extension
encrypts and stores the RP address in a cookie
in step 3, before the selector is invoked. As part
of step 8, the browser extension retrieves the
encrypted value from the cookie and sends it
to the IdP as a hidden variable in an HTML
form or as a URL parameter. Similarly, the
extension in step 8 also encrypts the RSTR
(after intercepting it) and sends it to the IdP
as a hidden variable in an HTML form.

As part of step 10, the IdP returns the
encrypted RP address and the encrypted
RSTR to the UA (again as a hidden form
variable or as a URL parameter). The browser
extension then retrieves the encrypted values
and decrypts them to obtain the RP address
and the RSTR.

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

Note that the IdP is unable to read the RP
address or the RSTR (thus protecting user
privacy) since they are encrypted using a
key known only to the browser extension. If
the IdP, however, needs the RP address for
auditing purposes (e.g. for legal reasons), or
the IdP policy requires the disclosure of the
RP identity (e.g. so that it can encrypt the
security token using the RP’s public key), then
the RP address could be sent in plaintext to
the IdP.

Finally note that the Shibboleth specification
allows the RP to use a hidden form variable
called ‘RelayState’ to maintain state in an
RP-UA-IdP session. A Shibboleth-compliant
RP could insert data into this variable and
the Shibboleth-enabled IdP must return this
data intact in the same hidden form variable.
We propose to make use of this ‘RelayState’
variable in our scheme to transfer/maintain
the encrypted versions of the RP address and
the RSTR message.

6.2. Attribute Handling

As stated in sections 2.1.2 and 2.2.3, CardSpace
personal cards only support fourteen editable
attributes, whereas Shibboleth supports many more.
As the two systems use two different sets of
attribute types, this clearly causes a problem in
creating a SAML (attribute) request message for a
Shibboleth IdP from a policy statement provided by
a CardSpace-enabled RP. We outline two approaches
to dealing with this problem.

1. We could restrict the RP to requesting
only CardSpace personal card attributes.
The browser extension would then need to
convert the requested attributes to Shibboleth
attributes, and include the converted attribute
types in the SAML request message sent to the
IdP. An example mapping is shown in Table II.
Note that in this case the RP will still have
to understand the Shibboleth attributes, since
the IdP SAML assertion will include attributes
in Shibboleth syntax. However, the browser
extension-produced SAML token, generated in
step 10, could be extended to include a means
of CardSpace-Shibboleth attribute mapping.

2. Alternatively, the RP could be permitted
to request any of the Shibboleth-supported
attributes. If an attribute not supported by
CardSpace personal cards is requested (and
given that the RP permits the use of any IdP),
then the browser extension would need to be
configured to request this attribute from the
user-selected IdP. However if any attributes
are required that are outside the set permitted

in a personal card, then the selector will clearly
not highlight any of the personal cards.

In order to cause the selector to highlight
personal cards, the browser extension must
modify the RP policy. In particular, as part
of step 3 the browser extension must (after
storing them) strip out the attributes that
are outside the set supported by personal
cards, and then request them from an IdP
as part of step 8. Note, however, that such
a modification will prevent CardSpace from
operating normally in the case where a
personal card is requested. Nevertheless, if
the RP specifies the use of managed cards
(i.e. does not permit personal cards), then
CardSpace would still operate normally, since
the extension will shut down if it sees such a
policy statement.

To support the broadest range of user attributes,
the browser extension could be configured to support
both of the approaches described above.

7. PROTOTYPE REALISATION

We next give details of a prototype implementation
of the scheme, which operates with the Shibboleth
browser post profile.

7.1. Implementation Details

The prototype is coded in JavaScript [31], chosen
because its wide adoption should simplify the task of
porting the prototype to a range of other browsers. It
uses the Document Object Model (DOM) to inspect
and manipulate HTML pages and XML documents.
The JavaScript code is executed using a C#-
driven browser helper object (BHO), a Dynamic-
link library (DLL) module designed as a plug-
in for Internet Explorer. Once installed, the BHO
attaches itself to Internet Explorer, thus gaining
access to the current page’s DOM. The prototype
can readily be enabled or disabled using the add-
on manager in the Internet Explorer Tools menu.
Note that the integration plug-in does not require
any changes to default Internet Explorer security
settings, thus avoiding potential vulnerabilities that
might result from such changes. Note also that
the scheme operates with both the CardSpace
and the Higgins (http://wiki.eclipse.org/GTK_
Selector_1.1-Win) identity selectors without any
modification.

7.2. Prototype Operation

‘We next consider specific operational aspects of the
prototype. Prior to use, the user must have accounts

with a CardSpace-enabled RP and a Shibboleth-
enabled IdP. We refer throughout to the numbered
protocol steps given in section 3.2.

In step 3 the plug-in uses the DOM to perform the
following processes.

3.1 It scans the web page in the following way.
(Note that the CardSpace documentation [19,
20] specifies two HTML extension formats that
can be used to invoke the selector from a
web page, both of which involve placing the
CardSpace object tag inside an HTML form.
This motivates the choice of web page search
method.)

(a) It searches through the HTML elements
of the web page to detect whether
any HTML forms are present. If so, it
searches each form, scanning through
each of its child elements for an HTML
object tag.

(b) If an object tag is found, it retrieves it
and examines its type. If it is of type
‘application/x-informationCard’ (which
indicates support for CardSpace), it
continues; otherwise it aborts.

(¢) It searches through the param tags
(child elements of the retrieved
CardSpace object tag) for the ‘issuer’
tag and examines its value; if it is
‘http://schemas.xmlsoap.org/ws/
2005/05/identity/issuer/self’,
indicating that the use of personal (self-
issued) cards is acceptable, it continues;
otherwise it terminates. Note that the
plug-in also continues if the value of the
‘issuer’ tag is set to ‘any’ or ‘x’, or if
the ‘issuer’ tag is absent, since the use
of personal cards is acceptable in these
cases.

(d) It retrieves the ‘requiredClaims’ and
‘OptionalClaims’ tags from the param
tags. It obtains and temporarily stores
in a cookie the mandatory and optional
claim types listed in these tags.

3.2 It adds a JavaScript function to the head
section of the HTML page to intercept the
XML-based RSTR message before it is sent
back to the RP (such a token will be sent by
the selector in step 8).

3.3 It obtains the current action attribute of the
CardSpace HTML form, encrypts it using
AES [32] with a secret key known only to the
plug-in, and then stores it in a cookie. This
attribute specifies the URL of a web page at
the RP to which the RSTR must be forwarded

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

3.4

3.5

for processing. If the attribute is not a fully
qualified domain name, the JavaScript inher-
ent properties, e.g. document.location.protocol
and/or document.location.host, are used to
help reconstruct the full URL.

It changes the current action attribute of the
CardSpace HTML form to point to the newly
created ‘interception’ function (see step 3.2
above).

It creates and appends an ‘invisible’ HTML
form to the HTML page to be used later for
sending the SAML token request to the IdP.

In step 8 the plug-in uses the DOM to perform the
following steps.

8.1

8.2

8.3

8.4

8.5

8.6

8.7

It intercepts the RSTR message sent by the
selector using the added function.

Using a JavaScript pop-up box, it asks the
user whether the use of Shibboleth-based
authentication is required. If so, it proceeds;
otherwise it terminates, giving CardSpace
the opportunity to operate normally. On
proceeding, the plug-in offers to store the
user’s answer using a plug-in-embedded
checkbox; if checked, the plug-in stores the
user answer in a persistent cookie.

It encrypts the RSTR using AES with a secret
key known only to the plug-in.

It prompts the user to select an IdP using
a WAYF-like component, implemented as a
plug-in-embedded HTML form containing a
drop-down list.

It offers to store the user’s choice of IdP using
a plug-in-embedded checkbox; if checked, the
plug-in stores the user selection in a persistent
cookie.

It constructs a SAML request conforming
to either SAML 1.1 syntax if the IdP is
Shibboleth 1.3-complaint, or to SAML 2.0
syntax if the IdP is Shibboleth 2.0-compliant.
The plug-in learns the IdP’s version from
the plug-in-operated WAYF. Note that this
request will also indicate the RP-requested
user attributes (if any) that are to be asserted
by the IdP. The plug-in will know what they
are since they were stored by it earlier (see
step 3.1.d).

It writes the entire (Base64 encoded) SAML
request message as a hidden variable (SAML-
Request) into the invisible HTML form cre-
ated earlier (see step 3.5 above).

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

8.8 It retrieves the encrypted RP URL from the
appropriate cookie and inserts it together with
the encrypted version of the RSTR message
into the invisible form as the hidden variable
‘RelayState’.

8.9 It writes the URL of the IdP into the action
attribute of the form.

8.10 It auto-submits the form (transparently to the
user), using the JavaScript method ‘click()’ on
the ‘submit’ tag, thus redirecting the user to
the IdP.

In step 10, the plug-in operates as follows.

10.1 It recovers the encrypted string from the
RelayState hidden variable and decrypts it
using its internally stored secret key. The
SITP-issued RSTR and the RP URL are then
recovered from the decrypted data.

10.2 Tt generates a SAML token with a unique ID,
nonce and a time-stamp, referred to here as the
‘user token’. The plug-in embeds the signed
SITP-issued RSTR (retrieved in the previous
step) and the signed Shibboleth-issued SAML
response message (after retrieving it from the
SAMLResponse HTML hidden variable) into
the (unsigned) user token.

10.3 It inserts the RP URL (retrieved in step 10.1)
into the action attribute of the HTML form
carrying the received SAML token.

10.4 It displays a representation of the token to
the user and requests consent to proceed. The
displayed text indicates the types of attributes
the user token is carrying, as well as the exact
RP URL to which the token will be forwarded.
The JavaScript ‘confirm()’ pop-up box is used
to achieve this.

10.5 If the user agrees to submission of the token, it
seamlessly submits the token to the RP using
the JavaScript ‘click()’ method.

The prototype has been successfully tested with
experimentally-implemented websites (acting as the
Shibboleth-enabled IdP and the CardSpace-enabled
RP) as well as with the current (unmodified)
CardSpace and Higgins (http://wiki.eclipse.
org/GTK_Selector_1.1-Win) identity selectors.

7.3. Limitations

The plug-in must scan every browser-rendered web
page to detect whether it supports CardSpace,
and this may affect system performance. However,
informal tests on the prototype suggest that this
is not a serious issue. In addition, the plug-in can
be configured so that it only operates with certain
websites.

If the web browser is compromised, then an
adversary could steal the user token (see above), and
could use this to impersonate the user. Moreover, if
the RP does not use HTTPS, then the SIIP-issued
RSTR will not be encrypted. Assuming that the
web browser is not a secure environment, it may be
possible for a malicious plug-in or other malware to
get access to sensitive information disclosed by the
plaintext RSTR and/or the user token. However, the
same risks apply when manually entering credentials
(e.g. username-password) into the browser [33].

Finally note that some older browsers (or browsers
with scripting disabled) may not be able to run the
integration plug-in, as it was built using JavaScript.
However, most modern browsers support JavaScript
(or ECMAscript), and hence building the prototype
in JavaScript is not a major usability obstacle.

8. RELATED WORK

A somewhat similar scheme [34] has previously been
proposed to support CardSpace-Liberty interoper-
ation. However, unlike the scheme proposed here,
the CardSpace-Liberty integration scheme does not
support the exchange of identity attributes and
does not operate with HTTPS-enabled websites.
Two further similar schemes have recently been pro-
posed, allowing client-based interoperation between
a CardSpace-enabled RP and an OpenlD-enabled
IdP [35] or an OAuth-enabled IdP [36].

Another scheme supporting interoperation
between CardSpace and Liberty has been proposed
by Jerstad et al. [37]. In this scheme, the IdP is
responsible for supporting interoperation. The IdP
must therefore perform the potentially onerous task
of maintaining two different identity management
schemes. This scheme also requires the user to
possess a mobile phone supporting the Short
Message Service (SMS). Moreover, the IdP must
always perform the same wuser authentication
technique, regardless of the identity management
system the user is attempting to use. The IdP
simply sends an SMS to the user, and, in order to be
authenticated, the user must confirm receipt of the
SMS. This confirmation also serves as an implicit
indication of user approval for the IdP to send a
security token to the RP. By contrast, the scheme
proposed in this paper supports interoperation
between CardSpace and Shibboleth, does not
require use of a handheld device, and does not
enforce a specific authentication method.

Finally, in 2007, Internet2 announced plans
to develop extensions to Shibboleth to support
CardSpace (https://lists.internet2.edu/
sympa/arc/i2-news/2007-05/msg00009.html).
This included collaboration with Microsoft in order

10

to add Information Card support to Shibboleth.
However, unlike the integration scheme proposed
in this paper, this approach does not seem
to be based on a browser extension running
on the client machine. Instead, interoperation
appears to be provided by Shibboleth IdPs/RPs
(https://lists.internet2.edu/sympa/arc/
shibboleth—dev/20()7—()5/msg00021.html)7 which
is likely to necessitate significant changes to the
servers.

9. CONCLUSIONS AND FUTURE
WORK

In this paper we have proposed a means of
interoperation between two leading identity systems,
namely CardSpace and Shibboleth. CardSpace users
(indeed, users of any Information Card system) are
able to obtain an assertion token from a Shibboleth-
enabled identity provider that can be processed
by a CardSpace-enabled relying party. The scheme
uses a browser extension, requires no major changes
to identity providers and relying parties, and does
not require any changes to the deployed CardSpace
identity selector.

The integration scheme takes advantage of
the similarity between the Shibboleth and the
CardSpace frameworks, and this should help to
reduce the effort required for full system integration.
Interoperation between CardSpace and Shibboleth
may be attractive since both schemes support user
authentication as well as exchange of user attributes.
In addition, they both support SAML tokens.
Moreover, implementation of the scheme does not
require technical co-operation between Microsoft and
Internet2.

Planned future work includes investigating the
possibility of extending the CardSpace identity
selector to simultaneously support security tokens
from a variety of identity providers, such as OpenlD,
Liberty, Shibboleth, as well as CardSpace remote
and self-issued identity providers. Possible future
work may also investigate the possibility of extending
the scheme to support CardSpace-enabled relying
parties that employ security token services.

ACKNOWLEDGEMENTS

The first author is sponsored by the Diwan of Royal
Court, Sultanate of Oman. The helpful comments
provided by anonymous referees are gratefully
acknowledged.

Security Comm. Networks 2011; 00:1-13 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

REFERENCES

10.

11.

12.

13.

14.

. Cantor S,

. Fitzpatrick B,

. Hammer-Lahav E, (editor).

. Bertocci V, Serack G, Baker C. Understanding

Windows CardSpace: An Introduction to the
Concepts and Challenges of Digital Identities.
Addison-Wesley, Reading, Massachusetts, 2008.
(editor). Shibboleth Architecture
— Protocols and Profiles. Internet2
2005. http://shibboleth.internet2.edu/
shibboleth-documents.html.

Recordon D, Bufu J,
Hoyt J. OpenID Authentication 2.0 —
Final 2007. http://openid.net/specs/
openid-authentication-2_0.html.

The OAuth 1.0
Protocol. IETF: RFC 5849 2010. http://tools.
ietf.org/html/rfc5849.

. Berger A. Identity Management Systems —

Introducing Yourself to the Internet. VDM
Verlag, Saarbriicken, 2008.

. Bertino E, Takahashi K. Identity Management:

Concepts, Technologies, and Systems. Artech
House Publishers, Norwood, MA, 2011.

. Williamson G, Yip D, Sharoni I, Spaulding K.

Identity Management: A Primer. MC Press, Big
Sandy, Texas, 2009.

. Clippinger JH. Higgins towards a Foundation

Layer for the Social Web. Higgins — working
draft 2011. http://www.socialphysics.org/
images/Higgins6.04.06.doc.

. Al-Sinani HS, Mitchell CJ. Using CardSpace

as a password manager. Proceedings of IFIP
IDMAN 10 — the second IFIP Conference on
Policies and Research in Identity Management,
November 18-19, 2010, Oslo, Norway. Volume
848 of IFIP Advances in Information and
Communication Technology, de Leeuw E,
Fischer-Hiibner S, Fritsch L (eds.), Springer,
Boston, 18-30, 2010.

Mercuri M. Beginning Information Cards
and CardSpace: From Novice to Professional.
Apress, New York, 2007.

Brands S. Rethinking Public Key Infrastructures
and Digital Certificates: Building in Privacy.
MIT Press, Cambridge, MA, 2000.

Brands S. U-Prove Technology Overview.
Microsoft 2010.

Jones MB, McIntosh M, (editors). Identity
Metasystem Interoperability — Version 1.0
(IMI 1.0). OASIS Standard 2009.
http://docs.oasis-open.org/imi/identity/
v1.0/identity.html.

Bajaj S, et al. Web Services Policy Framework
(WS-Policy) 2006. http://download.boulder.
ibm.com/ibmdl/pub/software/dw/specs/
ws-polfram/ws-policy-2006-03-01.pdf.

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Della-Libera G, et al. Web Services Security
Policy Language (WS-Security — Policy)
2005. http://download.boulder.ibm.com/
ibmdl/pub/software/dw/specs/ws-secpol/
ws—secpol.pdf.

Ballinger K, et al. Web Services Metadata

Ezxchange (WS-MetadataExchange) — 2006.
http://download.boulder.ibm.com/
ibmdl/pub/software/dw/specs/ws-mex/
metadataexchange.pdf.

Anderson S, et al. Web Services Trust
Language (WS-Trust) 2005. http:

//download.boulder.ibm.com/ibmd1l/pub/
software/dw/specs/ws-trust/ws-trust.pdf.
Nadalin A, Kaler C, Monzillo R, Hallam-Baker
P, (editors). Web Services Security: SOAP
Message Security 1.1 (WS-Security 2004).
OASIS Standard Specification 2006. http:
//docs.oasis-open.org/wss/vl.1/uss-v1.
1-spec-os-S0APMessageSecurity.pdf.
Microsoft Corporation and Ping Identity
Corporation. An Implementer’s Guide to the
Identity Selector Interoperability Profile V1.5.
2008. http://msdn.microsoft.com/en-us/
windows/aa663320.aspx.

Jones MB. A Guide to Using the Identity
Selector Interoperability Profile V1.5 within
Web Applications and Browsers. Microsoft 2008.
Nanda A, Jones MB. Identity Selector Interoper-
ability Profile V1.5. Microsoft Corporation 2008.
Cantor S, (editor). Shibboleth Architecture —
Conformance Requirements. Internet2 2005.
Scavo T, Cantor S, (editors). Shibboleth Archi-
tecture — Technical Overview. Internet2 2005.
http://shibboleth.internet2.edu/docs/

draft-mace-shibboleth-tech-overview-latest.

pdf.

Cantor S, Kemp J, Philpott R, Maler E,
(editors). Assertions and Protocols for
the OASIS Security Assertion Markup
Language (SAML) V2.0. OASIS 2005.

http://docs.oasis-open.org/security/
saml/v2.0/saml-core-2.0-o0s.pdf.

Scavo T, (editor). SAML V2.0 Holder-
of-Key Assertion Profile Version 1.0.
OASIS 2009. http://www.oasis-open.

org/committees/download.php/34962/

sstc-saml2-holder-of-key-cd-03.pdf.

Alrodhan WA. Privacy and Practicality of
Identity ~Management Systems. Technical
Report: RHUL-MA-2010-14 (Department of
Mathematics, Royal Holloway, University of
London) 2010. http://www.ma.rhul.ac.uk/
static/techrep/2010/RHUL-MA-2010-14.pdf.
Dhamija R, Dusseault L. The seven flaws of
identity management: Usability and security
challenges. IEEE Security and Privacy 2008;

11

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

12

6(2):24-29.

Paquin C, Thompson G. U-Prove CTP White
Paper. Microsoft 2010.

Paquin C. U-Prove Technology Integration into
the Identity Metasystem V1.0. Microsoft 2010.
Kristol D. HTTP State Management Mecha-
nism. IETF: RFC 2045 2000. http://tools.
ietf.org/html/rfc2965.

Negrino T, Smith D. JavaScript and Ajax for
the Web: Visual QuickStart Guide. 7th edn.,
Peachpit Press, Berkeley, CA, 2008.

National Institute of Standards and
Technology (NIST). Announcing the Advanced
Encryption Standard (AES), FIPS 197 2001.
http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

Hart J, Markantonakis K, Mayes K. Website
credential storage and two-factor web authenti-
cation with a Java SIM. Proceedings of WISTP
10 — Information Security Theory and Prac-
tices. Security and Privacy of Pervasive Systems
and Smart Devices, 4th IFIP WG 11.2 Interna-
tional Workshop, Passau, Germany, April 12—
14, 2010, Lecture Notes in Computer Science
(LNCS), vol. 6033, Samarati P, Tunstall M,
Posegga J, Markantonakis K, Sauveron D (eds.),
Springer, Berlin, Heidelberg, 229-236, 2010.
Al-Sinani HS, Alrodhan WA, Mitchell CJ.
CardSpace-Liberty integration for CardSpace
users. Proceedings of IDtrust 10 — the 9th
Symposium on Identity and Trust on the
Internet, Gaithersburg, Maryland, USA, April
13-15, 2010, Klingenstein K, Ellison CM (eds.),
ACM, New York, 12-25, 2010.

Al-Sinani HS, Mitchell CJ. Client-based
CardSpace-OpenlD interoperation. Proceedings
of ISCIS ’11 — the 26th International
Symposium on Computer and Information
Sciences, 26—-28 September 2011, London, UK,
Gelenbe E, Lent R, Sakellari G (eds.), Lecture
Notes on Electrical Engineering (LNEE),
Springer, London, 2011; 387-393. [Full version
available at: http://www.ma.rhul.ac.uk/
techreports/2011/RHUL-MA-2011-12.pdf].
Al-Sinani HS. Integrating OAuth with
Information Card systems. Proceedings of
IAS ’11 — the 7th International Conference
on Information, Assurance, and Security,
Malacca, Malaysia, 5-8 December 2011, IEEE,
2011; 198-203. [Full version available at:
http://www.ma.rhul.ac.uk/static/techrep/
2011/RHUL—MA—2011—15.pdf].

Jorstad I, Van Thuan D, Jgnvik T, Van Thanh
D. Bridging CardSpace and Liberty Alliance
with SIM authentication. Proceedings of ICIN
07 — the 10th International Conference
on Intelligence in Next Generation Networks,

Adera, Pessac, 8-13, 2007.

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Prepared using secauth.cls

Table I. CardSpac

e versus Shibboleth

CardSpace

Shibboleth

Type

active client-based

redirect-based

IdP discovery

performed on the client (selector)

performed on the server (WAYF)

Phishing resistance strong scenario-dependent
Attribute exchange supported supported
Self-issued assertions supported unsupported
Identity federation unsupported supported
Proof of ownership supported supported
Pseudonyms used (e.g. PPID) used
Token format many formats including SAML SAML

Table Il. CardSpace-Shibboleth attribute mapping

| CardSpace persona

1 cards [Shibboleth |

givenname givenName
surname sn
givenname + surname cn
emailaddress mail

Security Comm. Networks 2011; 00:1-13 (© 2011 John Wiley & Sons, Ltd.

DOI: 10.1002/sec
Prepared using secauth.cls

13

