
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 00: 1–20 (2009)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sec.0000

Generating Certification Authority Authenticated Public Keys
in Ad Hoc Networks

G. Kounga1, C. J. Mitchell2 and T. Walter ∗3

1 Systems Security Lab, Hewlett-Packard Laboratories, Long Down Avenue, Stoke Gifford, Bristol, BS34 8QZ, UK
2 Information Security Group, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
3 Research Planning and Promotion/Security Specialist, DOCOMO Communications Laboratories Europe GmbH,
Landsberger Strasse 312, 80687 Munich, Germany

Summary

In an ad hoc network, nodes may face the need to generate new public keys. To be verifiably authentic, these
newly generated public keys need to be certified. However, because of the absence of a permanent communication
infrastructure, a certification authority (CA) that can issue certificates may not always be reachable. The downside
is that secure communication channels cannot be established. Previously proposed solutions do not guarantee that
identities contained in certificates are valid or, when they do, they rely on neighbors to validate user-key bindings.
However, there is no guarantee that nodes that are known in advance will always be present in the network.
Therefore, neighbors are not always able to verify a node’s identity before certificate issuance. In this paper we
define a scheme that permits nodes to generate, on-demand and independently of any third entity, public keys that
can be authenticated with the aid of a unique certificate, issued by a CA at initialization. This certificate binds
a valid identity to a hash code. We then extend this scheme to a solution permitting certificates to be generated,
on-demand and independently of any third entity, that can be authenticated with a unique signature generated by a
CA. Finally we solve the problem of updated revocation information. Copyright c⃝ 2009 John Wiley & Sons, Ltd.

KEY WORDS: Public key cryptosystems; Authentication; Security; Hash chains

1. Introduction

The establishment of secure communication channels
between two nodes requires that they are mutually
authenticated. When nodes that need to securely
communicate do not know each other in advance and
do not share any secret key a priori, public/private
key pairs can be used provided that an infrastructure
is always in place that permits nodes to be issued

∗Correspondence to: Thomas Walter, Research Planning and
Promotion/Security Specialist, DOCOMO Communications Labo-
ratories Europe GmbH, Landsberger Strasse 312, 80687 Munich,
Germany
Email:walter@docomolab-euro.com

certificates and to be notified when a certificate has
been revoked. However, this assumption does not hold
in ad hoc networks.

Ad hoc networks are wireless networks that do
not rely on any infrastructure. They are composed of
wireless nodes that are free to move, causing frequent
changes in the network topology; network partitions
may even occur. This means that no connectivity to a
central entity such as a certification authority (CA),
a certificate revocation list (CRL) [1] repository or
an online certificate status protocol (OCSP) responder
[2] can be guaranteed. Ad hoc networks are also self-
organized, which means that they operate with no

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls [Version: 2008/03/18 v1.00]

2 G. KOUNGA, C. J. MITCHELL AND T. WALTER

central administrative authority. As a result, no part
of the network is dedicated to providing any specific
services. Therefore, the security services provided by
dedicated entities such as CAs, CRL repositories and
OCSP responders must be provided by the nodes
themselves.

∙ Identity verification: Nodes must be able to
verify by themselves that an entity that requests
a certificate for a given identity is the legitimate
owner of that identity. This task is traditionally
done by a CA. However, in an ad hoc network
it is not guaranteed that a CA is always
reachable. Further, there is no guarantee that
only nodes are present in the ad network whose
identity is known in advance, since no authority
responsible for network membership is always
reachable [3]. Hence, in ad hoc networks, it
is almost impossible to guarantee that nodes
can always generate certificates that permit
the establishment of secure communication
channels with the desired entity.

∙ Certificate revocation: Nodes must be able
to determine whether a certificate has been
revoked or not, i.e. whether or not a certificate
still represents a valid binding between an
identifier and a public key. This action should
be possible even when no node is present in the
network that has current information regarding
the revocation status of a certificate. Without
any means of determining the revocation status
of a certificate, nodes in ad hoc networks can
never be sure whether they are interacting with
the intended entity or with an attacker that is
using a certificate that was previously revoked
in an unreachable part of the ad hoc network or
in another network.

∙ Node compromise: Finally, since nodes in
ad hoc networks are mobile devices, they
are less physically protected than ‘non-mobile
devices’ that can be kept in locked areas [4].
This can permit an attacker to compromise a
public/private key pair stored on the node by
simply gaining control over that node.

1.1. Contributions of the paper

In this paper we adopt an incremental approach to
the definition of a solution that permits nodes in
ad hoc networks to generate, on-demand, multiple
public/private key pairs and certificates without
relying on their neighbors and without having to
generate and store in advance all the keys and

certificates they may use in the future. Instead, our
solution relies on a unique certificate that is issued by
a CA at initialization, and that proves the authenticity
of all public keys that are generated later. The initial
certificate does not contain a public key. It binds a
node’s identity, verified by a CA in the fixed network at
initialization, to a hash code value. Then, when a node
is active in an ad hoc network, it generates a public key
whose authenticity can be checked by verifying that
it is correctly linked to the hash code contained in the
certificate. Only the node that was issued a certificate
by the CA at initialization is able to generate a valid
public/private key pair that is correctly linked to the
certified hash code. The solution relies on a novel
scheme that permits the verifiable binding of multiple
public/private key pairs to a single hash code, which
existing solutions do not permit — see Section 5. The
defined solution also solves the revocation problem
existing in ad hoc networks by using public/private
key pairs with a short lifetime. Finally, our solution
avoids attackers accessing public/private key pairs
stored on nodes with no physical protection and with
no secure hardware such as tamper-resistant hardware.
This is achieved by relying on interactions with users
to generate key pairs.

1.2. Outline of the paper

The paper is organized as follows. In Section 2, we
identify the problems that our solution must solve,
and we define the requirements that it must fulfil.
In Section 3 we use an incremental approach to the
definition of our solution. A first solution is proposed
in Section 3.1 that is improved in Sections 3.2 and
3.3. Finally in Section 3.4, a solution is defined that
fulfils all the requirements defined in Section 2. In
Section 4, we illustrate how our solution supports the
provisioning of security services. We then extend our
solution to permit certificates to be generated whose
authenticity can be checked with a unique signature
generated in advance by a CA. We discuss related
work in Section 5, evaluate the performance of our
scheme in Section 6 and conclude the paper in Section
7.

2. Problem statement

2.1. Proposed Approach

Considering the properties of ad hoc networks as
described in the previous section, our goal is to define
a scheme that permits nodes to generate, on-demand,

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 3

a series of public/private key pairs whose authenticity
can be checked using a single certificate, issued in
advance by a CA — throughout this paper we refer
to this problem as (*).

To achieve the above, identity verification of
nodes is done once by a CA from a fixed network
during an initialization phase. After successful identity
verification the CA issues a certificate to the node.
Subsequently, nodes do not need to interact with the
CA or any third entity in order to generate or validate
public keys. The latter differentiates our solution from
the previously proposed ones that run the identity-
proving process in the fixed network as well. But,
in these previous solutions nodes must access a
third party, that can send updated revocation status
information, in order to be able to validate public
keys. However, as already discussed, such an entity
is not always reachable. To handle revocation, our
solution employs key pairs that are only valid for a
short period of time. As is detailed in the main part
of the paper, only the legitimate owner of a certificate
is able to generate a valid key pair that is correctly
bound to that certificate during its validity period.
Because key pairs become automatically invalid after
a short time (the shorter, the better), there is no
need to distribute revocation information. Finally,
nodes do not store any secret value, such as a
passphrase or private key. Instead, private keys are
generated after users have entered their passphrase,
and the passphrase is immediately erased. The private
key is also immediately erased after it has been
used. This approach protects all devices against node
compromise, even with no tamper-resistant hardware.

2.2. Issues to solve

Of course, if the key pairs are all pre-generated, and all
the public keys are contained in the single certificate,
then problem (*) would be solved. However, this
would mean that the certificate could become very
large, and would also impose a serious storage
overhead on nodes. Moreover, in such a scheme,
when a node is compromised, all the pre-generated
public/private keys are readily usable. Thus, our goal
is to generate a single certificate of regular size that
proves the authenticity of a sequence of public keys.

One partial solution to this problem (due to Weimer-
skirch and Westhoff [5]) exploits the properties of one-
way hash chains. The hash codes in a one-way hash
chain are uniquely bound to a single ‘final’ hash code
by a cryptographic (one-way) hash function. When
this ‘final’ hash code is signed by a CA, hash codes

in the chain are uniquely bound to that signature. In
the Weimerskirch-Westhoff scheme, hash codes in the
hash chain are treated as secret keys. Only the node
that was issued the certificate can generate a key that
is correctly linked to the hash code and signature. This
solution allows nodes in ad hoc networks to prove the
authenticity of public keys by disclosing keys from
their one-way hash chains. However, this approach is
subject to replay attacks — see Section 5.

If one-way hash chains were composed of
public/private key pairs, and if use of a public key
involved proving knowledge of the corresponding
private key, then an attacker would not be able
to build a successful attack by replaying a public
key. Nodes would be able to prove the authenticity
of their generated public key by proving that it is
correctly linked to the hash code contained in their
certificate. However, as they are currently defined,
one-way hash chains do not permit the verifiable
binding of public/private key pairs to a single hash
code. We propose a scheme that overcomes this
problem and that permits the generation of one-way
hash chains of public/private keys which have similar
properties to ‘traditional’ one-way hash chains [5,
6, 7]. These public/private key pairs are suitable for
providing security services such as confidentiality,
authentication, integrity, etc.

2.3. Requirements

The one-way hash chain scheme to be defined must
fulfil the following requirements:

∙ It must uniquely link a series of public/private
key pairs using a cryptographic hash function.

∙ These key pairs must be suitable for use
with a discrete logarithm-based public key
cryptosystem.

∙ It must be computationally infeasible to find key
pairs that precede others in the chain.

∙ It must be possible to verify that a public key is
linked to the last generated element of the chain
by applying a cryptographic hash function the
right number of times to a disclosed value.

3. Generating a one-way hash chain of
public/private key pairs

In Section 3.1 we first propose a very simple
scheme designed to meet the requirements defined in
Section 2.3. This scheme is incrementally improved
in Sections 3.2 and 3.3. Finally, we define a hash

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

4 G. KOUNGA, C. J. MITCHELL AND T. WALTER

chain scheme that fulfils all the defined requirements
and does not possess the limitations of the previously
described schemes.

3.1. A very simple scheme

3.1.1. Specification

We start by proposing a very simple scheme
inspired by the original work of Merkle on hash-
trees [8]. Prior to use of the scheme, certain system
parameters need to be agreed by all parties, as follows.

∙ G = (G,*) is a finite cyclic group of order q (for
some large q), g ∈ G is a generator of G, and we
assume that computing discrete logarithms in G
with respect to g is computationally infeasible.
For example, G might be a large multiplicative
subgroup of Z∗p for some large prime p, where q
is a large prime dividing p− 1; alternatively G
could be the group of points on an elliptic curve
(usually written additively).

∙ ℎ is a cryptographic hash function mapping
arbitrary length binary strings to strings of a
fixed length ℓ (where a typical value for ℓ might
be 224).

∙ f is a cryptographic (one way) hash function
mapping the set {0,1,. . . ,q − 1} onto itself. In
practice, f could be derived from ℎ.

∙ m ≥ 1 is a positive integer that determines the
number of key pairs available to a node.

When the scheme is initialized, a node A must first
choose a secret s ∈ {0, 1, . . . , q − 1}. A generates a
total of m private keys, Ki, 0 ≤ i < m, as

Ki = f(s+ i)

where s+ i is computed modulo q. The corresponding
public key for Ki is simply gKi (where here,
as throughout, we use multiplicative notation as a
shorthand for the group operation). The proving node
A, i.e. the node that is to be authenticated, then
generates the check value v as

v = ℎ(ℎ(gK0)∣∣ℎ(gK1)∣∣ ⋅ ⋅ ⋅ ∣∣ℎ(gKm−1))

where gKi is converted to a bit string (by some
means) prior to applying ℎ, and here, as throughout,
∣∣ represents the concatenation operation.

Finally, v is included in a certificate signed by
some CA. Before proceeding, note that initializing the

scheme potentially involves a significant amount of
computation, especially if m is large. This might be a
major obstacle for very limited devices. However, we
observe that these computations could be carried out
for A at the time of distribution of a device, e.g. by the
same CA that generates the certificate containing v.
A now stores the certificate, and also the values

ℎ(gKi), 0 ≤ i < m. A also securely maintains the
secret s. This can be based on a password or pass-
phrase that is not stored by A, but is instead entered
into A whenever a private key Ki needs to be
generated, for some i.

During time interval Ti, 0 ≤ i < m, A can use
private key Ki = f(s+ i) and the corresponding
public key gKi . To enable the verifying node B, i.e.
the node that authenticates A, to verify this public key,
the proving node A sends it the values:

∙ gKi ,
∙ ℎ(gKj), 0 ≤ j < m, j ∕= i, and
∙ the certificate containing v.

B computes ℎ(gKi), and combines it with the other
hash values supplied by A to compute:

v∗ = ℎ(ℎ(gK0)∣∣ℎ(gK1)∣∣ ⋅ ⋅ ⋅ ∣∣ℎ(gKm−1)).

and finally checks that

v = v∗.

3.1.2. Properties

This scheme has the following desirable properties:

∙ A only needs to retain a single secret value, s.
∙ The certificate only needs to contains a single
ℓ-bit hash code, v.
∙ Knowledge of one public key gKi (and the

information required to verify it) does not reveal
any information about the other public keys.
∙ Knowledge of one private key Ki does not

reveal any information about the other private
keys.
∙ Finally, although A needs to have access to the

values:

ℎ(gK0), ℎ(gK1), . . . , ℎ(gKm−1),

these do not need to be kept securely, since they
are public values. Even if they are corrupted,
there is no threat to the security of the system,
(just loss of service).

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 5

3.1.3. Limitations

We note certain disadvantages of the simple
scheme. In particular we note that, whenever a proving
node wishes to allow a verifying node to have access
to a verified public key, it is necessary to send m− 1
hash codes from A to B. For large m this could be
a significant communications overhead. We therefore
propose, in the next section, a scheme which operates
in a very similar way to the current scheme, except
that the communications requirement is significantly
reduced.

3.2. An improved simple scheme

3.2.1. Specification

In this scheme the system parameters are precisely
as before, as is the method of generating private and
public keys. The only difference is in the method
used to generate the check-value v. For simplicity of
presentation we suppose m = 2r for some integer r.
We then compute v using a Merkle hash-tree [8].

That is, we compute a binary tree of hash codes as
follows.

∙ Let H0,i = ℎ(gKi), 0 ≤ i ≤ 2r − 1(= m−
1).
∙ For every k, 1 ≤ k ≤ r, let:

Hk,i = ℎ(Hk−1,2i∣∣Hk−1,2i+1)

for 0 ≤ i < 2r−k.
∙ Finally, let

v = Hr,0.

A then stores: (a) a certificate containing v (as
before), and (b) the entire tree of hash codes Hi,j (of
which there are 2r + 2r−1 + ⋅ ⋅ ⋅+ 20 = 2r+1 − 1 =
2m− 1). To enable B to verify any one public key,
A sends the appropriate set of r hash codes (together
with the certificate containing v).

3.2.2. Properties

The modified scheme now reduces the
communications cost from m hash codes to log2(m)
hash codes. The only disadvantage is that it doubles
the storage requirement for A.

3.2.3. Limitations

The schemes we have so far described have one
common problem, namely the requirement to store m
(or nearly 2m) ℓ-bit hash codes. If m is large, say m =
220, and ℓ = 256, then this would require the proving
node to store around 30 Megabytes of information.
This could be a major disadvantage if the proving node
has limited storage. We therefore define, in the next
section, a scheme that does not require the proving
node to store m (or nearly 2m) ℓ-bit hash codes.

3.3. An exponentiation-based scheme

3.3.1. Specification

The system parameters are the same as in the
previous two schemes. However, the key pairs and
the check-value are derived differently, and one
additional public parameter, which could be a system
parameter, is required (if it is not a system parameter
it could be included in A’s certificate). This is a
value t ∈ {2, 3, . . . , q − 1} with the property that t
has large multiplicative order modulo q. This could,
for example, be arranged by choosing q prime, and
letting t be a primitive element modulo q. There are
also implementation advantages in choosing a small t,
e.g. t = 2.

When the scheme is initialized A chooses a secret
s ∈ {0, 1, . . . , q − 1}. A then generates the check
value v as

v = ℎ(gst
m

)

and v is included in a certificate signed by some CA.
Subsequently, in time interval Ti, 0 ≤ i < m, A

uses as private key stm−1−i, and as corresponding
public key gst

m−1−i

. To enable a verifying node to
obtain a verified copy of the public key, A sends B:

∙ gst
m−1−i

, and
∙ the certificate containing v.

B is assumed to know i (because it is time-dependent)
and can then compute

v∗ = (gst
m−1−i

)t
i+1

= gst
m

.

Finally, B checks that v = ℎ(v∗).

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

6 G. KOUNGA, C. J. MITCHELL AND T. WALTER

)(smf s)(sf)(2 sf)(1 simf −−)(simf −
)(1 smf −

)(0

)(∏= =

m

j

j sf
ghv

Fig. 1. Generation of the check value v

)(sf m s)(sf)(2 sf)(1 sf im −−)(sf im−)(1 sf m−

∏
−−

=
−− =

1

0
1)(

im

j

j
im sfK

Fig. 2. Generation of the private key Km−1−i

3.3.2. Properties

This scheme has the following desirable properties:

∙ A only needs to retain a single secret value, s.
∙ The certificate only needs to contains a single
ℓ-bit hash code, v.
∙ Knowledge of one public key gst

m−1−i

does not
reveal any information about future public keys.
∙ A only needs to send to B a public key and a

certificate.

3.3.3. Limitations

It is important to observe that some desirable
properties have been lost. First, the public/private key
pairs are not linked by a cryptographic hash function.
Second, knowledge of one private key is sufficient to
determine all the other private keys. The scheme we
consider in the next section avoids this problem.

3.4. A hash chain scheme

3.4.1. Specification

The system parameters are the same as in the previous
scheme. However, the key pairs and the check-value
are derived differently.

When the scheme is initialized, A chooses a secret
s ∈ {0, 1, . . . , q − 1}. As shown in Figure 1, A then
generates the check value v as:

v = ℎ(g
∏m

j=0 fj(s)). (1)

The value v is included in a certificate signed by a
CA.

Subsequently, as shown in Figure 2, in time interval
Ti, 0 ≤ i < m, A uses as private key Km−1−i,
generated as follows:

Km−1−i =

m−i−1∏
j=0

f j(s) (2)

and as corresponding public key gKm−1−i .
To enable B to obtain a verified copy of the public

key gKw , A sends to B:

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 7

∙ gKw ,
∙ fw+1(s), and
∙ the certificate containing v.

B is assumed to know w (because it is time-
dependent) and can then compute

f j(s), w + 1 ≤ j ≤ m.

Using these values and, as shown in Figure 3, B
then computes v∗:

v∗ = (gKw)
∏m

j=w+1 fj(s)

= g
∏w

j=0 fj(s)
∏m

j=w+1 fj(s)

= g
∏m

j=0 fj(s). (3)

Finally, B checks that v = ℎ(v∗).

3.4.2. Properties

This scheme has the following desirable properties:

∙ A only needs to retain a single secret value, s.
∙ The certificate only needs to contains a single
ℓ-bit hash code, v.
∙ Knowledge of one private key Ki does not on

its own reveal any information about the other
private keys.
∙ Knowledge of one public key gKw does not

reveal any information about future public keys.
∙ A only needs to send to B a public key and a

certificate.

Finally note that certain optimizations in the public
key verification process are possible if the verifying
node caches a trusted copy of a past public key of the
proving node.

Note that all except the exponentiation-based
scheme comply with the requirements defined in
Section 2.3 — see Table II. However, the hash chain
scheme combines advantages of all the other schemes,
without having their shortcomings — see Tables I and
III. Therefore, this scheme is the preferred solution
and is used in the remainder of the paper. Its inherent
computational complexity is studied in Section 6.

4. Use case

We now present a use case for the hash chain solution
of the previous section. We show how nodes can
use the scheme to generate public keys that can be
authenticated with a unique certificate issued by a CA.

We also propose a solution that permits the generation
of certificates whose authenticity can be verified by
checking a signature that was generated by the CA at
network initialization.

4.1. Registering in the fixed network

As explained in [9], before issuing certificates
for use in providing entity authentication or key
establishment, a CA must first run an identity-proving
process during which the identity of the certificate
requester is verified. In ad hoc networks, we cannot
assume that an administration authority will be present
that can run the identity-proving process. Hence, in
our solution, certificates are issued by a CA situated
in the fixed network — see Figure 4(a). This CA may,
for example, be the network provider which a principal
registers with in order to have his communications
conveyed through a fixed network. The registration
process at a network provider often requires principals
to present valid paper credentials. These credentials
can be used by the network provider to authenticate a
principal prior to generating a certificate. The detailed
authentication process is as follows.

When a node A is in the fixed network, it contacts
a CA in order to synchronize its clock, and obtain
a reliable copy of the system parameters, as defined
in Section 3.1, and KCA, the CA’s public key. The
CA sends the same parameters to all the entities that
request them. When A receives these parameters, it
chooses a secret key s. Note that s is not stored by
A; instead, it is generated from a strong passphrase.
Then A generates the check value v, as defined in (1).

A then sends its identity IDA, the check value v and
the hash code fm+1(s) to the CA, in order to obtain a
certificate that binds these values. The CA next verifies
that A really owns IDA and that no certificate has
been issued that already contains v and fm+1(s). If
all the verifications succeed, then CA sends to A the
certificate CertA:[

IDA, v, f
m+1(s), t0, L, nb keys

]
K−1

CA

(4)

where t0 is the issue time of the certificate, L is an
integer that may be specified by A in the certificate
request or by the CA, nb keys are as defined in
Section 4.4 below, and [. . .]K−1

CA
denotes a signature

generated by the CA using its private key K−1CA. Once
A has received its certificate it does not need to access
the CA again.

A divides time into intervals of equal length L. Each
interval is assigned a key that is generated as defined

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

8 G. KOUNGA, C. J. MITCHELL AND T. WALTER

∏

∏

=

−−

=

−−

=

=

=

m

j

jf

im

j

imK

g

g

gv

0
(

1

0

1)(*

)(sf m
)(1 sf m−

∏

∏

−

−=

s

m

im
sjfsjf

m

imj
sjf

)(

)(
1

)(

)(

)

)(sf im−)(1 sf im +−

Fig. 3. Generation of v∗

Operator’s network

CA

Message exchange

Operator’s network

A

(a) Certificate issue during registration in the fixed network

Isolated

ad hoc network

CA

Operator’s network

A

B

Operator’s network

(b) Entity authentication in the ad hoc network

Fig. 4. From registration to entity authentication

in (2). The mapping between keys and time intervals
is shown diagrammatically in Figure 5.

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 9

… … 1−mK

0T

2−mK

1T

imK −−1

iT

time

0t Lt 1= Lt 2= iLt = Lit)1(+=

Fig. 5. Mapping between private keys and time intervals

4.2. Establishing secure communication
channels in ad hoc networks

During time interval Ti, 0 ≤ i < m, i.e. between times
t = iL and t = (i+ 1)L, A can be authenticated by
B and both can establish an authenticated session key
with each other using the protocol we now describe. A
first sends B:

∙ gKw ,
∙ fw+1(s), and
∙ CertA.

When it receives these values, B first verifies the
CA’s signature on CertA. If it is valid, B determines i
from its local time, the value of L in the certificate, and
the issue time of CertA. B then verifies that fw+1(s)
belongs to the same one-way hash chain as fm+1(s).
If so, B generates v∗, as described in Section 3.4
by (3). Finally, B checks whether v = ℎ(v∗). If the
verifications are successful, B knows that gKw was
generated by the entity that was issued the certificate
CertA by the CA. B now sends its currently valid
public key gKy to A. A can verify the validity of B’s
key using the same method as just described. After A
has validated gKy , A and B will share the following
authenticated Diffie-Hellman session key SK:

SK = (gKw)Ky

= (gKy)Kw

= gKwKy .

SK can be used by A and B to derive shared secret
session keys for mutual authentication, confidentiality,
integrity, etc. The message exchange used to establish
SK is summarized in Figure 6. A does not store SK
and Kw but generates them when they have to be used
and erases them after they have been used. Only gKy

is stored by A during time interval Ti. When Ti is
elapsed gKy becomes invalid and can be erased by A.

The scheme can also be used with an asymmetric
cryptosystem to support public key encryption and
digital signature. A and B may negotiate the

node A node B

,,

, ,

Fig. 6. Messages exchanged by A and B to establish the
authenticated session key SK

cryptosystem to be used when they exchange their
public values.

The information gKw and fw+1(s) released by A
during the time interval Ti does not permit an attacker
to establish an authenticated session key with B or
to impersonate A. To do so, the attacker would need
to discover Kw from gKw during the interval Ti (of
length L). However, this is computationally infeasible
[10]. Moreover, since only A, that knows the correct
passphrase, can generate s, only A can establish a
valid session key SK with B during time interval Ti.

4.3. Generating certificates in ad hoc networks

The scheme defined in Section 3.4 requires nodes
to generate new key pairs during each time interval.
This may not be convenient when, for instance,
a secure exchange is expected to last longer than
one time interval. To deal with that case, we now
define a solution that permits nodes to generate
public key certificates with a very short lifetime that,
nevertheless, last longer than one time interval. This
solution is designed for situations where a node A
knows or is able to evaluate how long a secure
exchange with a node B will last. Therefore, node

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

10 G. KOUNGA, C. J. MITCHELL AND T. WALTER

A is able to specify in its certificate an expiry time
that restricts the validity of that certificates to the
suitable time period. A can also reduce the use of that
certificate to a specific context by, for instance, adding
in the certificate a field containing B’s identity. That
way, B automatically considers that A’s certificate is
invalid as soon as the secure interaction is terminated.
It also makes the certificate invalid when an attacker
tries to use it at node other than B. The authenticity of
these certificates can be verified by checking that they
are correctly linked to a signature generated by the CA
at initialization. Our solution works as follows.

During time interval Ti, A generates a pub-
lic/private key pair PubA/PrivA, and also generates
the certificate Cert2A for PubA, with the following
content:

∙
[
IDA, v, f

m+1(s), t0, L, nb keys
]
K−1

CA

, i.e.
the certificate CertA that was issued by the CA
at initialization;
∙ PubA;
∙ B’s identity
∙ issue time;
∙ expiry time;
∙ A signature generated on the previous fields

using the private key Km−1−i for this time
interval.

The private key Km−1−i used to sign Cert2A
is generated as defined in (2). After signing the
certificate, A deletes Km−1−i and does not generate
it again. This prevents any attacker from being able to
generate a valid certificate.

Then, to be authenticated by B, A sends
Cert2A along with gKw and fw+1 to B. If the
certificates contains his identity, B then verifies
that the expiry time has not passed and that[
IDA, v, f

m+1(s), t0, L, nb keys
]

was signed by
the CA. If so, B uses t0, L and issue time to
determine the current time interval at A. B then
checks the authenticity of gKw as described in Section
3.4 using knowledge of the time interval and fw+1.
If the verification succeeds, then B verifies the
signature generated by A on Cert2A. Finally, if all
the verifications succeed, B knows that Cert2A was
generated by the node that was issued the certificate[
IDA, v, f

m+1(s), t0, L, nb keys
]
K−1

CA

by the CA.
B then considers PubA as valid. The certificate
Cert2A must be validated in Ti and can then be used
until the expiry time of the certificate has passed.

In the case where A stores PubA/PrivA, an
attacker may get the knowledge of this public/private

key pair. However, since s is not stored on the device,
the attacker is not able to generate a new valid
certificate for the key pair. Then, if A has already
terminated an interaction with B, B considers Cert2A
as invalid. Therefore, the attacker cannot impersonate
A. However, if A has not yet terminated an interaction
with B, B still considers Cert2A as valid and the
attacker can impersonate A at B until the expiry
time of the certificate Cert2A has passed. In this
latter case, A can need to inform B that Cert2A
must be considered as invalid. To achieve this A
can send a revocation statement signed with PrivA.
However, as previously discussed, the frequently-
changing topology of an ad hoc network makes that
B may not receive that revocation statement. An
alternative approach requires A not to store PrivA, but
to generate it when needed. As for the key Km−1−i,
PrivA should be erased immediately after it is used.
As a result, an attacker is not able to learn PrivA.
Hence, an attacker is not able to impersonate A
by proving ownership of the public/private key pair
PubA/PrivA to B.

It is important to note that the revocation discussion
does not concern the private key Km−1−i that is
never stored and that is only used once to sign the
certificate Cert2A. It is also important to notice that
if the key pair PubA/PrivA is stored, our solution
significantly reduces the number of nodes that need to
receive a revocation statement — compared to existing
solutions. It also restricts the need for revocation to
the short period of time when the certificate Cert2A
is valid.

4.4. Dealing with time synchronization problems

In the above schemes, A, B and the CA must have
synchronized clocks. This is achieved as part of the
initialization phase, when A and B are connected
to the fixed network. However, subsequently their
clocks will run independently of the CA and the
fixed network. Clock drift between A and B’s clocks
will then mean that, when A and B are in the ad
hoc network, their clocks will no longer be precisely
synchronized. This can make that A’s current time
interval at B is different from A’s current time
interval. The previous implies that the value of i,
computed by B in order to verify that the disclosed
public key is properly linked to v, differs from the
correct value of i that indeed permits to verify this
linkage. Therefore, the authentication of A by B
always fails in this case.

In order to be authenticated by B in this context,
a solution is proposed that requires A to choose a

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 11

Duration d

DurationL

1'
1 /' −

−
mK

m gK

time....

1/1
−

−
mK

m gK 2/2
−

−
mK

m gK

2'
2 /' −

−
mK

m gK

0t

Fig. 7. Taking into account the maximum authorized clock drift d in the mapping between keys and time intervals

parameter d to represent the maximum disparity that
it tolerates between its clock and B’s clock. Then,
during each time interval, A can disclose two public
keys whose validity period starting time is separated
by d, as represented in Figure 7. Each of the disclosed
public keys has a validity time L. Therefore, the
proposed solution allows B to use a valid public key
during a time period (L+ d), i.e. during a time period
increased by d compared to the case where only one
public key is disclosed by A. The Figure 8 illustrates
how the proposed solution makes it possible for B to
authenticate A as long as the clock drift between their
clock is bigger than 0 and less than or equal to d. In
that figure, when A is in the first time interval, it sends
to B the public key gKm−1 , whose validity period goes
from time t = 0 to time t = 1L, and the public key
gK
′
m−1 , whose validity period goes from time t = d

to time t = L+ d. Therefore, the proposed solution
guarantees that at least one of the disclosed public
keys allows B to authenticate A and to establish an
authenticated session key with A in each time interval.
If more than one key must be disclosed during a time
interval, then the CA can specify it in the certificate
using the parameter nb keys.

Compared to the case where A discloses one
public key in each time interval, the proposed
solution increases by a factor nb keys the number
of computations that A has to perform in order to

generate the public keys that it discloses to B in each
time interval L. Therefore, the choice for the value
nb keys must be a trade-off between computational
costs and the practicability of taking into account large
clock drifts. If the use of multiple keys in each time
interval do impacts of the computational cost of the
solution at A, it does not increases the computational
costs at B, as B only needs to validate one public key,
among the two disclosed one, whose validity period
covers A’s current time at B. It may be suitable to
add, in the message that A sends to B, in order to be
authenticated, some fields making it possible for B to
easily identify the validity period covered by each of
the disclosed public keys.

Remark The computational cost of the key
generation and validation solution is discussed in
Section 6.

The security of the schemes given in Section 3
increases when L becomes shorter. However, the
shorter L is, the more precisely nodes need to be
synchronized. Thus the choice for the value of L must
be a trade-off between these two influences. Certain
other constraints also apply to the value of d:

∙ If d is greater than L, then the solution
defined previously does not guarantee that
an authenticated session key can always be

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

12 G. KOUNGA, C. J. MITCHELL AND T. WALTER

A’s time at B with
clock drift > d time

....

1' −mKg

time
....2−mKg

time
....1−mKg

2' −mKg

0t

A’s time at B with
clock drift < d time

....

1' −mKg

time
....2−mKg

time
....1−mKg

2' −mKg

0t

Duration d

DurationL

Current time at the considered node

A’s time at A
time

....

1'
1 /' −

−
mK

m gK

time
....2/2

−
−

mK
m gK

time
....1/1

−
−

mK
m gK

2'
2 /' −

−
mK

m gK

0t

Fig. 8. Effects of clock drift between A and B

established between A and B, if a large disparity
exists between their clocks. This, because the
validity period of the two public keys disclosed
by A can have validity period that do not
necessarily cover A’s current time at B, as
represented in Figure 9;
∙ If d is smaller than L, then the solution

defined previously permits the establishment of
an authenticated session key between A and
B even when a disparity exists between their
clocks. However, if d is too small, then A
may not be able to establish an authenticated
session key with all nodes with which it wants
to exchange confidential messages.

Therefore, d must be smaller than L and must be
chosen by A in such a way that d is as close as possible

to the average existing difference between its clock
and the clocks of other nodes in the network.

5. Related work

We structure the related work section following
the key issue identified in the introduction, i.e.
identity verification, certificate revocation and node
compromise. Before going into detail we elaborate on
the related work in the area of hash chains and hash
chain based authentication.

5.1. Hash chains

One-way hash chains were introduced by Lamport [6].
The initial application was to prevent eavesdroppers
from impersonating a client by replaying intercepted
passwords to a server. A one-way hash chain is

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 13

Duration d

DurationL

Current time at the considered node

Duration d

A’s time at A
d > L

time
....

1'
1 /' −

−
mK

m gK

time
....2/2

−
−

mK
m gK

time
....1/1

−
−

mK
m gK

2'
2 /' −

−
mK

m gK

0t

A’s time at B with
d > L and
clock drift < d time

....

1' −mKg

time
....2−mKg

time
....1−mKg

2' −mKg

0t

Fig. 9. Effects of clock drift between A and B when d > L

generated by a client by applying a cryptographic hash
function f repeatedly to its secret s. Each element in
the chain is a different password that the client can use
at each new authentication. The passwords are linked
to s and to each other by:

Ki = f i(s),

Ki+1 = f(Ki),

Kj = f j−i(Ki). (5)

where 0 ≤ i ≤ m, 1 ≤ j ≤ m, i < j, and f j(Ki)
means that the cryptographic hash function f is
applied j times to Ki. For the ith authentication
to the server the client uses the password Km−i.
Basically, our hash chain scheme builds on this
scheme although the elements of the hash chain are
different and it does not share the following drawback.
The server authenticates the client by verifying
that Km−i is linked to Km−i+1, i.e. the password
used at the previous authentication, by the relation
defined in (5). Since cryptographic hash functions are
computationally hard to invert, an attacker is not able
to generate a valid password from a compromised one.
However, as it is well known (see, for example, [11])

this scheme is subject to server impersonation attacks.
On the other hand, the solution proposed in this paper
is not subject to these attacks because the client never
discloses to the server a key that alone permits the
server to impersonate the client towards another third
party.

The TESLA broadcast authentication protocol [7]
relies on the previous scheme to authenticate sources
of broadcast packets. However, the solution does not
provide the means to bootstrap entity authentication.
This must be provided by a regular data authentication
system at session setup [7, 12]. But, as discussed later
in this section, regular data authentication systems
require a trusted party - e.g. a TTP or an entity
known in advance - to be always reachable in order
to allow the establishment of shared secret keys or
the verification of certificates’ validity. However, the
foregoing cannot be guaranteed in ad hoc networks.
Our solution does not have this limitation as it does
not require nodes to interact with a third party in order
to be able to authenticate and establish shared secret
keys.

A solution to this bootstrapping problem is
proposed in [5], where a node has a number of

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

14 G. KOUNGA, C. J. MITCHELL AND T. WALTER

certificates issued by a CA. Each certificate binds a
node’s identity to the commitment (the most recently
generated key) of its one-way hash chain. More
specifically, A chooses a secret key x0 that is the
anchor of the chain. Given a secure cryptographic
hash function ℎ, a system parameter m ≥ 1, and
xi = ℎi(x0) (i ≥ 0), then the last generated hash key
x2m from A’s chain is contained in A’s certificate.
This certificate also contains the issue time and a
random seed. A divides time into intervals of equal
length L, where L is public, and assigns two keys
of its one-way hash chain to each interval. During
interval Ti (0 ≤ i < m), between times t = iL and
t = (i+ 1)L, A uses keys x2m−2i−1 and x2m−2i−2

†

from its chain to enable B to authenticate A. B
can verify the correctness of these two values by
first verifying the certificate to get a trusted copy
of x2m, and then iterating the cryptographic hash
function the appropriate number‡ of times on the
disclosed keys and comparing the result with the
value x2m. However, once x2m−2i−1 and x2m−2i−2
are disclosed, an attacker can replay them to an
entity C to pretend it is A. To reduce this risk, B
must ask A to use a certificate with a specific seed
value. As a consequence, an attacker can only replay
previously disclosed keys if it is asked by a verifying
entity to present a certificate containing a seed already
requested during the current time period or during
the previous one. The scheme has the following
interesting properties:

∙ Nodes only need to hold a single secret (x0);
∙ Only a single public value needs to be included

in the certificate;
∙ Knowledge of the keys released in previous time

intervals does not reveal any information about
keys used in later time intervals;

However, since keys must be disclosed to perform
entity authentication, they cannot be used to establish a
secure communications channel. This is a shortcoming
that is overcome by our scheme as in our solution keys
(from the hash chain) are not directly disclosed but
instead used to generate public keys that are disclosed
to perform entity authentication.

When they are used in ad hoc networks, existing
hash chain based authentication solutions all have the

†These are sent with the certificate containing x2m.
‡The number of times the cryptographic hash function has to be
applied to the disclosed values is time dependent. Indeed, since all
entities are synchronized with the CA that issued their certificates,
that number can be determined from the certificate issue time,
the current local time, the number of keys disclosed in each time
interval, and L.

limitations discussed in the foregoing. To the best of
our knowledge, our solution is the only one that has
been proposed and that does not have these limitations.

5.2. Identity verification

The goal of a certificate is to prove to a verifying
principal that the binding between an identity and
a key is authentic. It is achieved with the signature
that a TTP or an introducer generates on a certificate
if it contains a valid “identity-key” binding. By
successfully verifying the validity of this signature, a
verifying principal gains confidence that the certificate
is authentic. To permit the authenticity of certificates
to be verified in ad hoc networks three approaches
have been proposed. Tounsi et al. [13], Sanzgiri et
al. [14] and Weimerskirch and Westhoff [5] propose
solutions that rely on certificates issued in fixed
networks. This permits certificates to be signed by
some CAs that cannot be accessed in ad hoc networks.
However, it does not permit nodes to be issued new
certificates when they are in ad hoc networks, although
this can be necessary. This is for instance the case
when anonymity has to be provided [15]. This is an
issue that is addressed by our solution as we discussed
in Section 4.3.

In order to permit certificates to be issued in ad hoc
networks, a proposed approach has been to adapt PKI.
Zhou and Haas [16], for instance, define a solution
that exploits threshold cryptography [17, 18] and that
proposes to distribute the issue of certificates to n
special nodes, called servers. However, even if there
are more servers in the network than the number to
contact in order to obtain a full signature, the dynamics
of nodes do not guarantee that enough servers are
always reachable. Luo et al. [19] as well as Kong et
al. [20] solve this problem by distributing the CA’s
services to all nodes in the network without relying on
an online TTP. However, as will be seen further below,
these solutions have other limitations.

An alternative approach is to adapt PGP since PGP
does not rely on a TTP to issue certificates. This is
the approach used by Capkun et al. in [21] and Li et
al. in [22]. In [21], for instance, it is considered that
nodes know their neighbors and always issue them
certificates with valid user-key binding. All nodes that
have signed a certificate are assumed to be honest
and are trusted in the same way. However, there is
no guarantee that nodes that are known in advance
are always present in ad hoc networks, nor that nodes
always behave properly. PGP does not rely on such
an assumption. Known principals are not all trusted to

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 15

properly validate “identity-key” bindings. Trust levels
are used that differentiate fully trusted introducers
from less trusted introducers. Furthermore, a trust
depth is specified that defines whether the trust given
to a principal can be propagated to the principals that
this principal trusts. All these issues are avoided by our
proposed solution.

Some solutions such as [16, 23, 24] do not
explain how identities are validated at registration.
Our solution does not require trust in any node in
the ad hoc network. Without any validation, it cannot
be guaranteed that a secure communication channels
is established with the intended node when using a
non-validated certificate or non-validated long term
secret key. Luo et al. tackle this problem in [19]
by relying on human perception. However, if human
perception is used in ad hoc networks, then only
nodes operated by individuals that know each other are
able to authenticate. Similarly, Stajano [25] proposes
a solution that relies on a physical and electronic
contact to transfer the bits of the secret key from
one node to another one. The imprinting has to
be performed before entering the ad hoc network.
Securely transmitting the bits of a secret key does
not permit binding of a secret to a valid principal’s
identity.

Luo et al. alternatively propose in [19] to rely on
biometrics. However, the use of biometrics to validate
identities also introduces concerns as during the
enrollment process biometric characteristic has to be
collected as a template [26]. The biometric templates
of all principals that will have to be authenticated
must be stored on the node. This imposes storage
requirements on the node that are avoided by the
proposed solution.

Deng et al. [27] and Bohio and Miri [28] propose
the use of identity based encryption (IBE). IBE was
first introduced by Shamir in [29] but the first efficient
IBE scheme was defined by Boneh and Franklin in
[30]. It is a public key cryptosystem where public keys
are arbitrary strings, which represent their owners’
identities. The initial motivation for IBE was to
eliminate the need for directories and certificates [31].
However, the private key generator (PKG), like the CA
in a PKI, is a central entity whose access cannot be
guaranteed in ad hoc networks. Therefore, the issue of
identity based private keys in ad hoc networks present
the same limitations as the issue of certificates in ad
hoc networks.

The above analysis shows that solutions previously
proposed to validate identities and to issue certificates
in ad hoc networks introduce issues that remain

unsolved but which are addressed by our proposed
solution.

5.3. Certificate revocation

Some solutions such as [16, 32] do not define any
method for managing revocation. Three approaches
have been proposed in the literature to manage revo-
cation and the distribution of revocation information
in ad hoc networks. In this section we discuss these
approaches. Time based revocation as allowed by IBE
reduces the need for revocation. However, it does not
necessarily make it disappear.

For example, if the validity period is rather long,
e.g. a year, then the emitter may need to revoke its
public key before the end of the year. In that case, the
need for revocation is the same as that when normal
certificates are used. But when the validity period
is very short, then the need for revocation can be
significantly reduced as in the solution discussed in
this paper.

Another approach, used in [13, 14, 20, 21, 22],
relies on the emission of revocation statements, the
storage of these statements by receiving nodes into
CRLs and the exchange of these CRLs between
nodes to spread the list of revoked certificates in the
network. However, possible partitions in the network
can prevent nodes from updating their CRLs.

Some solutions rely on advice from other nodes
to evaluate the validity of a certificate. The solution
proposed in [19], for example, uses the monitoring
of neighbors to detect misbehaving nodes whose
certificates need to be revoked. This approach relies
on the interpretation that nodes have of other
nodes’ behavior. Therefore, this approach can lead to
situations where falsely detected nodes are isolated
from the network.

In [33, 34] an approach is used that is based
on a trust evaluation mechanism which permits a
node from a given cluster — a group of nodes
— to authenticate a node from another cluster.
In that approach, a certificate is deemed valid as
soon as there is a majority of nodes that have
sent positive recommendations for it. But since no
solution is provided to permit nodes to verify the
revocation status of a certificate, those nodes cannot
know whether a certificate has been revoked or not.
Therefore, the fact that a majority of nodes vouch for
a certificate cannot prove its validity.

In summary, none of the approaches identified in
this section and proposed in the literature guarantees
that nodes in ad hoc networks never use certificates

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

16 G. KOUNGA, C. J. MITCHELL AND T. WALTER

that have been revoked. Our approach addresses the
revocation implicitly as certificates and key pairs are
short-lived. A node stops using a public key until a
new key pair becomes available.

5.4. Node compromise

Note that of the above mentioned schemes, only that
of Raya and Hubaux [15] takes into account the lack
of physical protection of mobile devices by explicitly
protecting the public/private key pairs using tamper-
resistant hardware. However, as previously noted, such
hardware is not available in every mobile device. We
deal with this problem as the secret used to generate
the hash chain is never stored on the mobile device but
is erased after it is being used.

6. Performance evaluation

6.1. Evaluation parameters

In order to evaluate the performances of our solution,
that relies on the hash chain scheme, we implemented
the hash chain scheme in Java and tested it on a PC
as well as a mobile phone. The PC had the following
system parameters:

∙ A 3.40 GHz Pentium 4 CPU;
∙ 1 GB RAM;
∙ Windows XP operating system.

The mobile phone had the following configuration:

∙ A 130 DMIPS ARM7 CPU;
∙ 80 MB memory;
∙ Symbian operating System 7.0S platform with

J2ME Personal Profile.

The experimentation aimed at identifying whether
our solution can be used for authentication and
signature generation and verification.

We measured the maximum time needed by the
devices to:

∙ Generate the private key Km−1 when m
increases;

∙ Generate the public key gKm−1 from Km−1
when m increases;

∙ Generate a digital signature with Km−1 when
m increases;

∙ Verify a digital signature with gKm−1 when m
increases.

0

50

100

150

200

250

300

350

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of private key generation on the PC when m increases

Duration of private key generation on the PC

Fig. 10. Duration of private key generation on the PC

0

1000

2000

3000

4000

5000

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of public key generation on the PC when m increases

Duration of public key generation on the PC

Fig. 11. Duration of public key generation on the PC

We have not measured the time needed to verify a
public key because this can be deduced from the time
needed to generate a public key.

The parameters used for our experimentation are
given in Table IV§.

6.2. Results and comments

6.2.1. Duration of public and private key
generation

§To simplify the evaluation, we have chosen the same hash function
for f and ℎ

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 17

0

5000

10000

15000

20000

25000

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of private key generation on the mobile phone when m increases

Duration of private key generation on the mobile phone

Fig. 12. Duration of private key generation on the mobile
phone

50000

100000

150000

200000

250000

300000

350000

400000

450000

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of public key generation on the mobile phone when m increases

Duration of public key generation on the mobile phone

Fig. 13. Duration of public key generation on the mobile
phone

The generation of the private key is faster than
the generation of the public key (see Figures 10
– 13 for the respective figures for the PC and the
mobile phone). This is explained by the fact that the
multiplication operation is less expensive than the
exponentiation operation.

With much more CPU and memory resources than
the mobile phone, the time needed by the PC to
generate keys goes:

∙ From 0.5 ms to 327 ms for the private key;
∙ From 55 ms to 5 s for the public key.

6

8

10

12

14

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of signature generation on the PC when m increases

Duration of signature generation on the PC

Fig. 14. Duration of signature generation on the PC

while the time needed by the mobile phone to generate
keys goes:

∙ From 78 ms to 25 s for the private key;
∙ From 4.9 s to 472.6 s for the public key.

These results show that our solution can be used on
any PC. They also show that our solution can be used
on a mobile phone provided a suitable value is chosen
for m. m must be defined based on the lifetime of the
certificate issued by the CA and L. If, for instance, the
CA issues an initial certificate that has a lifetime of
one year and if node security policies require new key
pairs to be used every week, then defining m = 52 is
sufficient.

Our results show that for m = 60, the time needed
by the mobile phone to generate the keys are:

∙ 547 ms for the private key;
∙ 28.7 s for the public key.

Public key generation on the mobile phone is quite
long (i.e. 28.7 s). However, the newest generation
of mobile phones are equipped with CPUs offering
much higher performance; for instance, the ARM11
MPCore CPU [35] delivers up to 2600 DMIPS, i.e. 8
times more powerful than the mobile phone we used
for our evaluation. This allows us to conclude that key
generation and verification will be much faster with
newer mobile phones.

6.3. Signature generation and verification

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

18 G. KOUNGA, C. J. MITCHELL AND T. WALTER

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of signature generation on the mobile phone when m increases

Duration of signature generation on the mobile phone

Fig. 15. Duration of signature generation on the mobile
phone

The time needed for signature generation and
verification is important, since nodes may need to
generate a digital signature to be authenticated or
may need to verify a digital signature to authenticate
other nodes. As shown in Figures 14 and 15, the time
needed for signature generation increases slowly when
m increases. It takes less than 9 ms on the PC while it
takes less than 750 ms on the mobile phone. The time
needed for signature verification is almost stable as m
increases. It takes less than 12 ms on the PC, while it
takes less than 2s on the mobile phone. These results
show that key pairs generated with our solution can be
used for signature generation and verification on a PC
as well as on a mobile phone.

7. Summary and Conclusions

In an ad hoc networks, nodes may need to generate
new public keys. At the same time, because of the
absence of a permanent communication infrastructure,
a CA that can issue certificates for these public
keys may not be reachable. This can prevent the
establishment of secure communication channels.
Previously proposed solutions do not guarantee that
identities contained in certificates are valid or, when
they do, they either require that nodes store many
certificates in advance or rely on neighbors to validate
user-key bindings. However, the first approach may
require a large storage space to be available, while, in
the second approach, neighbors are not always able to
verify a node’s identity before certificate issue.

0

2

4

6

8

10

12

14

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of signature verification on the PC when m increases

Duration of signature verification on the PC

Fig. 16. Duration of the signature verification on the PC

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 200 300 400 500 600 700 800 900 1000

tim
e

in
 m

s

m

Duration of signature verification on the mobile phone when m increases

Duration of signature verification on the mobile phone

Fig. 17. Duration of the signature verification on the mobile
phone

In this paper we have defined a solution that
permits nodes in ad hoc networks to generate, on-
demand, a number of public/private key pairs and
certificates without relying on their neighbors and
without having to generate and store in advance all
the keys and certificates that they may use in the
future. The solution relies on a novel scheme that
permits the verifiable binding of public/private key
pairs to a single hash code, which existing solutions
do not permit. Our solution has the nice property
that public/private key pairs change over time. A
hash chain is used to generate private keys and, from
them, derive public keys. The verification of public

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

GENCAP 19

keys is simple, and only requires the proving node
to disclose the currently valid public key as well
as a hash code. Using these disclosed values, the
verifying node is able to assess the validity of the
public key by linking it to the check value included in
the proving node’s certificate. Moreover, as shown by
our performance evaluation, the approach is feasible
for computationally limited devices such as mobile
phones.

The security of the hash chain scheme depends on
the protection of the secret value s. Given that s is
never stored on the system, but is generated from
a passphrase, biometric trait or other user-specific
means when needed, then a compromised node can
only be misused until the current public/private key
pair expires, in the case where these private keys
are stored on the system. When they are not, a
compromised node can only be misused if the attacker
succeeds in breaking a public key. However, because
of the cryptographic properties of the basic elements
used, including hash functions, hash chains and how
public keys are derived, breaking either keys or
hash functions is not possible (i.e. computationally
infeasible).

References

1. Housley R, Polk W, Ford W, Solo D. Internet X.509 public key
infrastructure certificate and certificate revocation list (CRL)
profile. RFC 3280 April 2002.

2. Myers M, Ankney R, Malpani A, Galperin S, Adams C. X.509
Internet Public Key Infrastructure Online Certificate Status
Protocol - OCSP. RFC 2560 June 1999.

3. Papadimitratos P, Haas ZJ. Proceedings of the scs com-
munication networks and distributed systems modeling and
simulation conference (cnds 2002). 2002; 193–204.

4. Hubaux JP, Buttyán L, Capkun S. The quest for security in
mobile ad hoc networks 2001.

5. Weimerskirch A, Westhoff D. Identity certified authentication
for ad–hoc networks. SASN ’03: Proceedings of the 1st ACM
workshop on Security of ad hoc and sensor networks, ACM
Press, New York, NY: New York, NY, USA, 2003; 33–40, doi:
http://doi.acm.org/10.1145/986858.986864.

6. Lamport L. Password authentication with insecure communi-
cation. Commun. ACM 1981; 24(11):770–772, doi:http://doi.
acm.org/10.1145/358790.358797.

7. Perrig A, Canetti R, Tygar J, Song D. The TESLA Broadcast
Authentication Protocol. CryptoBytes 2002; 5(2):2–13.

8. Merkle RC. A Digital Signature Based on a Conventional
Encryption Function. Advances in Cryptology — CRYPTO
’87, Lecture Notes in Computer Science, vol. 293, Pomerance
C (ed.), Springer-Verlag, Berlin, 1988; 369–378.

9. Ellison C, Schneier B. Ten Risks of PKI: What You’re
Not Being Told About Public Key Infrastructure. Com-
puter Security Journal 2000; 16(1):1–7. URL http://
www.schneier.com/paper-pki.pdf, accessed the 26
September 2009.

10. Diffie W, Hellman ME. New Directions in Cryptography.
IEEE Transactions on Information Theory 1976; IT–
22(6):644–654.

11. Mitchell CJ, Chen L. Comments on the S/KEY user
authentication scheme. ACM Operating Systems Review
October 1996; 30(4):12–16.

12. Perrig A, Song D, Canetti R, Tygar JD, Briscoe B. Timed
Efficient Stream Loss-Tolerant Authentication (TESLA):
Multicast Source Authentication Transform Introduction. RFC
4082 June 2005.

13. Tounsi M, Hamdi M, Boudriga N. A public key–based
authentication framework for multi–hop ad hoc networks. 12th
IEEE Mediterranean Electrotechnical Conference (MELE-
CON 2004), vol. 2, 2004; 775–778.

14. Sanzgiri K, LaFlamme D, Dahill B, Levine B, Shields C,
Belding-Royer E. Authenticated routing for ad hoc networks.
IEEE Journal on Selected Areas in Communications, vol. 23,
2005; 598–610.

15. Raya M, Hubaux JP. The security of vehicular ad hoc
networks. SASN ’05: Proceedings of the 3rd ACM workshop
on Security of ad hoc and sensor networks, ACM Press: New
York, NY, USA, 2005; 11–21, doi:http://doi.acm.org/10.1145/
1102219.1102223.

16. Zhou L, Haas ZJ. Securing ad hoc networks. IEEE Network
1999; 13(6):24–30, doi:http://dx.doi.org/10.1109/65.806983.

17. Desmedt YG. Threshold Cryptography. European Transac-
tions on Telecommunications, vol. 5, 1994; 449–457.

18. Desmedt YG, Frankel Y. Threshold Cryptosystems. CRYPTO
’89: Proceedings of the 9th Annual International Cryptology
Conference on Advances in Cryptology, Springer-Verlag:
London, UK, 1990; 307–315.

19. Luo H, Zerfos P, Kong J, Lu S, Zhang L. Self-securing ad hoc
wireless networks 2002; :567–574.

20. Kong J, Zerfos P, Luo H, Lu S, Zhang L. Providing Robust and
Ubiquitous Security Support for Mobile Ad Hoc Networks.
ICNP ’01: Proceedings of the Ninth International Conference
on Network Protocols, IEEE Computer Society: Washington,
DC, USA, 2001; 251.

21. Capkun S, Buttyán L, Hubaux JP. Self-organized public-key
management for mobile ad hoc networks. IEEE Transactions
on Mobile Computing 2003; 2(1):52–64, doi:http://dx.doi.org/
10.1109/TMC.2003.1195151.

22. Li R, Li J, Kameda H, Liu P. Localized public-key
management for mobile ad hoc networks. In proceedings of the
Global Telecommunications Conference 2004, vol. 2, 2004;
1284–1289.

23. Pirzada AA, McDonald C. Kerberos assisted authentication
in mobile ad-hoc networks. ACSC ’04: Proceedings of the
27th Australasian conference on Computer science, Australian
Computer Society, Inc.: Darlinghurst, Australia, Australia,
2004; 41–46.

24. Tsai YR, Wang SJ. Routing security and authentication
mechanism for mobile ad hoc networks. In proceedings of the
IEEE 60th Vehicular Technology Conference, vol. 7, 2004.

25. Stajano F. The Resurrecting Duckling – What Next? Revised
Papers from the 8th International Workshop on Security
Protocols, Springer–Verlag: London, UK, 2001; 204–214.

26. Newton EM, Woodward JD. Biometrics: A technical primer.
RAND, 2001.

27. Deng H, Mukherjee A, Agrawal DP. Threshold and
Identity-based Key Management and Authentication for
Wireless Ad Hoc Networks. ITCC ’04: Proceedings of the
International Conference on Information Technology: Coding
and Computing (ITCC’04) Volume 2, IEEE Computer Society:
Washington, DC, USA, 2004; 107.

28. Bohio MJ, Miri A. An Authenticated Broadcasting Scheme
for Wireless Ad Hoc Network. CNSR ’04: Proceedings of
the Second Annual Conference on Communication Networks
and Services Research (CNSR’04), IEEE Computer Society:
Washington, DC, USA, 2004; 69–74.

29. Shamir A. Identity–based cryptosystems and signature
schemes. Proceedings of CRYPTO 84 on Advances in

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

http://www.schneier.com/paper-pki.pdf
http://www.schneier.com/paper-pki.pdf

20 G. KOUNGA, C. J. MITCHELL AND T. WALTER

cryptology, Springer–Verlag New York, Inc.: New York, NY,
USA, 1985; 47–53.

30. Boneh D, Franklin M. Identity–Based Encryption from the
Weil pairing. SIAM Journal of Computing, vol. 32, 2003; 586–
615.

31. Gagné M. Identity-Based Encryption: a Survey. RSA
Laboratories CryptoBytes, vol. 6, 2003; 10–19.

32. Weimerskirch A, Thonet G. A distributed light–weight
authentication model for ad–hoc networks. ICISC ’01:
Proceedings of the 4th International Conference Seoul
on Information Security and Cryptology, Springer–Verlag:
London, UK, 2002; 341–354.

33. Ngai E, Lyu M. Trust- and Clustering-Based Authentication
Services in Mobile Ad Hoc Networks. ICDCS Workshops,
2004; 582–587.

34. Ngai E, Lyu M, Chin RT. An authentication service against
dishonest users in mobile ad hoc networks. Proceedings of the
2004 IEEE Aerospace Conference, vol. 2, 2004; 1275–1285.

35. ARM11 MPCore. URL http://www.arm.com/
products/CPUs/ARM11MPCoreMultiprocessor.
html, accessed the 21 May 2008.

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html
http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html
http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html

GENCAP 21

Table I. Advantages of the schemes

Schemes Advantages

Very simple scheme

∙ Only a single secret value needs to be retained;
∙ The certificate only needs to contains a single ℓ-bit hash code, v;
∙ Knowledge of one public key does not reveal any information about the other public keys;
∙ Knowledge of one private key does not reveal any information about the other private keys.

Improved simple scheme Same advantages as the very simple scheme. Compared to the very simple scheme, the communication cost is
reduced from m hash codes to log2(m) hash codes.

Exponentiation-based scheme

∙ Only a single secret value needs to be retained;
∙ The certificate only needs to contains a single ℓ-bit hash code, v;
∙ Knowledge of one public key does not reveal any information about future public keys;
∙ Only a public key and a certificate need to be sent to a communicating party.

Hash chain scheme Same advantages as the exponentiation-based scheme. But compared to the exponentiation-based scheme, the hash
chain scheme additionally meets the requirement that knowledge of one private key does not on its own enable the
computation of any other private keys.

Table II. Fulfillment of requirements

Property Very simple scheme Improved simple scheme Exponentiation-based
scheme

Hash chain scheme

Single secret value Yes Yes Yes Yes
Linking key pairs by hash
function

Yes Yes No Yes

Discrete logarithm-based
public key cryptosystem

Yes Yes Yes Yes

Unlinked private keys Yes Yes No Yes
Verification of public key
against hash code

Yes Yes Yes Yes

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

22 G. KOUNGA, C. J. MITCHELL AND T. WALTER

Table III. Shortcomings of the proposed schemes

Schemes Shortcomings
Very simple
scheme

m− 1 hash codes must be pub-
lished in order to verify the validity
of one public key.

Improved simple
scheme

Compared to the very simple
scheme, it doubles the storage
requirements for the entity that is
authenticated.

Exponentiation-
based scheme ∙ Public/private key pairs are

not linked by a crypto-
graphic hash function.

∙ Knowledge of one private
key is sufficient to deter-
mine all the other private
keys.

Table IV. Parameters used for the experimentation

Parameter type Value
Public key length 1024 bits
Signature algorithm DSA
one-way hash function f SHA-1
one-way hash function ℎ SHA-1
m minimum value 10
m maximum value 1000
s length 160 bits

Copyright c⃝ 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–20 (2009)
DOI: 10.1002/sec

	1 Introduction
	1.1 Contributions of the paper
	1.2 Outline of the paper

	2 Problem statement
	2.1 Proposed Approach
	2.2 Issues to solve
	2.3 Requirements

	3 Generating a one-way hash chain of public/private key pairs
	3.1 A very simple scheme
	3.1.1 Specification
	3.1.2 Properties
	3.1.3 Limitations

	3.2 An improved simple scheme
	3.2.1 Specification
	3.2.2 Properties
	3.2.3 Limitations

	3.3 An exponentiation-based scheme
	3.3.1 Specification
	3.3.2 Properties
	3.3.3 Limitations

	3.4 A hash chain scheme
	3.4.1 Specification
	3.4.2 Properties

	4 Use case
	4.1 Registering in the fixed network
	4.2 Establishing secure communication channels in ad hoc networks
	4.3 Generating certificates in ad hoc networks
	4.4 Dealing with time synchronization problems

	5 Related work
	5.1 Hash chains
	5.2 Identity verification
	5.3 Certificate revocation
	5.4 Node compromise

	6 Performance evaluation
	6.1 Evaluation parameters
	6.2 Results and comments
	6.2.1 Duration of public and private key generation

	6.3 Signature generation and verification

	7 Summary and Conclusions

