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Abstract 

A perfect binary array is an r-dimensional array with elements k 1 such that all out-of-phase 

periodic autocorrelation coefficients are zero. Such an array is equivalent to a Menon difference set 

in an abelian group. We give recursive constructions for four infinite families of two-dimensional 

perfect binary arrays, using only elementary methods. Brief outlines of the proofs were previously 

given by three of the authors. Although perfect binary arrays of the same sizes as two of the families 

were constructed earlier by Davis, the sizes of the other two families are new. 

1. Introduction 

LetA=(aij),Odi<s,O~j<t,beansxtarraysuchthataij=lor -lforalliandj. 

A is called an s x t binary array, and is called trivial if s = t = 1. Define the periodic 
autocorrelation function RA of A by 

s-l f-l 

where U, u are integers. Here, and in the rest of this paper, we consider the sums i + u 
and j+ v to be addition modulo s and t, respectively. A binary array A is called perfect 
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if R,(u, u) = 0 for all (u, V) # (0,O). We write PBA(s, t) to denote an s x t perfect binary 
array. 

If A is a nontrivial PBA(s, t) then st = 4N2 for some integer N and A is equivalent to 
a (4N2,2N2-N, N* -N)-difference set in Z, x Z, [2,9, IS]. We call a difference set 
with these parameters a Menon diference set, after Menon [22]. We refer the reader to 
Calabro and Wolf’s paper [6] introducing perfect binary arrays, to Turyn’s papers on 
the one-dimensional case [23,24], and to subsequent work on perfect binary arrays, 
including the construction of a PBA(s, t) for small values of st: [l, 4,5,7-9,16,20, 
25,261. For a general background on difference sets, see [3] or [15]. 

Davis [lo, 1 l] gave a character-theoretic construction, later much simplified 
by Dillon [12], for a PBA(2Y, 2y) and a PBA(2y+‘, 2y-‘) (ya 1). In this paper we 
give elementary constructions for perfect binary arrays of these sizes, and 
also construct a PBA(2Y. 3, 2y. 3) and a PBA(2Y+1 .3, 2y-’ ‘3) (y> 1). The methods 
were briefly outlined by Jedwab and Mitchell [16] and Wild [26] (independently of 
Davis). 

The basic idea is to construct a PBA(2s, 2t) from a PBA(s, t). The 4st entries of the 
PBA(2s, 2t) are made up of the st entries of the PBA(s, t), appearing twice, and the 
entries of another s x t binary array, which we call rowwise quasiperfect (or 
RQPBA(s, t)), which appear a second time with opposite sign. A similar construction 
is used to construct a RQPBA(2s, 2t) from a RQPBA(s, t) and another sort of s x t 
binary array, called doubly quasiperfect (or DQPBA(s, t)). 

We prove, under certain conditions on s and t, an equivalence between 
a RQPBA(s, t) and a DQPBA(s, t). This means we can repeat the construction to 
obtain a PBA(4s, 4t), a RQPBA(4s, 4t) and a DQPBA(4s, 4t). By iterating the con- 
struction, we obtain a PBA(2Ys, 2yt) for each y>O. At the same time we construct 
a PBA(2y+2 s, 2yt). The four families mentioned above are then obtained from 
a PBA(1,l) and DQPBA(l, l), and from a PBA(6,6) and DQPBA(6,6). 

We show that for the size 2Y x 2y (y > l), the recursive construction can be used to 
obtain a PBA for which the corresponding difference set is fixed by the multiplier - 1, 
and a RQPBA and DQPBA for which certain symmetry properties hold. These 
properties of the construction have not previously been noted. 

The constructions also generate infinite families of rowwise quasiperfect and doubly 
quasiperfect binary arrays with 2N2 elements, for integer N, as shown by Jedwab and 
Mitchell [17]. 

2. The construction 

Let A =(aij) and B =(bij) be s x t binary arrays. We define the periodic cross- 
correlation function RAB(u, u) of A and B at displacement (u, u) by 

s-l 1-l 

RAB(u,u)= 1 C aijbi+u,j+v, 
i=lJ j=O 
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where, as before, we identify the subscripts with the integers modulo s and modulo t. 

Note that RBA (u, v) = RAB(s - u, t -v). Define an s x 2t binary array C = (cij) = ic(A, B) 

by 
Ci, *j=Uij and ci, 2j+ I= bij for all O<i<s and O< j<t. 

We say C is obtained by interleaving the columns of A and B. Similarly, we define 

a 2s x t binary array D=(d,J=ir(A, B) obtained by interleaving the rows of A and B: 

dzi,j=atj and dzi+l.j- iJ -b. for all Odi<s and 06 j<t. 

It is straightforward to prove the following lemma. 

Lemma 2.1. Let A and B be s x t binary arrays. Let C = ic(A, B) and D = ir(A, B). Then 

Rc(u, 2v) = R&G v) + R,(u, v), 

Rc(u,2v+l)=R,,(u,u)+R,,(s-u,t-v-l), 

Rn(2u, v) = RA (u, v) + Re(u, v), 

Rn(2u + 1, o) = RAB(u, v) + R/&S - u - 1, t - o) 

for all OQuts, O<v<t. 

Our aim is to construct perfect binary arrays C and D by interleaving appropriate 

arrays A and B. 

Definition 2.2. Let A and B be s x t binary arrays. A and B are called complementary if 

RA(u, v)+ R,(u, v) =0 for all (u, v) #(O, 0), 

and uncorrelated if 

R,&, v) = 0 for all u, u. 

Theorem 2.3. Let A and B be s x t binary arrays. Then C=ic(A, B) is a PBA(s,2t) 

(respectively D=ir(A, B) is a PBA(2s, t)) if and only if A and B are complementary 
arrays such that 

RAB(u,v)+RAB(s-u,t-v-l)=0 for all u,v 

(resp. RAB(~,v)+RAB(~-~-l,t-v)=O for all u,u). 

Proof. This theorem follows immediately from Definition 2.2 and Lemma 2.1. 0 

Corollary 2.4. Let A and B be s x t binary arrays which are complementary and 
uncorrelated. Then ic(A, B) is a PBA(s, 2t) and ir(A, B) is a PBA(2s, t). 
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Let A =(aij) and II=(&) be s x t binary arrays. Define a 2s x t binary array 

A 
C=(Cij)= B [I 
cij=aij and Ci+s,j=bij for all Obi<s and O<j<t, 

and an s x 2t binary array D = (dij) = [A B] by 

dij=aij and di,j+,=bij for all O<i<s and O<j<t. 

The following lemma, whose proof is straightforward, shows how to construct 

uncorrelated binary arrays. 

Lemma 2.5. Let A and B be s x t binary arrays. Then: 
(i) A’ = [j] and B’ = [ _“8] are uncorrelated, 

(ii) A” = [A A] and B” = [B -B] are uncorrelated. 

Definition 2.6. Let B be an s x t binary array. B is called rowwise quasiperfect if 

B’= 
B 

[ 1 _ B has RB,(n, u) = 0 for all (u, u) # (0,O) or (s, 0). 

B is called columnwise quasiperfect if 

B” = [B - B] has RB,,(u, u) = 0 for all (u, u) # (0,O) or (0, t). 

We write RQPBA(s, t) (respectively CQPBA(s, t)) for an s x t rowwise (resp. column- 

wise) quasiperfect binary array. 

We shall state the construction theorems involving quasiperfect binary arrays 

using the rowwise form (as in [16,17,26]). Corresponding constructions using the 

columnwise form can easily be obtained by noting that B is a RQPBA(s, t) if and 

only if BT is a CQPBA(t, s). 

Also note that if A = (aij) and B = (bij) are related by bij = (- l)iaij, then for s odd, A is 
a PBA(s, t) if and only if B is a RQPBA(s, t). The special case t = 1 of this result is due 

to Geramita and Seberry [14]. 

Lemma 2.7. Let A be a PBA(s, t) and B a RQPBA(s, t). Then 

A!=[;] and H=[_Bg] 

are complementary. 
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Proof. By Definition 2.6, 

245 

R,,(u, u) = 
0 for all (u, 0) # (0, O), (s, O), 
- 2st for (u, u) = (s, 0) 

and it is simple to show that 

R,,(u, u) = 
0 for all (4 u) # (0, O), (s, 0), 

2st for (u, u) = (s, 0). 

Hence, 

R,,(u, u) + RB.(u, u) = 0 for all (u, u) # (0,O). 0 

Theorem 2.8. Ifthere exist a PBA(s, t) and RQPBA(s, t) then there exist a PBA(2s, 2t) 

and a PBA(4s, t). 

Proof. Suppose A is a PBA(s, t) and B is a RQPBA(s, t). Then 

*I=[:] and H=[_Bg] 

are complementary uncorrelated 2s x t binary arrays, by Lemmas 2.5 and 2.7. Hence 

ic(A’,B’) is a PBA(2s,2t) and ir(A’,B’) is a PBA(4s, t), by Corollary 2.4. 0 

Example 2.9. 

is a PBA(2,2) and a RQPBA(2,2). By Theorem 2.8, 

r+ + + +1 
ic 

is a PBA(4,4), and 

is a PBA(8,2). 

3. Quasiperfect binary arrays 

Our aim now is to give a construction for rowwise quasiperfect binary arrays 

similar to Theorem 2.8. 
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Definition 3.1. Let A and B be s x t binary arrays. Let 

A!=[ _AA] and Bl=[ _-Bs] 

A and B are called quasicomplementary if 

RA,(t4, u) + Rs(u, 0) = 0 for all (u, u) # (0, 0), (s, 0), 

and quasiuncorrelated if A’ and B’ are uncorrelated. 

Theorem 3.2. Let A and B be s x t binary arrays. Let 

A!=[ _AA] and Bl=[ _BB]. 

Then C = ic(A, B) is a RQPBA(s, 2t) (resp. D = ir(A, B) is a RQPBA(2s, t)) ifand only if 
A and B are quasicomplementary arrays such that 

R,~~(u,o)+RA~B~(2s-u,t-u-l)=0 for all u,u, 

(resp. RA~B’(u,~)+RA.B’(2~-u-1,t-u)=Ofor all u,u). 

Proof. This theorem follows by applying Lemma 2.1 to 

C’= 
C 

[ 1 -c 
=ic(A’, B’) 

(resp. D’ = 
D 

[ 1 -D 
= ir(A’, B’)). 0 

Corollary 3.3. Let A and B be s x t binary arrays which are quasicomplementary and 
quasiuncorrelated. Then ic(A, B) is a RQPBA(s, 2t) and ir(A, B) is a RQPBA(2s, t). 

The following lemma shows how to construct quasiuncorrelated binary arrays. 

Lemma 3.4. Let A and B be s x t binary arrays. Then 

[A A] and [B -B] 

are quasiuncorrelated. 

Proof. Apply Lemma 2.5(ii) to 

[_AAA] and [ pBB]’ q 
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Definition 3.5. Let C be an s x t binary array. C is called doubly quasiperfect if 

has Rc(u, u) = 0 for all (u, u) # (0, O), (s, O), (0, t), (s, t). 

We write DQPBA(s, t) for an s x t doubly quasiperfect binary array. 

Note that C is DQPBA(s, t) if and only CT is a DQPBA(t, s). Note also that if 

B = (b,j) and C = (cij) are related by bij = (- l)i cij then for t odd, C is a DQPBA(s, t) if 

and only if B is a RQPBA(s, t). 
The proof of the following lemma is similar to the proof of Lemma 2.7. 

Lemma 3.6. Let B be a RQPBA(s, t) and C a DQPBA(s, t). Then [B B] and [C -C] 

are quasicomplementary. 

Theorem 3.7. If there exist a RQPBA(s, t) and a DQPBA(s, t) then there exist 

a RQPBA(2s, 2t) and a RQPBA(s, 4t). 

Proof. Suppose B is a RQPBA(s, t) and C is a DQPBA(s, t). Then B”= [B B] and 

C” = [C -C] are quasicomplementary quasiuncorrelated s x 2t binary arrays, by 

Lemmas 3.4 and 3.6. Hence ir(B”, C”) is a RQPBA(2s,2t) and ic(B”, C”) is 

a RQPBA(s,4t), by Corollary 3.3. 0 

Example 3.8. 

is a RQPBA(2,2) and 

is a DQPBA(2,2). By Theorem 3.7, + + + + 
ir([B B],[C -Cl)= 

+ + - - 

is a RQPBA(4,4), and 

ic([B B],[C -Cl)= 

is a RQPBA(2,8). 
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4. Doubly quasiperfect binary arrays 

We now give conditions under which the existence of a rowwise quasiperfect binary 

array is equivalent to the existence of a doubly quasiperfect binary array. This will 

allow us to use perfect binary arrays and doubly quasiperfect binary arrays as the 

basic structures of a recursive construction. 

Definition 4.1. Let A = (aij) and B = (bij) be s x t binary arrays and let c be an integer. 

B is called the c-shear of A if ct = 0 (mods) and 

bij=Ui-cj,j for all i,j. 

Note that if B is the c-shear of A then A is the (-c)-shear of B. 

Lemma 4.2. Let A he an s x t binary array. If B is the c-shear of A then 

Rs(u, v) = R,(u - cu, u) for all u, v. 

Proof. 
s-l t-1 

R,(u,u)= 2 1 bijbi+u,j+v 
i=o j=O 

s-l f-1 

= 1 c ai-cj,j&+u-c((j+v)modt).j+v 
i=CJ j=O 

s-l r-1 

= 2 1 ai-,j,jai+.-cj-,u, j+v 
i=o j=O 

for all U, v, since ct -0 (mods). Replacing i -cj by i, for each fixed j, we obtain the 

result. 0 

Corollary 4.3. Let A be a 2s x 2t binary array and let B be the c-shear of A. Then 

RA(u, 4 = 0 for all (u, 4 # (0, 0), (s, 0), (0, 0, (s, t) 

if and only if 

&(u, 0) = 0 for all (u, 4 # (0, 0), (s, 0), (0, t), (s, 0. 

Proof. This corollary follows from Definition 4.1 and Lemma 4.2. 0 

Definition 4.4. Let A be an s x t binary array. Let 

‘=[-“A -‘A] 

and let B’ = (bij) be the c-shear of B. Define an s x t binary array A’ = (Uij) by a:j = b$j for 

all 0 < i < s, 0 < j < t. A’ is called the c-transform of A. 
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Theorem 4.5. Let A be an s x t binary array and let c satisfy ct E s (mod 2s). Then A is 
rowwise quasiperfect zf and only lj- the c-transform of A is doubly quasiperfect. 

Proof. Let 

‘=[ -“A _AAA] 
and let B’ be the c-shear of B. From the given form for B, 

bij=bi,j+t= -bi+s,j= -bi+s,j+t 

for all O< i<s, 0~ j< t. By Definition 4.1 this implies that 

b;+,j,j=b;+,j+,t,j+t= -b;+,+cj,j= -b;+,+,j+,,jj+, 

for all 0 < i < s, 0 < j < t. Hence, using cc = s (mod 2s), 

bij= -b:,j+,= -b:+,,j=bf+s,j+f 

for all 0 < i < s, 0 < j < t. Therefore, 

g=[$ --$J 

where A’ is the c-transform of A. By Corollary 4.3, A is rowwise quasiperfect if and 

only if A’ is doubly quasiperfect. 0 

We have now established conditions under which rowwise quasiperfect and doubly 

quasiperfect binary arrays are equivalent. 

Corollary 4.6. Zf t/gcd(s, t) is odd then there exists a RQPBA(s, t) if and only if there 

exists a DQPBA(s, t). 

Proof. We note that ct = s (mod 2s) if and only if t/gcd(s, t) is odd and c is an odd 

multiple of s/gcd(s, t). The result follows from Theorem 4.5. q 

Suppose t/gcd(s, t) is odd and A is a RQPBA(s, t). The above proof gives a proced- 

ure for obtaining a DQPBA(s, t) A’. Put 

‘=[ -AA -A41 and c = s/gcd(s, t). 

Form B’, the c-shear of B, by cycling column j of B by cj places for j = 0, . . . ,2t - 1. 

Then the first s rows and t columns of B’ are A’, the c-transform of A. 

Example 4.7. Let s= t =4, so t/gcd(s, t)=s/gcd(s, t)= 1. Let A be the RQPBA(4,4) 

constructed in Example 3.8. Since s/gcd(s, t)= 1, we cycle column j of the corresponding 
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B by j places to obtain 
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Then 

is a DQPBA(4,4). 

+ + 
A’ = 

+ 

+ 

5. Infinite families of perfect binary arrays 

The relationship between rowwise quasiperfect and doubly quasiperfect binary 

arrays described in Corollary 4.6 allows us to restate Theorems 2.8 and 3.7 as follows. 

Theorem 5.1. If there exist a PBA(s, t) and a DQPBA(s, t) then there exist 

a PBA(2s, 2t) and a DQPBA(2s, 2t). Zft/gcd(s, t) is odd, there also exist a PBA(4s, t) and 
a RQPBA(s, 4t). 

Corollary 5.2. Zf there exist a PBA(s, t) and a DQPBA(s, t) 

a PBA(2Ys,2y‘) and a DQPBA(2Ys,2Yt)for each ~30. Zf t/gcd(s, t) 
exist a PBA(2y+2 s, 2yt) and a RQPBA(2ys, 2y+2 t) for each y>O. 

then there exist 
is odd, there also 

Corollary 5.3. There exist the following infinite famililes of 
binary arrays: 

PBA(2y, 2y), PBA(2Y+‘, 2y- ‘), PBA(2Y.3, 2y.3), 

PBA(2y+ ’ .3, 2y-1 .3) (Y 3 1). 

two-dimensional perfect 
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There exist the following infinite families of doubly quasiperfect and rowwise quasiperfect 
binary arrays: 

DQPBA(2”, 2”) DQPBA(2y.3, 2y.3), RQPBA(2Y- ‘, 2”+ ‘), 

RQPBA(2y-‘.3,2Y+‘.3) (Y 2 1). 

Proof. There exist a PBA(l, 1) and a DQPBA(l, l), and a PBA(6,6) and 

a DQPBA(6,6) [16]. The existence of the above eight families follows by putting 

s= t = 1 and s= t=6 in Corollary 5.2, with the exception of a PBA(12,3) and 

a RQPBA(3,12) (represented by the case y= 1 of the fourth and eighth families). 

A PBA(12,3) is given in [9] and therefore, by the remark preceding Lemma 2.7, there 

exists a RQPBA(3,12). 0 

As shown by Jedwab and Mitchell [17], we can also use Theorem 3.7 and 

Corollary 4.6 to prove the following. 

Theorem 5.4. If there exists a DQPBA(2t, t) then for each y>O there exist 
a DQPBA(2Y+’ t, 2Yt), a RQPBA(2Y+’ t, 2y+2 t), and a RQPBA(2y+’ t, 2y+4t). 

Corollary 5.5. There exist the following injinite families of doubly quasiperfect and 
rowwise quasiperfect binary arrays: 

DQPBA(2y, 2y- ‘), RQPBA(2y, 2y+ ‘), RQPBA(2Y, 2y+ 3, (Y 2 1). 

6. Symmetry properties 

If we recursively apply the construction methods of Theorems 2.8 and 3.7 and 

Corollary 4.6, beginning with the trivial array [ +], we can obtain a family of perfect, 

rowwise quasiperfect and doubly quasiperfect binary arrays of size 2y x 2y (y > 1) with 

special structure. 

Theorem 6.1. Let t =2y, where y>O. There exist arrays A =(aiJ, B= (bij) and C =(cij), 
which are, respectively, a PBA(t, t), a RQPBA(t, t) and a DQPBA(t, t), for which the 
following properties hold for all 0~ i, j< t: 

(i) aij=&i,t_j, 

(ii) boj=bo,,-j-1, bij= -b,-i,t-j-l(i#O), bij=b,-i,j (i#O), 
. . . 

(111) Cij=Ci,t-j-1, Cij=C*-i-l,+ 

Proof. We use induction 

Assume that arrays A, B, 

D’ = (d;j) = _“C 

on Y. The case y = 0 is given trivially by A = B = C = [ +]. 
C with the desired properties exist for some y>O and that 

-c 

C 1 
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is the l-shear of 

From the proof of Theorems 2.8 and 3.7 

is a PBA(2t, 2t) and B’ = (bij) = ir ([B B], [C -C]) is a RQPBA(2t, 2t). From the 

proof of Corollary 4.6, C’ = (cij) is a DQPBA(2t, 2t), where 

EL(e;j)=[ -“;-, --g 

is the l-shear of 

E=(e$=[ _Bi, _Bi,]. 
Property (i) for A’ and property (ii) for B’ follow easily from the inductive hypothesis. 

We now prove the first part of property (iii) for C’. By definition of E’ we must show 

that for all O<i<4t, O< j<2t, 

, f$j= -ei,4r_j_1. 

Now by Definition 4.1, e:j=ei_j,j and so this is equivalent to 

ei-j,j= -ei+j+l,4t-j-1. 

Replacing i-j by 2i and then by 2i+ 1, we require that for all O<i, j<2t, 

ezi,j= -ezi+2j+1,4t-j-l and e2i+l,j= -e2i+2j+2,4r-j-l. 

But by construction of B’, E =ir([D D], [D’ D’]) and so this is equivalent to 

dij= -d:+j,zr_j_ 1 and d;j= -di+j+ l,zt-j-1+ 

Both of these hold provided d$j = - d:,zl_j_ 1 for all 0 < i, j< 2t, since dij= d:+j,j by 

Definition 4.1. By definition of D’, this relation is given by (iii). A similar argument 

gives the second part of property (iii) for C’. 0 

7. Comments 

The parameter set {s, t} of every PBA(s, t) and DQPBA(s, t), and the parameter set 

(s, t) of every RQPBA(s, t), known to the authors, belongs to one of the infinite families 

constructed in Corollaries 5.3 and 5.5. When st is a power of 2 the only possible values 

of {s, t} for a PBA(s, t) are those of the first two families of Corollary 5.3 [19,23]. To 
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the authors’ knowledge the smallest value of st for which the existence of PBA(s, t) 

is undecided, using the nonexistence theorems of Turyn [23], Lander [19] and 

McFarland [21], occurs at {s,t} ={18,18} and {9,36}. 

The family of perfect binary arrays A constructed in Theorem 6.1 corresponds to 

a family of Menon difference sets in ZZY x ZZY (y> l), each of which is fixed by the 

multiplier - 1. Such a family was previously obtained by Dillon [12]. However, the 

rotational and reflective symmetry properties of the rowwise quasiperfect and doubly 

quasiperfect binary arrays B and C constructed in Theorem 6.1 have not previously 

been noted. The arrays C are particularly interesting in this respect, having reflective 

symmetry about both a horizontal and vertical axis. 

The construction methods presented here have recently been generalised in several 

ways: to perfect binary arrays in any number of dimensions, to perfect arrays with any 

integer elements, and to Menon difference sets in nonabelian groups. In a different 

notation, the constructions of Theorems 2.8 and 3.7 can be unified. 

Using the definition of relative difference set given in [13] and arguments similar to 

those used by Chan et al. [9], it can be shown that a nontrivial RQPBA(s,t) is 

equivalent to a relative difference set in ZZs x Z, relative to ((s, 0)) and a nontrivial 

DQPBA (s, t) is equivalent to a relative difference set in ZZs x Z,,/((s, t)) relative to 

((s, 0), (0, t))/((s, t)), the parameters in both cases being (st, 2, st, st/2). 
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