
New Architectures for Identity Management —

Removing Barriers to Adoption∗

Haitham S Al-Sinani and Chris J Mitchell
Information Security Group

Royal Holloway, University of London, UK
Haitham.Al-Sinani.2009@rhul.ac.uk me@chrismitchell.net

November 8, 2011

Abstract

In recent years a large number of identity management systems
have been proposed. Unfortunately, although these systems offer the
possibility of significantly improving user security, they have not been
widely adopted, typically because the cost of adoption is too high for
the involved parties. In this talk we consider the problem of design-
ing identity management systems which offer security advantages but
are yet easy to adopt. This involves designing combinations of secu-
rity protocols and client machine software architectures that support
secure identity management protocols in ways that offer simple and
low cost migration paths. We describe a client-based identity manage-
ment tool we call IDSpace, designed to be easy to adopt, and which
provides a single user interface and user experience for user authen-
tication, whilst supporting a range of existing identity management
technologies. Operation of IDSpace with certain existing systems is
described.

Keywords: CardSpace; identity management; identity selector; user
authentication

1 Introduction

1.1 The Need for Authentication

Authentication of human users is a fundamental security requirement; in-
deed, it could be argued that it is the fundamental requirement. Despite
its importance, it is almost universally acknowledged that providing user

∗A very similar paper was presented at the EuroPKI ’11 Workshop, held in Leuven,
Belgium in September 2011, and will be published in the proceedings of that event.

1



authentication remains a huge practical problem. In practice, as many ob-
servers have noted (see, for example, Herley et al. [15]), we are still using
passwords almost universally. Again as widely acknowledged, the use of
passwords has many shortcomings, not least because users today have so
many Internet relationships, all requiring authentication. In such a context,
password re-use and use of weak passwords are almost inevitable.

A common approach to addressing this problem is to propose yet another
new way of achieving user authentication, possibly involving a Public Key
Infrastructure (PKI) [1]. However, there are already many good technolog-
ical solutions. Perhaps the real problem is the insufficiently broad adoption
of the solutions we already have. If so, this is partly a business and socio-
logical issue, but perhaps it is also a problem which requires new technical
thinking.

It is easy for those of us providing technological solutions to claim that
this is not our problem. We provide the technology, and the business and
commercial world should just get on with adopting it. However, real life
is not so simple. We in the academic world should be thinking about how
to devise technological solutions which are easier to adopt. As always, key
issues for easy adoption are transparency, ease of use, and backward com-
patibility, and these factors have played a large part in the design of the
system we describe here.

1.2 Identity Management

Identity (ID) management systems [8, 9, 28, 29] have been designed to sim-
plify user authentication. An ID management system enables an Identity
Provider (IdP) to support authentication of a User (and assertion of user at-
tributes) to a Service Provider (SP). Recent years have seen the emergence
of a wide range of such systems, including OpenID [24, 26], Liberty1 [25],
Shibboleth [17, 18], CardSpace [10, 22] and OAuth [16]. Each system has its
own set of protocols governing communications between the main parties.
As well as its own protocols, each system may also have a unique supporting
infrastructure, including public key certificates, shared keys, passwords, etc.
Some systems have gained a limited amount of traction recently, e.g. the use
of OpenID in some sectors and Facebook’s adoption of OAuth (Facebook
Connect). However, the systems that have been most widely used also pos-
sess the most significant security issues (e.g. phishing vulnerabilities), and
no system has broad penetration into the user community.

Many ID management systems are susceptible to phishing attacks, in
which a malicious (or fake) SP redirects a user browser to a fake IdP. The
user then reveals to the fake IdP secrets that are shared with a genuine IdP.

1The Liberty Alliance specifications have been input to the Kantara Initiative (http:
//kantarainitiative.org/)

2



This arises because, in the absence of a system-aware client agent, schemes
rely on browser redirects.

A further problem faced by an end user is that the user experience of ev-
ery ID management system is different. It is widely acknowledged that users
fail to make good security decisions, even when confronted with relatively
simple decisions [19]. The lack of consistency is likely to make the situation
much worse, with users simply not understanding the complex privacy- and
security-relevant decisions that they are being asked to make.

Finally, when using third party IdPs which provide assertions about
user attributes, there is a danger that a user will damage their privacy by
revealing attributes unintentionally to an SP. This is a particular threat
when using systems like OAuth (e.g. as instantiated by Facebook Connect).
In general, getting privacy settings right is highly non-trivial.

1.3 A New Approach

It is tempting to try to devise another new scheme which has the practi-
cal advantages of OAuth and OpenID, but yet provides robust protection
against phishing and privacy loss. That is, we might wish to devise a client-
based scheme with the user convenience of other systems, but which some-
how avoids the fate of CardSpace2. However, it seems that a new solution
is highly unlikely to succeed when others have failed (especially given that
systems such as CardSpace have had the support of a large corporation and
incorporate very attractive features). Moreover, a new system is likely to
create yet another different user experience, increasing the likelihood of se-
rious mistakes by end users. This suggests that devising yet another new
system may not be the right approach.

The goal of this paper is to propose a new approach to the user au-
thentication problem. It does not involve proposing any new protocols or
infrastructures. The goal is to try to make it easier to use existing systems,
and also to make their use more secure (including resistance to phishing)
and privacy-enhancing (not least through the provision of a consistent user
interface and an explicit user consent procedure).

The scheme we propose involves a client-based user agent. This is a
single tool which supports a wide range of ID management systems yet
provides a single interface to the user. The consistent user interface should
maximise user understanding of what is happening and thereby reduce the
risk of errors and increase user confidence. It also avoids the need for passive
browser redirects, hence mitigating phishing attacks.

2Despite its adoption as an OASIS standard [23], in early 2011 Microsoft made a state-
ment (http://blogs.msdn.com/b/card/archive/2011/02/15/beyond-windows-cardspace.aspx)
implying that the project will not be pursued further.

3



1.4 CardSpace

One motivation for the novel scheme arises from consideration of CardSpace
(and related schemes such as Higgins (www.eclipse.org/higgins). Before
proceeding we thus need to briefly describe CardSpace.

CardSpace acts as a client-based agent, and provides a consistent card-
based user interface known as the Identity Selector. That is, sets of user cre-
dentials (relationships with IdPs) are represented to users as cards. CardSpace
also defines a set of protocols for interactions between IdPs, Clients (user
machines) and SPs. The user, interacting with a browser via the identity
selector, may have identities issued by one or more IdPs. Each identity is
represented by an InfoCard held by the identity selector, and this InfoCard
is the means by which the user interacts with the identity selector to choose
which identity to use. Each IdP runs a Security Token Service (STS), to
generate security tokens. A Self-issued Identity Provider running on the
client platform is also provided to allow use of self-issued tokens.

Before issuing a token, an IdP will typically need to authenticate the
user. This user authentication takes place via the local CardSpace software.
There are two key advantages of such an approach: it provides a consistent
user experience, and it helps to limit the possibility of phishing attacks.

The user interface of CardSpace and the underlying communications
protocols are not inherently tied together. It is thus possible in principle
to keep the simple/intuitive user interface, and use it as the front end for
a tool which manages user credentials in a consistent way regardless of the
underlying ID management system. Credential sets can then identify with
which ID management system (or systems) they should be used. For exam-
ple, each credential set could be stored as a self-describing XML document.
Indeed, these credential sets could include username/password pairs. This
series of observations provides the basis for the IDSpace scheme, which we
describe next.

1.5 Organisation

The remainder of the paper is organised as follows. Section 2 presents a
high-level description of IDSpace; this is followed in section 3 by a speci-
fication of its architecture. Section 4 discusses a number of key functions
that an IDSpace-conformant system must provide. The detailed operation
of IDSpace is given in Section 5. Section 6 describes instantiations of the
IDSpace architecture when operating with specific examples of existing ID
management systems. Finally, section 7 highlights possible future research
directions.

4



2 IDSpace

We now describe IDSpace, the name of which pays homage to CardSpace.
IDSpace is an architecture for a client-based ID management tool that op-
erates in conjunction with a client web browser. A tool conforming to the
architecture provides a user-intuitive and consistent means of managing a
wide range of types of digital identities and credentials for user web ac-
tivities. The IDSpace architecture is designed to support all existing ID
management protocols, and can be used to replace existing ID manage-
ment client software, including the CardSpace [10, 22], and Higgins3 clients,
Liberty-enabled client software [21], and client-based password managers.

It is important to observe that IDSpace is not an ID management system,
at least in the normal sense of the term. Instead it is an architecture for
a client system which enables the use of a multiplicity of ID management
protocols with maximal transparency to the user (avoiding the need to install
multiple ID management clients). The IDSpace architecture is designed so
that conformant tools are able to work with all existing Internet SPs and
IdPs without any changes to their current operation. That is, the system is
transparent to all third parties.

The IDSpace architecture is designed to be platform-independent, and a
prototype implementation is being developed (a partial Windows-based pro-
totype is already operational). Implementations should be capable of being
deployed on Windows, Unix, Mac, and smart phone-based platforms with
minimal changes. Key parts of the system can be instantiated as browser
add-ons, e.g. written in C++ and/or JavaScript, thereby maximising porta-
bility.

As with any ID management tool, the primary purpose is to enable an
end user to access a protected resource. Once installed on a user device,
IDSpace will execute whenever a user wishes to access a protected service
using a web browser. It allows the user to select a particular ID management
system from amongst those supported by the SP. It also allows the user to
choose which set of credentials is to be used with this SP, where the network
interactions with the SP and IdP will conform to the chosen ID management
system.

An IDSpace system interacts with the user via a key component known
as the Card Selector. This provides a visual representation of user creden-
tial sets in the form of ‘virtual cards’, referred to here as credential cards
(cCards). The operation of this component is motivated by the CardSpace’s
identity selector (whose virtual cards are known as InfoCards or iCards).
Higgins, which originated as an open source implementation of a CardSpace-
like system, also uses the term InfoCards.

A cCard can represent any of a wide range of types of user credential,
3http://www.eclipse.org/higgins/

5



including:

• ready-to-use credential tokens including ‘password manager’ tokens
containing a username/password pair, referred to as local cCards; and

• a pointer to a remote, credential-issuing party (an IdP), referred to as
remote cCards.

Whilst IDSpace has a similar user interface to CardSpace and Higgins, it
is also important to note certain fundamental differences. Both CardSpace
and Higgins support just one set of protocols for web interactions between
the user platform and third party systems. If future versions of these systems
support additional protocols, then this will require corresponding modifica-
tions to SPs and/or IdPs. IDSpace, by contrast, is designed to work with
almost any conceivable ID management protocol suite, and its adoption does
not require any changes to third party systems (including IdPs and SPs).

IDSpace is made up of a set of self-contained components interacting
with each other in a pre-defined way, thus enabling modular implementation.
Such an architectural design enables new ID management protocols to be
supported in a simple way by adding new software modules to an existing
implementation.

3 High-level Architecture

3.1 Context of Use

As stated above, IDSpace provides a user-intuitive means for managing dig-
ital identities and credentials for user web activities, consistent across un-
derlying ID management systems. The intended context of use is shown in
Figure 1.

The parties involved, as shown in the figure, include the following.

1. The user interacts with a user platform or hardware platform (e.g. a
PC or mobile device) in order to access services provided across the
Internet. This user platform is equipped with an operating system
(OS) on which applications execute.

2. The IdP provides identity services to the user. This typically involves
issuing a user-specific identity token for consumption by an SP (where,
although the token is intended for use by a specific user, the user’s
identity will not necessarily be revealed to the SP). This token will
provide the SP with assurance regarding certain attributes of the user,
e.g. the user identity. The IdP is located either remotely or locally on
the user platform; in the latter case the IdP is referred to as a local
identity provider (LIP). Examples of possible IdPs include Facebook
and Google.

6



Figure 1: IDSpace Context

3. The SP provides services which the user wishes to access. In order
to allow the user to access a protected resource, the SP will wish to
be provided with verifiable statements regarding certain attributes of
the user. This is typically achieved by supplying the SP with a user-
specific credential or identity token issued by a local or remote IdP. (In
some contexts the SP is known as a relying party (RP)). Examples of
possible SPs include YouTube, Amazon, Facebook and Google (some
parties may act as both IdPs and SPs).

4. The user agent (UA) is a software component employed by a user
to manage interactions between the user/user platform and remote
entities (IdPs and SPs). This will typically be instantiated as a web
browser, such as Internet Explorer or Firefox; indeed, for the sake of
simplicity, in some subsequent discussions we refer to a web browser
rather than a UA. The UA processes protocol messages on behalf of
the user, and prompts the user to make decisions, provide secrets, etc.

5. The IDSpace client software, implementing part of the IDSpace archi-
tecture, interacts with the user via a graphical user interface (GUI).
This GUI allows the user to select a particular credential set (repre-
sented as a cCard) for use in a specific transaction with an SP. The
application also interacts with a web browser, and, where necessary,
with remote entities.

7



6. The IDSpace extension (or the IDSpace browser extension), imple-
menting part of the IDSpace architecture, supplements the function-
ality of the UA. It is made up of a set of modules performing specific
tasks, e.g. scanning a webpage for a username-password login form.
The IDSpace extension exchanges data with the client software via
the browser, and, where necessary, interacts with the user.

3.2 IDSpace Components

Figure 2 shows the relationships between the main components of IDSpace,
including the primary information flows. The dotted line shows the limits
of the browser extension. Note that, although shown as part of the browser
extension, the Activator could also be implemented as an independent com-
ponent. This is because, in certain ID management systems e.g. CardSpace,
the SP webpage must implement certain X/HTML tags to enable this com-
ponent to perform its task (see below). However, it is also possible for a
browser extension to add such tags.

The remaining components, apart from the ‘web browser’ and ‘remote
IdP’, represent the IDSpace client software. Note that the boxes marked
‘Other ...’ refer to other IDSpace components, which, although covered in
the text, are not shown in the figure.

Figure 2: IDSpace Components

The two primary elements of the IDSpace architecture, i.e. the IDSpace

8



client software and the IDSpace extension (as introduced in section 3.1), are
now discussed in greater detail.

3.2.1 Client Software

The client software, a stand-alone application, is made up of the following
components.

cCards A cCard is a (relatively non-sensitive) XML document correspond-
ing to a set of user credentials (or, more generally, to a set of user
private information). A cCard indicates the types of personal infor-
mation in the set, and also the type (or types) of ID management
system with which the cCard can be used. However, it does not con-
tain the personal information itself. cCards can be local, in which
case they are generated by the LIP, or remote, in which case they are
generated by a remote IdP.

cCard Store This is a protected local store for cCards. The nature of the
protection provided for stored cCards will depend on the implemen-
tation environment. For example, protection could involve the use of
cryptography, physical protection and/or logical protection (as pro-
vided by the OS).

Credential Store This is a protected local store for sensitive data, such
as personal information, certificates, user passwords, etc., associated
with local cCards. It is used by the LIP. Note that, in practice, the
Credential Store and the cCard Store could be combined. As is the
case for the cCard store, the nature of the protection provided will be
implementation-dependent, and could involve the use of cryptography,
physical protection and/or logical protection.

Settings Store This is a local store for (relatively) non-sensitive data such
as system state, system/user settings, user preferences, etc.

IDSpace Kernel This is the central component of IDSpace. It runs lo-
cally on the user platform, handling communications with and between
other components of IDSpace. In particular, it performs the following
functions.

• It receives and processes the security policy provided by the Ac-
tivator.

• It retrieves the cCards from the cCard Store, and checks which
of them meet the requirements of the SP’s security policy.

• It invokes the IDSpace User Interface in a private desktop win-
dow, and displays the cCards that meet the SP’s policy require-
ments.

9



• If a remote cCard is chosen, it retrieves the security policy of the
relevant remote IdP by initiating a connection with it.

• It communicates with the user-selected IdP (either a remote IdP
or the LIP) to obtain an identity token, where necessary using
the IdP Auth component.

User Interface This component, which incorporates the IDSpace Card
Selector, is the main means by which an end user interacts with the
IDSpace client software. Its tasks include the following.

• It displays the identity of the SP website to the user, and indicates
whether the website has been visited previously. If the website
is being visited for the first time then it allows the user to either
continue or terminate.

• It displays the available cCards (it might display all the cards
and highlight those that meet the SP site policy, or it might
only display those meeting the policy). Note that the cCards are
displayed in the Card Selector.

• It allows the user to review the contents of a cCard.

• It allows the user to generate and modify ‘local’ cCards (as op-
posed to ‘remote’ cCards generated by remote IdPs) — in doing
so it provides an interface to some of the functions of the LIP.

• It allows the user to import a cCard provided by a remote IdP.

• It asks a user for explicit consent before providing potentially
sensitive information to an SP.

• It allows the user to set preferences for future operation of the
system. These preferences are stored in the Settings Store.

LIP This provides the functionality of an IdP, but is resident on the user
platform. Like any IdP, the LIP can generate identity tokens. These
tokens can be retrieved by the IDSpace Kernel. The LIP stores user-
attribute values and other sensitive user data in the Credential Store.

IdP Auth This authenticates the user to a remote IdP, if a remote cCard
is selected. It uses the User Interface to prompt the user to enter the
required credentials, e.g. username and password, and then submits
them to the IdP. By doing so it enables a consistent and simple user
authentication interface to be provided to the user, even when a range
of different identity protocols are being used. It also supports IdP-
specific protocol interactions, e.g. to create requests for specific types
of token.

Networker This initiates a direct online connection between the client soft-
ware and a remote server (i.e. not involving the browser).

10



3.2.2 Browser Extension

The IDSpace extension, typically implemented as a browser add-on, includes
the following modules.

Page Scanner This browser extension module scans the SP website login
page in order to discover the identity system(s) it supports. It passes
the results of the scan to the Identity System Selector.

Activator This is a (logical) bridge between the client browser and the
IDSpace Kernel. Its tasks include the following.

• It informs the user that the IDSpace system can be used.
• It enables the user to activate the Card Selector.

Identity System Selector This browser extension module enables the user
to select the identity management system to be used from amongst
those supported by the SP website. The precise operation of this com-
ponent will depend on the implementation of the IDSpace architecture.

If more than one identity system is available, the Identity System Se-
lector could ask the user to either choose an identity system immedi-
ately or defer the selection until the point at which a cCard is selected
(using the IDSpace Card Selector). It might also provide a means to
store the user answer (in the Settings Store) for future authentication
attempts.

It passes the user response to the Data Transporter.

Data Transporter This browser extension module provides the means to
exchange data between components of the IDSpace architecture, in-
cluding the following.

• It is responsible for the transfer of metadata regarding the SP
page (e.g. the discovered and selected identity system(s), the iden-
tity of the SP, the SP website policy requirements, etc.), to the
IDSpace Kernel. For example, if the user indicates that IDSpace
is to be used, it passes the security policy of the SP website to
the IDSpace Kernel.

• It transfers data from the IDSpace Kernel to the browser. For
example, if IDSpace obtains or generates an identity token during
the authentication process, it gives the token to the browser which
dispatches it to the SP website.

Token Displayer This browser extension module displays an indication of
the contents of an IdP-generated identity token to the user. This helps
the user to decide whether or not to allow the token to be passed to
the SP. This function can only be provided if the token is not:

11



• encrypted in such a way that only the SP can read it (e.g. using
an SP’s public key); and

• transmitted via a (direct) IdP-SP channel, i.e. the token must
pass via the client platform.

4 Supporting Functionality

We next discuss a number of key functions that an IDSpace-conformant
system must provide. For many of these functions we outline multiple ap-
proaches to implementation.

4.1 Identity System Discovery

IDSpace must be able to determine which ID management systems are sup-
ported by an SP website. This can be accomplished in a number of different
ways, including the following.

1. IDSpace could scan the visited page for HTML/XHTML tags that are
associated with specific ID management systems. For example, the
string:

• ‘application/x-informationCard’ indicates support for CardSpace;
and

• ‘openid url’ and/or ‘openid identifier’ indicates support for OpenID.

The benefits of such an approach include complete transparency, albeit
at the cost of performance (because IDSpace must scan every web
page).

2. IDSpace could ask the user which ID management systems the page
currently supports. The benefits of such an approach include accuracy
and higher performance, at the cost of transparency and user conve-
nience (although the user’s choice could be stored in the Settings Store
for future logins).

3. IDSpace could employ a hybrid approach based on a combination of
the above two options, e.g. so that if the first option fails then it resorts
to the second option.

4.2 Identity System Selection

Having learnt which ID management system(s) an SP supports, IDSpace
must allow the user to select which system to use for the current transaction.
Such a process could take place before or after invocation of the IDSpace
Card Selector. We next consider these options in greater detail.

12



1. Prior to selector invocation. IDSpace could allow the user to
choose the ID management system in one of the following ways.

• IDSpace could embed a descriptive icon (logo, image, link or but-
ton) in the web page for each available system, and require the
user to select one (e.g. by clicking the selected icon). Whilst
this approach is intuitive and transparent, it could damage the
appearance of the page, particularly if there are many logos to
embed.

• IDSpace could ask the user which system they wish to use by
embedding forms in the page or by triggering pop-up boxes. The
benefits of such an approach would include accuracy and higher
performance, at the cost of minor user convenience.

• IDSpace could add an ID management system selection option to
the in-page context menu (i.e. the menu that appears as a result
of right-clicking). Once such an option is selected, a list of ID
management systems would be displayed, allowing the user to
select one. Whilst this might be transparent, it might not be so
intuitive to end users.

• IDSpace could extend the browser frame4, e.g. by adding a browser
icon, bar or menu. Once the added icon (or bar or menu) has been
selected, the user could choose one of the systems currently sup-
ported by the SP. Whilst this may be transparent, modifying the
browser frame could be somewhat intrusive to the end user.

2. After selector invocation. The IDSpace Card Selector could display
the currently supported ID management systems, allowing the user to
select one. This choice could be combined with a display of the avail-
able cCards (if any) associated with each of the systems. In the latter
case, the selector window could be partitioned so that each section dis-
plays an ID management system along with a previously used cCard
for that system; a clickable option could be used to request the dis-
play of other available cCards. This approach would be transparent,
convenient and would avoid making changes to web browsers or web
pages. However, it would require more processing, and hence could
adversely affect client platform performance.

4Both the browser frame and the browser-displayed web page could be extended.
Browser extensions could, for example, create lightweight buttons, menu extensions, and
in-process browser helper objects. The browser frame could be extended using band ob-
jects, and the web page content could be enhanced with, for example, ActiveX Controls
or similar technologies [13].

13



4.3 Card Selector Invocation

In response to a user action, IDSpace must be able to invoke the IDSpace
card selector. This involves embedding IDSpace support in the SP web page
using a browser extension (see above).

4.4 IdP Discovery

IDSpace must help the user discover an IdP from which the user can obtain
a suitable identity token. This process varies considerably depending on
the ID management system in use. Specific approaches must therefore be
devised for each supported system. The primary goal of the architecture
is to allow this to take place in a way that is both as user-transparent as
possible and gives a view of the process to the user that is consistent across
ID management systems.

4.5 cCard Storage

The format of cCards must be sufficiently flexible and self-contained in order
to allow cCard storage in a variety of locations, and to support portability.
We assume that cCards will be protected while stored (where, as stated
previously, the nature of this protection will be implementation-dependent).

cCards could be stored on various media, including:

• local file systems, which would give good performance and allow fast
retrieval;

• remote web servers (‘the cloud’), which would give a roaming capabil-
ity;

• portable user devices such as mobile phones or smart cards, which
would also provide a roaming capability.

4.6 cCard Format

Each cCard will contain an identifier indicating the ID management sys-
tem with which it can be used (in principle a cCard could have many such
identifiers). We suppose here that cCards are encoded using XML (as is
the case for CardSpace InfoCards). A single XML schema could be devised
encompassing all supported ID management systems. This would have the
advantage that the identity system identifier (discussed immediately above)
could form part of the encoding of a cCard. Other methods of encoding
could also be used, such as JSON (http://www.json.org/).

14



4.7 cCard Content

The content of a cCard will vary depending on the ID management system
with which it is to be used. However, the types of content listed below are
likely to be contained in almost all cCards.

1. A list of supported attribute types, e.g. age, password, first name,
last name, the values of which are known by the IdP, and for which the
IdP will be prepared to generate an identity token. The actual claim
values are not stored by the Card Selector; they are either stored by
the remote IdP or by the LIP. The LIP will store the values in the
protected Credential Store. Protection could, for example, involve im-
plementing the Credential Store on a separate device such as a smart
card, or using a Trusted Platform Module (TPM) [14] to provide en-
crypted storage.

2. A list of supported token type(s), indicating which type(s) of
identity token (e.g. SAML, username-password) the IdP(s) associated
with the card are capable of issuing.

3. IdP location, including the URI/URL address(es) of the (remote or
local) IdP(s).

4. IdP authentication method(s), specifying the method(s) employed
by the IdP to authenticate the user.

5. Display information, e.g. an image and or a name for the cCard.

4.8 Process Isolation

Where possible, the IDSpace processes should be isolated from other pro-
cesses to maximise the security and privacy of data handled by IDSpace.
For example, on a Windows platform the IDSpace Card Selector could be
invoked in a private desktop session.

4.9 Authentication Methods

The IDSpace architecture allows the user to be authenticated to an IdP us-
ing a wide range of different authentication methods. The ease with which
additional methods can be supported depends on precisely how user authen-
tication to a remote IdP is supported by IDSpace. We consider three main
possibilities.

1. IDSpace could control all communications between the user and the
remote IdP. That is, all requests for authenticating information by the
IdP could be made to the user by IDSpace (specifically by the IdP Auth
component, as described in section 2), and the supplied information

15



could then be forwarded by IDSpace to the remote IdP. Adding a
new authentication method would require adding functionality to the
implementation of IDSpace executing on the user platform. This is
the approach adopted by CardSpace, currently deployed versions of
which support four authentication methods.

New user authentication techniques could be added in a modular fash-
ion, as and when they are required. Whilst this would clearly add to
the cost of deploying and maintaining an IDSpace implementation, for
a widely deployed system this does not seem such an unreasonable
approach (given that the number of authentication methods seems
unlikely to grow very rapidly). Such an approach would have the
advantage of user transparency and would enable the provision of a
consistent user interface for the authentication process, and is hence
the preferred option.

2. IDSpace could cause the task of user authentication to be performed
at the IdP rather than via the IDSpace User Interface (i.e. using the
IdP Auth component). That is, whenever a remote IdP requires user
authentication (e.g. prior to issuing an identity token), IDSpace would
redirect the UA (web browser) to the IdP, allowing the IdP to di-
rectly authenticate the user using a method of the IdP’s choice. Al-
though such a simple approach would minimise the maintenance cost
for IDSpace, the user would lose the consistent experience provided by
the IDSpace User Interface.

3. IDSpace could employ a hybrid approach. The default would be the
first approach outlined above. IDSpace could support a set of widely-
adopted (possibly standardised) authentication methods; new meth-
ods could be added as and when it is deemed appropriate. However,
if an IdP wishes to use a technique not supported by IDSpace, then
IDSpace could redirect the UA (web browser) to the IdP for ‘direct’
authentication.

5 IDSpace Operation

5.1 Initialisation

Prior to use of IDSpace, the following preparatory steps must be performed.

• The IDSpace components, including the browser extension and the
client software, must be installed on the user platform.

• The user must install cCards in the cCard Store on the user platform.
As noted above, these cCards can be created by either a local or a
remote IdP. We briefly consider the two cases.

16



– Local cCards are created using the LIP. Once it has created a
cCard, the LIP will insert it in the cCard Store, and the corre-
sponding user data will be added to the Credential Store. A user
could also choose to create a local cCard during use of IDSpace.

– Remote cCards are created by remote IdPs. Typically the cre-
ation of such a cCard will occur via an ‘out of band’ process, i.e.
a process completely independent of the operation of IDSpace,
perhaps involving the user completing a registration process us-
ing the IdP website. The resulting cCard will be provided to the
user, and the user can then arrange for it to be imported into
IDSpace using the IDSpace User Interface.

• For ease of identification, the user can personalise a cCard, e.g. by
giving the card a meaningful name, and/or uploading an image repre-
senting the card to be displayed by the User Interface.

5.2 Protocol Flows

We now describe the operation of IDSpace. It is important to note that
some parts of the operation of IDSpace will vary depending on the specific
ID management system in use. The operation of IDSpace in the case of two
widely discussed ID management systems is described in the next section.

1. UA→ SP: HTTP/S GET Request. A user employs the UA to navigate
to an SP login page.

2. SP → UA: HTTP/S Response. A login page is returned to the UA.

3. IDSpace Browser Extension→ UA: Page Processing. Certain IDSpace
browser extension modules (as described below) perform the following
processes on the login page provided by the SP.

(a) Page Scanner → UA: Page Scanning. The Page Scanner mod-
ule scans the login page to discover which ID management sys-
tem(s) are supported by the SP (from amongst those supported
by IDSpace). It passes the identifiers of the supported systems
to the Identity System Selector. If no ID management system is
identified, the Page Scanner could embed an icon in the browser
frame to allow the user to inform IDSpace if there is an SP-
supported ID management system available that has been missed.

(b) Identity System Selector → UA. The Identity System Selector
module uses the results passed to it by the Page Scanner. If more
than one ID management system is discovered, then (depending
on the implementation) the Selector could ask the user to select
one. Alternatively, the decision could be deferred and made using

17



the IDSpace Card Selector. The advantages and disadvantages
of the two approaches are discussed in section 4.2. A further
alternative approach would involve the user deciding at which
stage to make a choice.
The module might also offer to store any choices made by the
user (in the Settings Store) for managing future authentication
attempts. The module finally reports all the results to the Data
Transporter module (see below).

(c) Activator ⇀↽ UA: Card Selector Activation. The Activator mod-
ule provides a means for the user to activate the IDSpace Card
Selector. How this is achieved is implementation specific (options
are discussed in sections 4.2 and 4.3). This involves embedding
IDSpace-enabling tags and an IDSpace security policy in the login
page. The embedded policy is subsequently used by the IDSpace
User Interface to help it decide which cCards should be displayed
for possible use.

4. User → UA: Card Selector Invocation. The user performs an action
which invokes the IDSpace Card Selector. The precise way in which
this occurs is implementation specific (options are discussed in sec-
tion 4.2).

5. Data Transporter → IDSpace Kernel: Passing Metadata. The Data
Transporter module passes the necessary metadata (e.g. the identi-
fied and/or selected identity system(s), the SP identity, the SP policy
requirements, etc.) to the IDSpace Kernel.

6. IDSpace Kernel ⇀↽ Card Selector: SP Identity. The IDSpace Kernel
examines the SP identity (as received from the Data Transporter mod-
ule in the previous step), including noting whether or not the SP uses
HTTPS and whether or not the user has visited this particular SP
before. The IDSpace Kernel uses the IDSpace Card Selector to:

(a) identify the SP to the user; and

(b) ask the user whether to continue or terminate the protocol.

Depending on the user answer, IDSpace either continues or terminates
the protocol. To assist in user decision-making, the Card Selector
could indicate key security-relevant features of the SP to the user, e.g.
using visual cues. In particular, it could indicate whether or not the
SP:

• uses HTTPS;

• possesses an extended evaluation certificate;

18



• has been visited before; and/or
• requires a large number of, or particularly sensitive, user at-

tributes.

The Card Selector could also offer the user a recommendation as to
whether or not to continue, based on user policy settings and the SP’s
security properties.

7. IDSpace Kernel ⇀↽ IDSpace Components. The IDSpace Kernel eval-
uates the received metadata in order to learn which actions to take.
If the user has already chosen an ID management system, then the
following processes take place.

(a) IDSpace Kernel ⇀↽ cCard Store: cCards Retrieval. The IDSpace
Kernel retrieves the appropriate cCards (possibly none) by com-
paring the received metadata with the available cards. Note that
the retrieved cards are specific to the user-selected ID manage-
ment system.

(b) IDSpace Kernel → Selector: Displaying cCards. The IDSpace
Kernel passes the retrieved cCards to the Card Selector so that
they can be displayed to the user. cCards previously used with
this SP (if any) could be displayed more prominently than the
others.

If the user has not yet chosen an ID management system, then the
following processes take place.

(a) IDSpace Kernel ⇀↽ cCard Store: cCard Retrieval. The IDSpace
Kernel retrieves the appropriate cCard(s) by comparing the re-
ceived metadata with the available cards. Note that cards will
be retrieved for all the SP-supported ID management systems.

(b) IDSpace Kernel → Card Selector: Displaying SP-supported ID
Management Systems + cCards. The Kernel passes the SP-
supported ID management systems, along with the matching
cCards (if any), to the Card Selector to be displayed to the user.
The Card Selector displays the list of supported ID management
systems, together with the available cCards, indicating which
cards have been used previously with this SP (it could also in-
dicate which ID management systems have been previously used
with this SP).
Depending on the implementation and the number of systems and
cards to be displayed, the Card Selector might only display the
cards previously used. In such a case it would need to indicate
that other cards are also available, and would need to provide a
means to retrieve them.

19



In both cases, the Card Selector should also allow the user to create a
new local cCard (if the relevant ID management system supports such
cards).

8. User → Card Selector: Selecting/Creating cCards. The user selects
(or creates) a cCard.

9. Card Selector → IDSpace Kernel: User Action Results. The Card
Selector reports the results of the user actions back to the IDSpace
Kernel.

10. IDSpace Kernel ⇀↽ IDSpace Components. The IDSpace Kernel evalu-
ates the results received from the Card Selector, and takes the appro-
priate steps.

If the user has chosen to select an existing cCard, then the following
processes take place.

(a) The IDSpace Kernel determines whether an IdP (local or remote)
needs to be contacted. If not, control is passed to step 13. If so,
the protocol continues.

(b) The IDSpace Kernel determines the IdP (local or remote) that
must be contacted in order to enable the user to obtain the iden-
tity token required by the SP. This also includes determining the
nature of the information regarding the user (e.g. login creden-
tials) that must be supplied to this IdP.

(c) IDSpace Kernel ⇀↽ Card Selector: Display IdP Identity. If this
IdP has not previously been used, or if it does not use HTTPS,
the IDSpace Kernel uses the Card Selector to obtain user consent
before sending the IdP any information. This step is designed to
mitigate the risks of phishing attacks. In such a case the Card
Selector reports the user response back to the Kernel.

(d) If user consent has been obtained, the Kernel now passes a token
request to the IdP. The token request may have been received
from the SP, or, if necessary, the IDSpace Kernel creates the
request.

If the user has chosen to create a local cCard, the following processes
take place.

(a) IDSpace Kernel ⇀↽ Selector GUI. The Kernel invokes a special
Card Selector window to allow the user to enter the necessary
data. This would typically include allowing the user to person-
alise the cCard, e.g. uploading a card image, entering a card
name, etc. Such steps would enable the card to be readily recog-
nisable.

20



(b) IDSpace Kernel ⇀↽ Card Creation Module (in the LIP): Card
Creation. The Kernel instructs the Card Creation module to cre-
ate an XML-based cCard using the user-inserted data. The Card
Creation module returns the newly-created card to the Kernel.

(c) IDSpace Kernel ⇀↽ cCard Storage Module: Card Storage. The
Kernel sends the cCard to the Card Storage module for perma-
nent storage; the Card Storage module reports back to the Kernel
whether or not the operation has been successful.

(d) IDSpace Kernel ⇀↽ Card Selector. The Kernel treats the newly-
created cCard as a user-selected cCard and step 10a repeats.

11. IDSpace Kernel ⇀↽ IdP. One of the following processes takes place,
depending on whether the selected IdP is local or remote.

• If a remote IdP is selected, and if such information is required by
the IdP (and is not already stored by IDSpace) then the IDSpace
Kernel prompts the user to enter the relevant IdP credentials
using a special credential screen. If this fails, e.g. if the Kernel
does not support the IdP authentication method, or if the user-
selected ID management system dictates that the UA must be
redirected to the IdP, then the Kernel redirects the UA (web
browser) to the remote IdP along with an authentication request.
In the latter case the IdP can authenticate the user directly using
an authentication method of its choice.
If user authentication is successful, the IdP issues an identity
token.

• If a local IdP is selected, then the Kernel constructs a token
request and sends it to the LIP. The LIP responds with an ap-
propriate identity token.

12. Token Displayer Module ⇀↽ User. If an ID management system other
than CardSpace is in use, then the Token Displayer module intercepts,
analyses, and displays information about the identity token before
releasing it to the SP, and seeks user consent for release. If consent is
denied, then the protocol is terminated. Note that this assumes that
the token is not end-to-end encrypted to the SP and that it is not sent
via a direct IdP-SP channel.

If CardSpace is in use, then the CardSpace IdP will send back a display
token along with the real token, which the Kernel can instruct the Card
Selector to display to the user, prior to obtaining user consent.

13. IDSpace Kernel → UA → SP: Passing Identity Token. The identity
token is passed to the UA, which forwards it to the SP.

21



14. SP → User: Grant/Deny Access. The SP validates the token, and, if
satisfied, grants access to the user.

6 Mapping Specific Protocol Architectures onto
IDSpace

ID management systems can be classified according to how the SP commu-
nicates via the client with the IdP. There are two main ways in which this
can be achieved, namely by using an HTTP redirect or involving an active
client.

1. Redirect-based Systems. In such a scheme, the UA is redirected
by an SP to an IdP (and vice versa). In such a case the UA is essen-
tially passive, and does not need to be aware of the ID management
system in use. One major disadvantage is that a malicious SP can
redirect the UA to a malicious IdP impersonating an expected IdP
(e.g. to fraudulently obtain user credentials). Example systems of this
type include OpenID, Liberty (browser-post profile), Shibboleth, and
Facebook Connect.

2. Active Client-based Systems. In schemes of this type, the UA
must incorporate an ‘active client’, which acts as an intermediary be-
tween SPs and IdPs, and which must be aware of the ID management
system in use. Typically all communications between an SP and an
IdP occur via this active client, and there is no need for direct SP-IdP
communication. Depending on the details of the system in use, the
active client can prompt the user to select a digital identity, choose
an IdP, review (and perhaps modify) an identity token created by the
IdP, and approve a transaction. Phishing attacks are mitigated since
an SP cannot redirect the UA to an IdP of its choosing. The active
client can also provide a consistent user experience, and its existence
helps to give the user a greater degree of control. Examples include
CardSpace and Liberty (when using a Liberty-enabled client (LEC)).

We now describe how two specific examples of ID management systems
can be mapped onto the IDSpace architecture. We consider OpenID [24, 26]
and Liberty (using a LEC) [20] since they are widely discussed examples of
the above two models. We also briefly look at CardSpace support. These
descriptions are intended as examples; this is not the only way in which the
systems concerned could be supported using IDSpace.

22



6.1 IDSpace and OpenID

6.1.1 cCards

Either prior to, or during, use of IDSpace, the user must create an OpenID-
specific cCard. This cCard must contain one required field, and may also
contain one optional field, as follows.

1. The single required field must contain the user’s OpenID.

2. The optional field contains the identifier of the user’s OpenID IdP.

The cCard contains a unique, OpenID-specific identifier, and is stored in the
secure cCard store, possibly in an OpenID-specific location (e.g. to allow
faster look-up/retrieval).

6.1.2 Protocol

We now describe one way in which IDSpace could support OpenID. Steps
3b, 4–9, 10a–d (second series), 13 and 14 of the IDSpace-OpenID-specific
protocol are the same as steps 3b, 4–9, 10a–d (second series), 13 and 14, re-
spectively, of the generic IDSpace protocol given in section 5.2, and hence are
not described here. Whenever prompted to select/create/import a cCard,
it is assumed that the user will select/create/import an OpenID-specific
cCard.

1. UA → SP: HTTP/S GET Request. A user navigates to an OpenID-
enabled SP.

2. SP → UA: HTTP/S Response. A login page is returned containing
an OpenID form.

3. IDSpace Browser Extension→ UA: Page Processing. The browser ex-
tension performs the following processes on the login page provided by
the SP.

(a) Page Scanner Module → UA: Page Scanning. The Page Scanner
module searches the login page for an OpenID login form; such
a form can be identified by searching for an input field named
‘openid url’ and/or ‘openid identifier’. (The Page Scanner mod-
ule also scans the page for triggers for any other ID management
systems supported by IDSpace.) Finally, the module passes the
search results to the Identity System Selection module.

(c) Activator ⇀↽ UA: Selector Activation. The Activator module per-
forms the following processes.

23



i. It embeds IDSpace-enabling tags in the SP-provided login
page, including a security policy statement in the format
required by IDSpace. This policy statement must request
OpenID-specific cCards.

ii. It adds a special function to the SP-provided login page to
intercept the identity token that will later be returned by the
IDSpace Kernel.

iii. It employs certain (implementation-dependent) means to en-
able the user to activate the IDSpace Card Selector (see sec-
tions 4.2 and 4.3); e.g. it might cause a special icon to appear
above the submit button with the property that clicking this
icon invokes the selector.

10. IDSpace Kernel ⇀↽ IDSpace Components. The IDSpace Kernel evalu-
ates the results (as provided by the Card Selector) in order to take ap-
propriate actions. If the user has chosen to select an existing OpenID-
specific cCard, then the following steps are performed.

(a) The IDSpace Kernel retrieves the cCard and passes it to the UA.

(b) The Browser Extension parses the received cCard, retrieving the
value of the user’s OpenID and (if present) the OpenID IdP.

(c) The Browser Extension temporarily stores the OpenID IdP value.

(d) The Browser Extension adds the user’s OpenID identifier to the
OpenID form, and submits the form back to the SP.

(e) The SP performs an IdP discovery process. Once the OpenID IdP
has been discovered, the SP generates an OpenID authentication
request and attempts to redirect the user’s browser to the IdP.

(f) The Browser Extension intercepts the SP-initiated OpenID au-
thentication request, and compares the value of the OpenID IdP
in this request with the OpenID IdP value it stored in step 10c.
If they match, the process continues (with redirection of the UA
to the IdP). If not, the Browser Extension could either terminate
or warn the user of a possible phishing threat and ask whether
or not to continue.

(g) From this point on, OpenID operates as it would do in the absence
of IDSpace, except for the final check in step 12 (see also the
discussion below). In particular the user experience is OpenID-
specific, and the user will see the OpenID IdP’s authentication
page.

11. OpenID IdP ⇀↽ User. If necessary (authentication may be unnecessary
if an IdP-user session already exists), the OpenID IdP authenticates

24



the user. If successful, the OpenID IdP requests permission from the
user to send the OpenID assertion token to the SP.

12. Token Displayer ⇀↽ User. When the OpenID IdP attempts to redi-
rect the UA back to the SP, the Token Displayer module intercepts,
analyses, and displays the OpenID identity token to the user before
releasing it to the SP. If user consent is obtained, then the protocol
continues; otherwise it terminates. Note that this is possible since the
OpenID token provided by the IdP is not encrypted.

The above example describes only a partial integration of OpenID with
IDSpace. We believe it is possible to replace direct authentication of the user
by the OpenID IdP with a process mediated by IDSpace (specifically using
the IdP Auth module). This would enhance the user experience by making
the user authentication process consistent across different ID management
systems. However, whilst the system described above has been successfully
prototyped, the latter enhancement has not been implemented, and hence
its practicality remains untested.

6.2 IDSpace and Liberty (LEC)

6.2.1 LECcards

Either prior to, or during, use of IDSpace, the user must create a Liberty-
specific cCard. This cCard must contain one required field, and may also
contain one or more optional fields, as follows.

1. The single required field must contain the identifier of the user’s
Liberty IdP.

2. The optional field(s), could contain other alternative ‘backup’ Lib-
erty IdPs.

The cCard contains a unique, LEC-specific identifier, and is stored in the
secure cCard store, possibly in a Liberty (LEC)-specific location (e.g. to
allow faster look-up/retrieval).

6.2.2 IdP Auth Functionality

The IdP Auth module is part of the client software. When supporting Lib-
erty (LEC profile) its functionality includes the ability to handle token re-
quests in Liberty format (received from Liberty SPs and sent to Liberty
IdPs) and also the means to parse and process token messages received
from a Liberty IdP. It makes use of the Networker module to communicate
with the IdP and SP.

25



6.2.3 Protocol

We now describe one way in which IDSpace could act as a Liberty client.
Steps 3(b,c), 4–9, 10a–d (second series), 13 and 14 of the IDSpace-LEC-

specific protocol are the same as steps 3(b,c), 4–9, 10a–d (second series), 13
and 14, respectively, of the generic IDSpace protocol given in section 5.2, and
hence are not described here. Whenever prompted to select/create/import
a cCard, it is assumed that the user will select/create/import a Liberty-
specific cCard.

1. UA→ SP: HTTP/S GET Request. A user navigates to a LEC-enabled
SP.

2. SP → UA: HTTP/S Response. A login page is returned containing an
option (e.g. a button, link, or image) to use Liberty (we use Liberty
here and below to mean Liberty using the LEC profile).

3. IDSpace Browser Extension→ UA: Page Processing. The Browser
Extension performs the following processes on the login page provided
by the SP.

(a) Page Scanner Module → UA: Page Scanning. The Page Scanner
module searches the login page for a distinguishing feature that
indicates support for Liberty. (The Page Scanner module also
scans the page for triggers for any other ID management systems
currently supported by IDSpace.) Finally, the module passes the
search results to the Identity System Selection module.

10. IDSpace Kernel ⇀↽ IDSpace Components. The IDSpace Kernel evalu-
ates the search results (as provided by the Card Selector) in order to
take appropriate actions. If the user has chosen to select an existing
Liberty-specific cCard, then the following steps are performed.

(a) The IDSpace Kernel retrieves the cCard, and passes it to the IdP
Auth module.

(b) The IdP Auth module parses the received cCard, retrieving the
values of the LEC IdP(s) and temporarily stores them.

(c) IDSpace IdP Auth → SP: HTTP Request. The IdP Auth mod-
ule issues an HTTP request to the SP containing a Liberty-
enabled header (or with a Liberty-enabled entry in the User-
Agent header).

(d) SP → IdP Auth: HTTP Response + Authentication Request.
The SP generates a Liberty authentication request and sends it
to the IdP Auth module in the body of the HTTP response. The
SP could choose to include a list of IdPs it knows about in the
request.

26



(e) The IdP Auth compares the received list of IdPs (if present) with
the LEC IdP(s) retrieved from the selected cCard. If there is a
non-empty intersection, then a cCard-specified IdP is contacted
(this shall be the ‘primary’ IdP if possible); if not, then either
the protocol terminates or the user could be asked to choose an
IdP from amongst those in the SP list. The user could also be
offered the choice to store the selected IdP (in the Settings Store)
for future authentication attempts. If the SP does not specify a
list of IdPs, then the cCard-associated IdP is contacted.

(f) IdP Auth→ IdP: Authentication Request. The IdP Auth module
issues an HTTP POST to submit a SOAP-based [27] Liberty
authentication request message to the appropriate IdP. Note that
this request must contain the authentication request as received
from the SP.

11. Liberty IdP ⇀↽ User. If necessary, the IdP authenticates the user.
Ideally this process would be mediated by the IDSpace system (using
the IdP Auth module), in order to provide a user experience that is
consistent across ID management systems. If successful, the IdP gen-
erates a SOAP-based, signed Liberty authentication response message
and sends it to the IdP Auth module via an SSL/TLS channel.

12. Token Displayer ⇀↽ User. If the token is not end-to-end encrypted, the
Token Displayer module displays the token and requests user consent
to proceed. If consent is granted, the protocol continues; otherwise it
terminates.

6.3 IDSpace and CardSpace

During or prior to use of IDSpace, the user must create a CardSpace-specific
cCard (using the LIP) and/or import a CardSpace-managed InfoCard. The
IDSpace generic protocol given in section 5.2, excluding step 12, could then
be used to provide the functionality of CardSpace [10, 22].

7 Concluding Remarks

We have described an architecture for a client-based, platform-independent,
protocol-agnostic ID management tool that operates in conjunction with a
client web browser. A tool conforming to the architecture provides a user-
intuitive means of managing digital identities and credentials for all user
web activities.

27



7.1 Relationship to the Prior Art

7.1.1 CardSpace and Higgins

The Microsoft CardSpace system shares certain features in common with
IDSpace. In particular, it too is client-based and operates in conjunction
with a web browser. However, CardSpace requires the IdPs and SPs to im-
plement a specific set of protocols for inter-communication (we refer to these
as the ‘CardSpace protocols’, although many are based on WS-* standards).
Although CardSpace supports a wide range of security token formats, these
tokens must be sent using a very specific protocol suite.

This gives rise to a classic ‘chicken and egg problem’ — without an
established identity infrastructure of IdPs, there is no (or little) incentive for
SPs to make the changes necessary to support CardSpace. Similarly, without
any customer SPs, there is no (or little) incentive to set up a CardSpace-
specific IdP infrastructure.

By contrast, IDSpace gives the convenience and intuitive user experi-
ence of CardSpace, without requiring SPs and IdPs to change the way they
work. That is, IDSpace enables convenient and more secure operation by
end users, without any changes to the existing identity infrastructures or ser-
vice providers. Moreover, once deployed, IDSpace will enable much simpler
deployment of more sophisticated systems such as the CardSpace protocols
(and the many other systems currently emerging).

The Higgins system (which originated with the goal of providing CardSpace-
like functionality on non-Windows platforms) has somewhat similar objec-
tives to IDSpace.

7.1.2 Other Schemes

In previous work [4, 5] we have described how to build browser extensions
which enable CardSpace/Higgins selectors to support password management
without requiring any changes to the SPs or to the identity selector. Opera-
tional, open-source prototypes5 have also been described. These prototypes
demonstrate the workability of certain aspects of the IDSpace system.

7.2 Novel Features

The main novel feature of IDSpace, as intimated above, is the proposal of
an architecture for a client-based system which supports multiple ID man-
agement systems transparently to SPs and IdPs. That is, it combines the
convenience and intuitiveness of the CardSpace user interface with support
for multiple systems, without requiring any changes to existing SPs and
IdPs. To our knowledge, the only previous work permitting client-based

5http://iescripts.org/view-scripts-808p1.htm and/or http://sourceforge.

net/projects/passcard/

28



support for multiple ID management systems requires the SPs and IdPs to
adopt new protocols.

The IDSpace architecture incorporates novel components, including the
Page Scanner, Activator, Identity System Selector and Token Displayer,
which are not found in the CardSpace or Higgins architectures. While much
simpler versions of some of these novel components (notably the Page Scan-
ner and Activator) have previously been described, [2, 4, 5, 6, 7], they have
only been discussed in very specific contexts, and not in the general way in
which they are used in IDSpace. Key elements of the architecture have been
successfully prototyped.

7.3 Future Work

Our main initial goal is to complete an operational prototype of IDSpace,
which we plan to make available for public scrutiny and testing. We in-
tend that the initial version should support all the ID management systems
discussed in this paper.

A variety of future directions for this research present themselves, a few
of which we briefly mention.

• Apart from the ID management schemes mentioned previously, it
would also be desirable if IDSpace could provide support for protocols
providing a high degree of privacy protection for end users, notably
U-Prove [11] and idemix [12]. This remains a topic of ongoing research.

• In previous work [3, 7], we have investigated using a client-based tool
to support interoperation between different ID management systems,
and a series of prototypes have been developed. It would be attrac-
tive (and straightforward) to build this functionality into an IDSpace
implementation.

• Finally, in future work we intend to study variants of the architecture
presented here to further enhance the security and privacy of user
authorisation, whilst maintaining transparency to third parties.

References

[1] C. Adams and S. Lloyd. Understanding PKI: Concepts, Standards, and
Deployment Considerations. Addison-Wesley, 2nd edition, 2002.

[2] H. S. Al-Sinani. Browser extension-based interoperation between
OAuth and information card-based systems. Technical Report RHUL-
MA-2011-15, Department of Mathematics, Royal Holloway, University
of London, September 2011.

29



[3] H. S. Al-Sinani, W. A. Alrodhan, and C. J. Mitchell. CardSpace-Liberty
integration for CardSpace users. In K. Klingenstein and C. M. Ellison,
editors, Proceedings of the 9th Symposium on Identity and Trust on the
Internet, IDtrust 2010, Gaithersburg, Maryland, USA, April 13–15,
2010, pages 12–25. ACM, New York, NY, 2010.

[4] H. S. Al-Sinani and C. J. Mitchell. Implementing PassCard — a
CardSpace-based password manager. Technical Report RHUL-MA-
2010-15, Department of Mathematics, Royal Holloway, University of
London, December 2010.

[5] H. S. Al-Sinani and C. J. Mitchell. Using CardSpace as a password
manager. In E. de Leeuw, S. Fischer-Huebner, and L. Fritsch, editors,
Policies and Research in Identity Management: Second IFIP WG 11.6
Working Conference, IDMAN 2010, Oslo, Norway, November 18–19,
2010, Proceedings, volume 343 of IFIP Advances in Information and
Communication Technology, pages 18–30. Springer, Boston, MA, 2010.

[6] H. S. Al-Sinani and C. J. Mitchell. Client-based CardSpace-OpenID in-
teroperation. In E. Gelenbe, R. Lent, and G. Sakellari, editors, Proceed-
ings of ISCIS ’11 — the 26th International Symposium on Computer
and Information Sciences, 26–28 September 2011, London, UK, Lec-
ture Notes in Electrical Engineering (LNEE), pages 387–394. Springer,
London, 2011. [Full version available at: http://www.ma.rhul.ac.uk/
techreports/2011/RHUL-MA-2011-12.pdf].

[7] H. S. Al-Sinani and C. J. Mitchell. Client-based CardSpace-Shibboleth
interoperation. Technical Report RHUL-MA-2011-13, Department of
Mathematics, Royal Holloway, University of London, May 2011.

[8] W. Alrodhan. Privacy and Practicality of Identity Management Sys-
tems: Academic Overview. VDM Verlag Dr. Müller GmbH, Germany,
2011.

[9] E. Bertino and K. Takahashi. Identity Management: Concepts, Tech-
nologies, and Systems. Artech House Publishers, Norwood, MA, 2011.

[10] V. Bertocci, G. Serack, and C. Baker. Understanding Windows
CardSpace: An Introduction to the Concepts and Challenges of Digi-
tal Identities. Addison-Wesley, Reading, MA, 2008.

[11] S. A. Brands. Rethinking Public Key Infrastructures and Digital Cer-
tificates: Building in Privacy. MIT Press, Cambridge, MA, 2000.

[12] J. Camenisch and E. Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In V. Atluri, editor, Proceed-
ings of the 9th ACM Conference on Computer and Communications

30



Security, CCS 2002, Washington, DC, USA, November 18-22, 2002,
pages 21–30. ACM, New York, NY, 2002.

[13] M. Crowley. Pro Internet Explorer 8 & 9 Development: Developing
Powerful Applications for the Next Generation of IE. Apress, New
York, NY, 2010.

[14] E. Gallery. An overview of trusted computing technology. In C. J.
Mitchell, editor, Trusted Computing, chapter 3, pages 29–114. IEE
Press, London, 2005.

[15] C. Herley, P. C. van Oorschot, and A. S. Patrick. Passwords: If we’re
so smart, why are we still using them? In R. Dingledine and P. Golle,
editors, Financial Cryptography and Data Security, 13th International
Conference, FC 2009, Accra Beach, Barbados, February 23–26, 2009.
Revised Selected Papers, volume 5628 of Lecture Notes in Computer
Science, pages 230–237. Springer-Verlag, Berlin, 2009.

[16] IETF. Internet draft-ietf-oauth-v2-20: The OAuth 2.0 Authorization
Protocol, 2011.

[17] Internet2. Shibboleth Architecture — Protocols and Profiles, 2005.

[18] Internet2. Shibboleth Architecture — Technical Overview, 2005.

[19] J. Leach. Improving user security behaviour. Computers & Security,
22:685–692, 2003.

[20] Liberty Alliance Project. Liberty ID-FF bindings and profiles specifica-
tion, 2004.

[21] Liberty Alliance Project. Liberty ID-FF protocols and schema specifi-
cation, 2005.

[22] M. Mercuri. Beginning Information Cards and CardSpace: From Novice
to Professional. Apress, New York, NY, 2007.

[23] OASIS. Identity Metasystem Interoperability Version 1.0 (IMI 1.0),
2009.

[24] D. Recordon, L. Rae, and C. Messina. OpenID: The Definitive Guide.
O’Reilly Media, Sebastopol, CA, 2010.

[25] L. M. Surhone, M. T. Timpledon, and S. F. Marsaken. Security As-
sertion Markup Language: Security Domain, Single Sign-on, Identity
Management, Access Control, OASIS, Liberty Alliance, SAML 1.1,
SAML 2.0. Betascript Publishing, 2010.

31



[26] L. M. Surhone, M. T. Timpledon, and S. F. Marseken, editors. OpenID:
Authentication, Login, Service, Digital Identity, Password, User, Soft-
ware System, List of OpenID Providers, Yadis, Shared Secret. Be-
tascript Publishing, 2010.

[27] W3C. W3C Recommendation: SOAP Version 1.2 Part 1: Messaging
Framework, 2007.

[28] G. Williamson, D. Yip, I. Sharoni, and K. Spaulding. Identity Manage-
ment: A Primer. MC Press, Big Sandy, TX, 2009.

[29] P. J. Windley. Digital Identity. O’Reilly Media, Sebastopol, CA, 2005.

32


