

Extending Trusted Computing as a Security Service

Chunhua Chen*, Chris Mitchell and Shaohua Tang* Information Security Group, Royal Holloway, University of London

Abstract

We extend the Trusted Computing (TC) security infrastructure in a Generic Authentication Architecture (GAA)-like framework to enable the provision of security services, such as key establishment, to network applications.

Background

Generic Authentication Architecture:

Standardised by 3GPP and 3GPP 2.

• A general framework that extends the cellular authentication infrastructure (includes UMTS and GSM) to enable the provision of security services to network applications.

· Consists of two procedures, GAA bootstrapping and use of bootstrapped keys.

Trusted Computing (TC) Security Infrastructure:

A Trusted Platform (TP) compliant with the Trusted Computing Group (TCG) specifications is a computing platform with a tamper-proof and built-in Trusted Platform Module (TPM).

Properties of TPM:

 Protected capabilities, such as random number generation. asymmetric key generation, digital signing, encryption capabilities, etc.

• A unique Endorsement Key (EK) pair and a set of derived keys. such as an Attestation Identity Key (AIK).

• Other properties:

TPM, associated keys, protected capabilities, and the underlying Public Key Infrastructure (PKI) comprise a security infrastructure.

Figure 1: a trusted platform module.

Image source: http://img.tomshardware.com/us/2008/02/11/how_hardware_based_security_protects_pcs/t pmchip.jpg

Core work

We make the TC security infrastructure play the role of the cellular authentication infrastructure in the GAA framework, and hence extend the TC security infrastructure to provide a security service, which we call TC GAA.

- ◆ Specify the architecture and components of TC GAA.
- Specify the interfaces and protocols between components.
- Specify bootstrapping procedure of TC GAA. including an authenticated key agreement protocol.
- Specify the derivation of an application-specific session key.
- · Specify use of bootstrapped key of TC GAA.

Architecture Elements

Bootstrapping Server Function (BSF):

- A new component, that acts as Trusted Third Party.
- Has a certified public key pair for entity authentication.

Network Application Function (NAF):

• The server functionality of each GAA-aware network application.

 Assumed to have some means to set up a secure channel with BSF (e.g. as provided by SSL/TLS tunnel).

TCG compliant Trusted platform (TP):

- The Endorsement Key for encryption.
- Has a certified public key pair for entity authentication (e.g. AIK).
- · Protected capabilities as described in the protocol.

Notation

- Cert_x: A public key certification of entity X.
- MK : A symmetric master session key.
- SK : An application-specific symmetric session key.
- R_x : A random number issued by entity X.
- E_v(Z): Encryption of data Z using the key K.
- H(Z) : A one-way hash function on data Z.
- S_x(Z): The digital signature of data Z computed using entity X's private signature transformation.
- X(public) : The public asymmetric key of X.
- X(private) : The private asymmetric of X.
- Id_v : The identity of X.
- XIIY : The concatenation of data items X and Y in that order.
- $X \rightarrow Y$: Z : Indicate that the message Z is sent by X to Y.

Bootstrapping procedure

Bootstrapping procedure of TC GAA is used to bootstrap a new symmetric master session key between BSF and TP. It is an authenticated key agreement protocol specified as below:

- 1. TP \rightarrow BSF: Request for bootstrapping master session key.
- 2. BSF \rightarrow TP: R_{BSF}
- 3. TP: Generates a new temporary asymmetric encryption key pair (T(public) and T(private)) and certify the public key T(public) with an identity of T(public) chosen by TP user, namely, IdTP .
- 4. TP \rightarrow BSF: R_{BSF} ||Id_{BSF} ||
- T(public)||Id_{TP}||S_{TP}(R_{BSF}||Id_{BSF}||T(public)||Id_{TP}).
- 5. BSF: Retrieves Cert_{TP} and verifies it.
- 6. BSF: Verifies STP(RBSF||IdBSF||T(public)||IdTP). 7. BSF: Verifies Rest to ensure the message is fresh and verifies
- that the message was intended for BSF. 8. Assuming the signature from TP verifies correctly, the values of
- R_{PSE} and Id_{PSE} are expected, then BSF extracts T(public).
- 10. BSF: Generates a symmetric key MK as master session key. and set lifetime of MK according to local policy. Generates an identifier B-TID of MK which consists of R_{BSE} and the domain name of BSF.
- 10. BSF \rightarrow TP : E_T(public)(MK)IIS_{BSF}(E_T(public)(MK))
- 11. TP: Retrieves Cert_{RSF} and verifies it.
- 12. TP: Verifies S_{BSF}(E_T(public)(MK)) .
- 13. TP: Decrypts E_T(public)(MK) to get MK.

Steps 2 and 4 of the above protocol conform to the two pass unilateral authentication protocol described in clause 5.1.2 of ISO/IEC 9798-3:1998 where T(pub) serves as the nonce which is generated in every run.

The key agreement part of the protocol is a key transfer protocol.

After the procedure, BSF and TP share R_{psc}, Id_{TP}, B-TID, MK.

Use of bootstrapped key

- 1. TP: Derives an application-specific symmetric key SK as follow: $SK = KDF(MK, R_{BSE}, Id_{TP}, NAF-Id)$ where KDF is a key derivation function. Id_{TD} is the identity of T(pub), and NAF-Id consists of the Fully Qualified Domain Name (FQDN) of the intended NAF and the identifier of the application protocol.
- 2. TP \rightarrow NAF: B-TID and msg. msg is the application request data secured using SK.
- 3. NAF → BSF: B-TID and NAF-ID. Note that it is assumed that a secure channel has been set up by some means between NAF and BSF.
- 4. BSF: Derives SK = KDF(MK, R_{RSF}, Id_{TP}, NAF-Id), and sets lifetime of SK according local policy.
- 5. BSF → NAF: SK. lifetime of SK. etc.
- 6. NAF: Responses to the request using SK. if SK is valid.

Contact information

Name: Chunhua Chen

Address: Mcrea 106. Information Security Group. Royal Holloway, University of London, Egham, TW20 0EX Surrey, UK

T: 01784 443696 E: Chunhua.chen@rhul.ac.uk

Chunhua Chen is a Phd student under supervison of Prof. Shaohua Tang in School of Computer Science and Engineering, South China University of Technology. This work was performed during a visit to the Information Security Group at Royal Holloway. University of London, sponsored by the Chinese Scholarship Council.