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PERMUTATIONS WITH RESTRICTED DISPLACEMENT*

HENRY BEKERt AND CHRIS MITCHELL}

Abstract. The permanent of an n by n (0, 1) circulant matrix is known to be equal to the number of
permutations on 7 objects satisfying certain positional restrictions. The size of this number is of major importance
for the design of certain analogue speech scramblers, as well as being a generalisation of certain “classical”
enumeration problems. In this paper a new method is given for evaluating this permanent, which gives as
corollaries many of the previously known results. The analogue speech scrambling scheme is also used to
motivate a second enumeration problem, about which little seems to be known.
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1. Introduction. In this paper we consider a permutation enumeration problem
that is of interest for two main reasons. First, it is a classical combinatorial problem, the
study of certain cases of which goes back to the last century. Second, it is of considerable

- practical significance in the field of cryptography, in particular to the designers of time
element speech scramblers.

The set of permutations that concern us here we call A(n, k), where 1 < k < n, and
A(n, k) contains permutations of {1, 2, - -+ , n}. More formally, we define

A(nk)y={meS,: ime{i,i+1, --- ,i+k—1} for every i}

where the ~ indicates the equivalence class modulo 7.

In a combinatorial context, |A(%, k)| has been studied under many guises; in particular
note that evaluating |4(n, k)| for k = n — 1 is the “probléme des rencontres,” and for
k = n— 2 is the “probléme des ménages.” In addition, |A(n, k)| is equal to the permanent
of a certain (0, 1) n by n matrix. For a study of results in this context the reader is referred
to Minc’s unique book [11].

|A(n, k)| is also of considerable practical significance because it is equal to the number
of different ““scrambling patterns” that can be used in a certain type of time element
scrambling speech encryption device. For a more general introduction to this type of
application see [1]-[4] and [12].

In this paper we consider a new approach to the evaluation of |4(n, k)| which
gives a direct method of computing it as the sum of the traces of the nth powers of
[(k — 1)/2] matrices containing only zeros and ones. This new approach gives as immediate
corollaries both the recurrence relations of Metropolis, Stein and Stein [9], and a number
of previously well-known results.

Although the computational method requires a prohibitively large amount of com-
puter storage for practical use in computing |A(n, k)| for values of k much in excess of
12, it enables the computation of |4(n, k)| for values of n and k not previously accessible.
In particular, since the running time of the computation method is polynomial in # for
fixed k, values of [A(n, k)| can be directly computed for relatively large values of 7 given
that k is sufficiently small. It is not surprising that computing |4(n, k)| seems a difficult
problem, since Valiant ([17] and [18]) has shown that evaluating the permanent of a
(0, 1) matrix is a #P-complete problem (see also Garey and Johnson [5]).
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2. The combinatorial problem. Throughout this paper we will write a(n, k) for the
cardinality of the set A(n, k), i.e.,

a(n,k)y=|{re€S,:ine{i,i+1, -+ ,i+k—1} forevery i}|.

As in [11], a(n, k) can also be defined as the permanent of the n by » matrix Q(n, k),
where

k-1
Qn,k)= 2 P’
i=0
and where P denotes the n by n permutation matrix with a one in positions (1, 2),
(2, 3), 20 5(n—1,m); (n, 1).

Explicit formulae for a(n, k) have only been derived for values of k either near 0 or
near #n. We first consider the known results for which £ is close to n.

Clearly A(n, n) = S,, and hence a(n, n) = n!l. As noted above, evaluating
a(n, n — 1) is the well-known “probléme des rencontres,” and a(n, n — 1) is equal to the
number of elements of S, having no fixed point. The number a(n, n — 1) is often written
as,D, (the “derangements number”), and is discussed in many combinatorial texts, see
for example [7, pp. 541-542]. Similarly, evaluating a(n, n — 2) is also a well-known
problem, commonly called the “probléme des ménages.” The solution for both these
problems goes back to the last century; according to [6], a formula for a(n, n — 2) was
obtained by Cayley and Muir in 1878.

The evaluation of a(n, n — 3) was first considered in [14], which contains no explicit
formula but does give an asymptotic result. Yamamoto [20] considered the same problem,
but it was Moser [13], who first produced an explicit formula for a(n, n — 3), which is,
however, rather complex. Whitehead [19] has more recently considered the problem of
evaluating a(n, n — 4).

In summary we have the following.

Result 2.1. (1) a(n, n) = nl, n= 1.

(i) am,n—1)=n! Zr-o (1Y, n= 2.

(i) a(n, n—2) = 2o (—1).2n. *7H.(n — )!/2n — i), n Z 3 (Touchard (see [6]
and [15])).

For Moser’s formula for a(n, n — 3) the interested reader is referred to [13].

Second, we consider results for small k. The cases k = 1 and 2 are trivial, and simple
recurrence relations for k = 3 and 4 have been derived by Minc (see [10] or [11]). In
addition, Metropolis, Stein and Stein [9] give recursion formulae for a(n, k) for k = 9.

In summary we have the following.

Result22. ) an, 1)=1,n=1.

(i) a(n,2)=2,n= 2.

(i) a(r,3)=arn—1,3)+an—2,3)—2,n= 15, a3, 3) =6 and a4, 3) = 9.

i) an, 4)=an—1,4)+an—2,4) +an—3,4) —4,n=17, a4, 4) = 24,
a(5, 4) = 44 and a(6, 4) = 80.

The recursion formulae of [9] for 5 = k = 9 are much more complex.

3. Time element speech scramblers. The practical application of permutations in
A(n, k) is in a certain kind of speech scrambler called a time element scrambler. There
are a variety of types of time element scrambler systems, but they all employ the same
general principle. The technique relies on the scrambler “recording” segments of speech,
and then transmitting these segments in a different order.

More specifically, in a conventional so-called hopping window time element scram-
bler, the analogue speech signal is first divided into equal time periods called frames.
Each frame is then further subdivided into a fixed number 7 of small equal time periods
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called segments, where the length of a segment would typically be of the order of 25-50
milliseconds. The scrambling is then achieved by transmitting the segments within a
frame in a permuted order. At the receiver the inverse permutation is used to recover
the original speech.

A typical system for # = 8 is illustrated in Fig. 1 below. For a more detailed discussion
of the design considerations for such a device, such as the choices for 7, the segment
length and the selection of permutations to use in the scrambler, the reader is referred
to [3]. The important thing to note here is that the system delay for such a device will
be 2nT seconds, given that T is the segment length.

Thus, if T is, say, 50 milliseconds, and if #» = 8, then the system delay will be 0.8
seconds, which is large enough to be noticeable. For larger n and T this delay will become
unacceptably long, and yet, if n = 8, the total number of available permutations is only
8! = 40320. So a problem can arise over choosing # sufficiently large to give a wide
enough choice of enciphering permutations, and choosing # small enough to make the
system delay acceptably short.

The idea of sliding window time element scramblers is to reduce the inherent time
delay of the system, whilst at the same time increasing the number of possible scrambling
patterns that can be used. There are a number of different types of sliding window systems,
and for a description of some of these see [13] and [12]; we consider here one particular
type, which we call overlapping frame sliding window time element scrambling, chosen
for its ease of implementation.

As in a straightforward time element scrambler, the speech is again divided into
frames of # segments, where each segment is 7 seconds long. However, we restrict ourselves
to using a special subset of permutations from S,, and we use these permutations in a
slightly different way.

We first choose an integer k less than #n. As we shall see, the choice of k directly
affects the total system delay, which is equal to (k + 1)T seconds. Thus if £ = 16 and
T = 30 milliseconds then the system delay would be 0.51 seconds. Note also that the
system delay is independent of the choice of 7.

Having fixed k, we then restrict our choice for scrambling permutations from S, to
those permutations « satisfying:

ine{i—1,i—-2,---,i—k} foreachi(1=<i<n)

where i denotes the residue class of i modulo #. The idea is that at time ¢ the segment
spoken at time s is transmitted, where § = twr and 1 = ¢ — 5 = k; this is possible because
« satisfies the above property.

} | Frame length

- Segment length
Analogue T T T T T 7 T 1
rvenns DD DRODN
input
R P T O P T
AR AR Y B [ [ A
[ T Y O (O A I |
|Illlllll| T T T T T T T Scrambled
| Permuter b—>1218161311171514
| ] W (SR ST N ) S 1 T
output

F1G. 1. Hopping window time element scrambling.
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In Fig. 2, the use of such a permutation is illustrated for a system having n = §,

k=3 and
<1 2 3 4 5 6 7 8)
= S
6 1 8 3 2 5 4 7

In the figure we have used different letters to distinguish between frames, so that Al,
A2, --- A8 are used to denote the eight segments of the first frame, B1, B2, --- , B8
denote the segments of the second frame, and so on.

Because of the condition imposed on the permutation, we know that each segment
will be transmitted at most 37 seconds after it has been spoken, and hence the receiver
can output the recovered descrambled speech signal 47 seconds after it has been input

to the transmitting device. In general, each segment will be transmitted within kT seconds
and thus the total system delay will be (k + 1)T seconds. This assumes that each segment
must spend at least 7 seconds in both the transmitting and receiving devices.

As we have stated above, the only permutations that are usable in this type of sliding
window time element scrambler are those permutations = € S, satisfying:

ir€{i—1,i—2, - ,i—k} foreveryi.

In this paper we are concerned with the problem of enumerating these permutations,
which is obviously a problem of considerable practical cryptographic significance.
Asin § 1 above, we thus define:

A*(n,k)={meS,: ire{i—1,i=2, - -+ ,i—k} for every i}

and we are interested in a(n, k) = |A*(n, k)|.
For the purposes of the theory which follows it is easier to consider the set:

A k)={meS,:ire{i,i+1, - - ,ithk— 1} for every i}
and it is clear that a(n, k) = |A(n, k).

Time (1) t=0 t=8T t=16T

| Frame A | Frame B [

| [ [

| | [
Speech R D L i D R T DO Y O S S e i s
input to --|A1|A2IA3IA4I.A5|A6|A7|A8|B1|B2lBa|B4|BSIB6|B7IBSI ctl| -
transmitter 11 | | | | | | | | | | | | | | | |

l | l l

I' I l l

| TT T T F T..0 el T i izl
Transmitted | -+ [A1] --|A3| A2| A5| A4 | A7 | A6 | B1 | A8 | B3 | B2 IB5|B4| B7| B6| -
speech ' o S O el I ] | ] ] ] ] ] ] (A I | |

{ I l

| l l |
Speech l R W G L R I A S AR R TR
output at | ---|A1|A2|A3|A4IA5|A6IA7IABIB1|B2IBSIB4IBSI
receiver | | =" L1 L1 L1 L1 1 | l

I

| |
—

System delay = 4T secs.

FIG. 2. Overlapping frame sliding window time element scrambling.
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4. The main result and some corollaries. In this section we state the main results
of this paper without proof; the proofs of all the results given here can be found in the
next section.

Before stating the main theorem we first need a little notation. If = € .S, and
i€{1,2,---,n}, then define

X, i)= {jm, Je{Li+ 1, -+ ,itk—=2}:jmwe{j,j+1, - ,i+k—2}}.

Clearly by definition, 0 < |X(r, i) < k — 1.
We now state the following result, which is of fundamental importance.
LEMMA 4.1. If © € A(n, k), then there exists an integer r,r € {0, 1, --- , k — 1},
such that
|X(m, Dl =r foreveryi€e{1,2,--- ,n}.

Because of this result, we make the following definition:
A(n, k,r) = {m€A(n,k) : | Xi{(m,i)| = r for every i}, 0=r=k—1.

By Lemma 4.1 it is clear that A(n, k) is equal to the disjoint union of the A(n, k, r)’s for
r satisfying 0 < r < k — 1, and hence, if we let a(n, k, r) = |A(n, k, r)|, then we have the
following lemma.
LEMMA 4.2.
k-1

an, k)= > aln,k,7r).

r=0

In fact, in order to compute a(#, k) using this lemma it is only necessary to compute
a(n, k, r) for r satisfying 1 = r < [(k — 1)/2], since we also have the following.

LEMMA 4.3. W an, k,)=an k,k—1-nN0=r=k—1=n-1.

() a(n, k,0)=an k,k—1)=1,0=k—-1=n—-1.

Now suppose k and r are integers satisfying 0 = r =k — l,and let 7 = (*7Y). Label
the ¢ distinct r-subsets of {0, =1, -+, =k + 2} : R;, Rz, -+ , R;, and let

Rf={j+1:jeR—{0}},

forevery i€ {1,2,---,t}.
Then define the ¢ by ¢ matrix H(k, r) = (h;;) by

1 if R} is a subset of R;
hij = . .
0 otherwise

We can now state the main result.

THEOREM 4.4. a(n, k, r) = Trace(H(k, r)").

This result, in combination with Lemmas 4.2 and 4.3, provides a direct method for
computing a(n, k). Unfortunately, for kK much larger than 12, H(k, r) becomes extremely
large, and the method is unusable because of the computer storage requirements. However,
for fixed k = 12, a(n, k) can be computed for large n without much difficulty.

Furthermore, this theorem has as an immediate corollary, the recurrence relations
of [9]. By the Cayley-Hamilton Theorem, H(k, r) satisfies its own characteristic equation,
and hence, since Trace is a linear function, a(n, k, r) satisfies the characteristic equation
of H(k, r). The following corollary results.

COROLLARY 4.5 (Metropolis, Stein and Stein). Suppose that

t
det (H(k,r)—xI)= 2 cx".
i=0
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Then
t
> can+ik,r)=0.
i=0

Moreover, since the Trace of a matrix is equal to the sum of its eigenvalues, we
immediately have the following corollary.

COROLLARY 4.6. Suppose qi, ¢z, - * * , q; are the eigenvalues of H(k, r). Then

(1) a(na k’ r) = Z§=1 q:l

Gi) Ifs€{1,2, -, t} satisfies |g| > |q;| for every i€ {1,2, -+, t} — {s}, then
a(n, k, )/(qy)" tends to 1 as n tends to infinity.

Note that (ii) above has as an immediate corollary a conjecture of [9], namely that
a(n + 1, k, r)/a(n, k, r) tends to g, as n tends to infinity; [9, Table IV] lists the maximal
eigenvalues of H(k, r) for k = 4, 5, 6, 7, 8, 9 and all r satisfying 1 = r = [(k — 1)/2].
Corollary 4.6 (ii) also implies that, for a fixed k, a(n, k) is asymptotic t0 (Gmax)", Where
Gmax is the maximum value from the set of eigenvalues for all the matrices H(k, r),
0=r=[tk—-1)/2]

Although a(n, k, r) has meaning only if n Z k, H(k, r)" exists for every n = 1. We
can thus define a(n, k, r) to be Trace (H(k, r)") for every n satisfying 1 = n =k — 1.
These values of a(n, k, r) will clearly satisfy Corollary 4.5, and so they can be used as
initial values for the recurrence relation.

The case r = 1 is an especially tractable one, and we give below a complete solution
for this case. The first of the results is given in [9], but the second seems to be previously
unknown.

Result 4.7. (Metropolis, Stein and Stein).

k-2
an+k—1,k1)= > an+ik,1), nx=1.
i=0

THEOREM 4.8. If 1 =n=<=k— 1thena(n, k, 1) =2"— 1.

Note that Result 4.7 and Theorem 4.8 provide a recurrence relation and sufficient
initial conditions to easily compute a(n, k, 1) for any reasonable values of 7 and k. Also
note that in combination with Lemmas 4.2 and 4.3, the above two results have as an
immediate corollary Result 2.2.

We have thus seen that Theorem 4.4 is the basis of straightforward proofs of all the
results known previously on the computation of a(n, k) for “small” .

5. Proof of the main results. In this section we prove the results given in § 4 above.
We first consider Lemmas 4.1-4.3.

Proof of Lemma 4.1. Choose 7 € A(n, k), and suppose i, j € {1, 2, - -+, n} satisfy
j=1+1 (where, as always, the bars denote residue classes modulo 7). By inspection:
{ix} ifime{Li+], - ,itk—-2},

¢ ifir=i+k—1,

Xk(rs l) _Xk(raj) = {

and

(i+k—1} ifitk—1€{(i+ Dm, - ,(i+k— D},
Xi(m, j) — Xi{m, i) =

ifir=i+k— 1.
Hence |X(r, i)| = |X«(=, j)| and the result follows. O

Lemma 4.2 is immediate from the definition, and we also have the following proof.
Proof of Lemma 4.3. (i) Define the mapping ¢ from S, into .S, by:

¢i(w) maps i to (n+1)— s, where s€{1,2, --- ,n} and §=—i—k+2.
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Then we claim that ¢, is a one-to-one mapping from A(n, k, r) into A(n, k, k — 1 — r).
This will establish the result.

It is not difficult to see that ¢, permutes the elements of S,,, so we need only show
that ¢, maps A(n, k, r) into A(n, k, k — 1 — r) to complete the proof of (i).

Choose 7 € A(n, k, ) and define 7* = ¢(w). By definition, if i € {1, 2, - - - , n} then
ir* = 1—s(i)r, where s(i) € {1,2, - -+, n} and s(i) = —i—k+2. Now since 7 € A(n, k),
we know that

sDrel =i=k+2,—=l—k+3, = ;—i+ 1},
and hence

imre{itk—1,i+k—2, - ,i},
and so * € A(n, k). Now, by definition,
Xr*, n—k+2)={jr*,s(jye{nn—1, -+ ,n—k+2} : s(j)w
and since w € A(n, k, 1), | Xi(w, n — k + 2)| = r, ie,
|{jm, je{n—k+2,n~k+3, ++= 1} cjre{jj+1, - Al =r,

and hence |[Xi(=*, n — k+ 2)| = k — 1 — r, and (i) follows. »

(ii) If = € A(n, k, 0), then it is straightforward to show that iw = i+ k— 1 for every
i, and hence |A(n, k, 0)| = 1. The result follows from (i). O

In order to establish Theorem 4.4, it is necessary to prove a number of preliminary
results. We first make some definitions.

If0 = r=<k—1and k = 2, then define E(k, ) to be the class of all (k — 1)-subsets
Eof {—k + 2, —k + 3, -+, k — 1} satisfying the property that E contains precisely r

elements of {—k + 2, —k + 3, -+, 0}.
If E € E(k, r) then define Uy(E) to be the set:

{(61,62, i 9ck—1) . {C1a625 e ack—l} =E9ci€{i—k+ l,l—k+23 el ai}}'
In addition let u(E) = |U(E)|. B
Lastly, for any set of integers E = {e;, e, "+, &}, say, let E = {e}, &, -+ - , &},

where, as always, we are working modulo 7.
As an immediate result we have the following lemma.
LEMMA 5.1.

k—1
r

2
[E(k, r)| = ( ) 5 0=r=k—-1, k=22.

We may now state the following important result, which justifies the definition
of U(E).

LEMMA 5.2. Suppose0=r=k—land2=k=n.Then(c;,c;, ***,Ck-1)€ UWE)
for some E = {c1, ¢z, , Ck—1} satisfying E € E(k, r) and |E| = k — 1, if and only if
there exists w € A(n, k, r) satisfying:

Ci if jm<j
Jjr= ] wherej=n—k+1+i, i€{1,2,--- ,k—1}.
c+n ifjmnzj

Proof. First suppose m € A(n, k, r), and let (¢, ¢z, * * + , ck—1) be as in the statement
of the lemma. Then if E= {c|, ¢z, *** , Ck—1}, we must show the following:

W |El=k-1,
(ii) E € E(k, r),
(i) (¢is €5 = » Cr—1) € ULE).
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Item (i) follows since ¢; = (n—k+1+i)r foreveryi€ {1,2, -+ ,k— 1} and ¢ = ¢ if
and only if i = j (since 7 € S},).
Next, since 7 € A(n, k), we know that

m—k+1+ire{n—k+t1+in—k+2+i, - ,n+i}.
Henceif(n—k+ 1+ i)mr=(n—k+1+1i),then
n—k+ 1+ jwe (n—k+ 1+ Ln—k+2Z+4, = 0},

ie.,
¢=m—k+1+idr—ne{-k+1+i,—k+2+i,---,0}.

Similarly, if(n —k+ 1 + )xr <(m — k+ 1 + i), then
g=(m—k+1+dre{l,2,---,i}.
We have thus shown that E € E(k, 5), where
s=l{je{n—k+2,n—k+3, -+ ,n}:jr=j}l,

and moreover that ¢; € {i — k + 1, i — k + 2,---, i} for every i, and so we have
shown (iii). %
Now 7 € A(n, k, r), and hence |[Xu(w, n — k + 2)| =1, i.e.,

|{jr, je{n—k+2,n—k+3, - - ,n}:jwe{jj+1, - ,a}}=r
Butjre {j,j+1, - ,a}iffjre{j,j+ 1, -+, n}iff jmr Zj. Hence s = r and (ii) follows.
Now suppose (¢, ¢z, *** , ck—1) € UJE), where {c{, ¢2, -*+, c-1} = E, and

E € E(k, r) has the property: |E| = k — 1.
IfD={1,2,---,a} —E,then |D| = n— k + 1. Hence let {d, d>, - - , dp—s+1}
be the set satisfying the following three properties:
0 D ={d, Guerr s Tagrads
(i) d;€{1,2,---,n} foreveryi€{1,2,---,n—k+ 1}, and
(iil) d; < d;4, foreveryie {1,2, -+ ,n—k}.
Note that by (ii) and (iii) it is immediate that

(1) i=disi+k—1 foreveryi€{l,2,--- ,n—k+1}.
Define 7 € S, as follows. Let:
d; iflsjsn—k+1,
jr=1 ¢ ifn—k+2=j=mnand¢>0 wherei=j—n+k—1,
c+n ifn—k+2=<j=nand ;=0 wherei=j—n+k—1.
It is clear that = is well defined, since, by definition,
101,00 " o= 1y Gl * ~* sy =en) = {ods=r+ e
Again by definition, d; € {1, 2, - - - , n} for every i. Finally if ¢; > 0, then
¢e{l,2, -+ k—1},
andif¢; =0, then ;€ {~k + 2, —k + 3, ---, 0}, and hence
tne n—k+2n—=Ic¥3; =5 n}
Now suppose j =n—k+ 1+i,i€{l1,2,---,k— 1}. Then

C; ifC,'>0
jw= andce{i—k+1,i—k+2,---,i} forall i
¢+n if¢g=0
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Hence if jr = ¢; then ¢; > 0, and so ¢; € {1, 2, - -+, i}, i.e., jm = i. Now

j=En—k+1+i>i,
i.e., jm < j. Similarly, if jm = ¢; + n, then we have ¢; = 0, and so

ce{i—k+1,i—k+2,---,0},

ie,jr=2n—k+ 1+ i=j Hence

. {Ci lf]1|'<],

JT=

C'i+7l lf]Wg_].

We now only need show that m € A(n, k, r). By (1), j = d; = j + k — 1 and hence
jrejj+l, -+, jtk—1} foreveryj€{l,2, -+ ,n—k+1}. Also,if n —k+2 =
J = n, then jm = ¢ € {i—k+1,i—k+2,---,i}, where j = n — k + 1 + i. This im-
plies that jr € {j, j+1, -+ j+k—1} foreveryje{n—k+2,n—k+3,---,n},and

so w € A(n, k).
Finally, by definition,

Xdm,n—k+2)={jm, je{n—k+2,n—k+3, - ,n}:jre{j,j+1, -+ ,7}}

={jm,je{n—k+2,n—k+3, -+ ,n}:jr=j}.
Hence, by the above arguments,
| Xi(m,n—k+2)|=|{c;€E: ¢;=0}| =r, since E€E(k,7).

The result follows. O

The above result gives us a means of classifying the “endings” of permutations in
A(n, k, r), where the ending of a permutation = is the (k — 1)-tuple (n — k + 2)m,
(n — k + 3)m, - -+, nw). The next result gives us a way of enumerating the number of
“starts” for each possible ending.

LEMMA 5.3. Suppose0=r=k—1,2=k=n,andletc=(c, ¢, "+, C-1) and

d=(d), ds, -+, di—1) be elements of U(E) for some E € E(k, r). If P(c) is the set of
permutations w € A(n, k, r) satisfying
C; l_f]7l'<_],
jr= j=n—k+1+i, i€{1,2, -+ k—1},
ct+n if jr=],

and P(d) is the set of permutations ©* € A(n, k, r) satisfying
d; if jo* <j,
Jr* =
di+ n lf]ﬂ'* é],
then |P(c)| = |P(d).
Proof. We define ¢ which maps P(c) into P(d) by:
o) ir if1=isn—k+1 N .. | £ P()
ip(w) = where 7* is any element o J
i ifn—k+2=i=n
We now show why ¢ is well defined. First suppose #* and =*' are two elements of
P(d), and then, by definition, ix* = ir* foreveryi€ {n —k+2,n—k+ 3, ---, n}.
Second, ¢(w) € S, since if m € A(n, k, r) satisfies
C; lf]ﬂ' <j,
ct+n if jrzj,

j=n—k+1+i, i€{1,2, -+ ,k-1},

e j=n—k+1+i, i€{1,2, - k—1},
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w* € A(n, k, r) satisfies

di ifj1l'<j,
Jja* = j=n—k+1+i, ie{1,2,---,k—1}
d,--l-n lfjﬂg],
and (c1, ¢, *** 5 Ck—1), (dy, da, **+ , di—1) € ULE), then it is clear that

{jm:n—k+2=sjsn}={jm*:n—k+2=j=n}.

1 Third, it is straightforward to see that ¢(r) is an element of A(n, k) since =, 7* € A(n, k).
Fourth, since X(¢(x), n — k + 2) = Xi(w*, n — k + 2), and since ©* € A(n, k, r), it is
clear that ¢() € A(n, k, r). Finally, by definition it is clear that ¢(r) € P(d). We have thus
shown that ¢ is well defined.

To conclude the proof we show that ¢ is one to one. Suppose that ¢(w) = ¢(x'),
where w, ©' € A(n, k, ) and where «, ' € P(c). Then im = ir' for every i satisfying
1=i<n-k+ 1. Butsince 7, ©’ € P(c) we know that ix = iz’ for every

ie{nnk+2n=k+3, %17 .0}

Hence, = =’ and the result follows. O
Because of Lemma 5.3 we can make the following definition, the relevance of which
is apparent in the next result. If ¢ = (¢1, ¢2, "+, ck—1) € ULE), and P(c) is as in the

statement of Lemma 5.3, then let v, (E) = |P(c)|. v,(E) is well defined precisely because
of Lemma 5.3. We can now state the following important result.
THEOREM 5.4. If0=r=k—1and2 =k = n, then

a(na ka r) = z uk(E)vn,k(E)'

EeKE(k,r)
Proof. By definition,
a(n,k,n) =|A(n,k,1)

=z( s |P<c>|) (by Lemma 5.2)

% \ce UKE)

(where > denotes the sum over all E€E(k, r) satisfying |E| =k— 1 )

*

= > uE)W,{E) (by Lemma 5.3)

*

? = 2 udEWndE)

| EcE(kr)

) since if |E| < k — 1, then it is clear that v,(E) = 0. O
We have thus transformed the problem of evaluating a(#, k, r) into the problem of
evaluating v, (E) and w(E) for every E € E(k, r). In the next two results we show how
these values may be computed.
THEOREM 5.5. Suppose 0 =r<k—1and?2 =k = n, and let E € E(k, r). Then
() If n = k then

1 iflEl=k—1,

Wil E) = -
End {o if\El<k—1;



348 H. BEKER AND C. MITCHELL

(i) Vpi i E) = 2,0 F), where 2, represents the sum over all F € E(k, r)
which contain the set E* which is defined to be the union of {i : i € E, i > 0} and
(i+1:i€E,i<0}.

Proof. First note that U(E) is nonempty for any E € E(k, r), since an element of
UE) can always be produced by assemblying the elements of E in ascending order.

(i) Suppose n = k. First let |E| < k — 1, and then, using the notation of
Lemma 5.3, suppose that = € A(n, k, r) is an element of P(c) for some
c=(c,c, *** »Cu—1) € ULE). Then, since |E| < k — 1, there exists a pair ¢;, ¢
(i # j) with ¢; = ¢. Hence (i+ 1) = (j+ D, ie., (i + 1)m = (j + 1)m, which
is a contradiction since  is a permutation. Hence v, (E) = 0 if |[E| < k — 1.

Now suppose |E| = k— 1, and choose a ¢ = (c1, ¢z, ** * , Ck—1) € ULE). If
x € P(c) ( exists by Lemma 5.2) then, by definition, {27, 37, -+, kr} = E,
and hence {1r} = {1, 2, -- -, k} — E. So 1= is fixed by the choice of E, and,
by definition, 2, 3w, - - - , kw are also fixed since 7 € P(c). Thus = is uniquely
defined, and so vi(E) = 1.

(i) First note that the elements of E are all distinct modulo » + 1 if and only if the
elements of E* are all distinct modulo n. Hence we assume that both these
statements are true, since otherwise both sides of the equation are zero by
(i) above.

First, choose ¢ = (¢, 2, * ** » Ck—1) € ULE). If 0 € E, then let £ satisfy ¢, = 0, and,

if 0 € E, then set & = 0. Then, by definition, if = € A(n + 1, k, r) satisfies = € P(c) we
have

m—k+2+hr=n+1.

Next, suppose that F = {d;, d, - -, dx—1 } € E(k, r) contains E*.
Then, if 0 ¢ E we have F = E*, and we let
¢+ 1 ifCi<O,
di= . 1<igk—1.
Ci lfC,‘> 0,

Note that if 0 € E then it is clear that E* € E(k, 7).
If0 € E, then we let dy, d,, - - - , di— 1 be defined as follows:

d, is the element of {—k + 2, —k + 3, -+ ,0} — E* that is contained in F.

C’i_1+1 ifCi_1<0,

di= . 2<i<h,
Cii=1 lfC,'_1>0,
Ci+1 ifc,'<0,

di= _ h+1=isk—1.
¢ if¢;>0,

Now letdg = (d,, d3, * - * , dy - 1) and we now show that dr € Ux(F). To do this we need
only show thatd,e {i —k+ 1,i—k+2,---,i} forevery i€ {1,2, ---, k— 1}. First,
suppose that i = A:

Ifi=1,thend, € {-k+2,-k+3,---,0} — E*, ie,

die{-k+2,—k+3,---,1}.
If i > 1, then we have
Ci_1+1 ifCl'_1<0,
di=

Ci 1 ifCi_1>0.
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If¢,_; <Othend,=ci- +1e{i—k+1,i—k+2,---,i},since ¢ € U(E).
If¢,;_;>0thend,=c¢_,€{1,2,---,i— 1}, ie,

de [i~ k1 2,3—k+3: - 41
since ¢ € Uy(E) and ¢; - ; > 0. Second, suppose that i > A:
Then we have

i

C,'+ 1 ifC,'<0,
Ci ifc,»> 0.

Ifc,~<0thend;=c,~+ le{l—k+2,l_k+ 3, ,O},SinCCCG Uk(E)
If¢;>0thend; = ¢, €{1,2, -+, i} (since ¢c € U(E)), i.e.,

de{i—k+1,i—k+2,---,i}.
Hence dy € Ui (F).
Now, using the same notation as before, let P(c) and P(dr) be sets of permutations
from A(n + 1, k) and A(n, k) respectively, defined as in the statement of Lemma 5.3. We
will show that

|P(c) = Z|P(dp)l,

where, as in the statement of the theorem, >, represents the sum over all F € E(k, r)
which contain E*. This will establish the result. We actually prove this claim by exhibiting
a one-to-one correspondence ¢ between P(c) and the union of the sets P(d), which are
clearly all disjoint. We define ¢ as follows:

Suppose 7w € A(n + 1, k, r) is contained in P(c), i.e., suppose that

¢ if jw < j,
jr= o J=n—k+2+i, i€{l,2,--- k—1}.
¢+n+1 ifjr=j,

Then define 7* = ¢(w) by

in*=

i ifl1=isn—k+1+h,
(i+Dr ifn—k+2+h=i=Z=n.

We now show that =* is an element of P(d), where F € E(k, r) contains E*, and hence
show that ¢ is well defined.

First, note that =* € S, since 7 € S,,+ | and Az is chosen so that (n — k+ 2 + h)x =
n+ 1.

Second, observe that 7* € A(n, k). We show this as follows:

If1 =i=n-k+ 1 then, since 7 € A(n + 1, k), we have

im*=ire{ii+1, - ,i+k—1}.

Ifn—k+2=i=n-k+ 1+ h (which only applies if 2 > 0) then, since
m€An+ 1, k), irne{i,i+1,---,n 1,2, -+, i—n+k—2};note that ir # n + 1
since i # n — k+ 2 + h. Hence in* € {i, i+1,---, 7, 1,2, -, i—n+tk—2}, ie,
mre{Li+1, - ,i+k—2}.

Ifn—k+2+ h=i=nthen,since 1 € A(n + 1, k), we have

=G+ Dre{i+1,i+2, - ,m1,2, -+ i—n+k—1};
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note that in* # n+ I sincei+ 1 # n— k + 2 + h. Hence
im*e{i+1,i+2, - ,i+tk—1}.

Thus 7* € A(n, k).
Third, note that «* € A(n, k, r). This can be demonstrated by considering
Xi(7*, n — k + 2). By definition,

Xe(r*,n—k+2)

={jm*,je{n—k+2,n—k+3, -+ ,n}:jr¥e{j,j+1, -+, n}}
=the union of {jmr, je{n—k+2,n—k+3, .-+,
n—k+1+h}:jme{jj+1, -+ ,n}}

and
{jm,je{n—k+3+hn—k+4+h, - ,n+1}:jxefjref{j—1,j, - ,n}}}r

Now since m € A(n + 1, k), where n + 1 > n = k, we know that jr # j — 1 for any j, and
hence

Xe(w*,n—k+2)={jr,je{n—k+2,n— k+3,--- ,n},
JjEn—k+2+h:jre{jj+1, .- ,n}}.

Also note that(n — k + 2 + A7 = n+ 1 and hence Xy(n*, n — k+2) = X (m,n — k + 2)
and hence 7* € A(n, k, r).
Fourth, we let

E* ifh=0,
the union of E* and {(n—k+2)r—n} ifh>0.
Then F contains E* by definition. We claim that F € E(k, ), and, defining d as above,
we also claim that =* € P(dp).
We first show that F € E(k, r).

If 7 = 0 then 0 € E and hence F = E* € E(k, ).
If 2 > 0 then O € E and hence E* contains r — 1 elements of

{(~k+2,—k+3,---,0}

and kK — 1 — relements of {1, 2, -+, k — 1}. Now since
w€A(n+1, k), (n—k+2)re{n—k+2,n=-k+3, -~ ,n+i},
and hence (n — k + 2)r —ne€ {~k + 2, -k + 3,---, 0, 1}. Now since & > 0,

nm—k+2mx#n+1,ie,(n—k+2)r —n# 1. Hence
(n—k+2yr—ne{—k+2,—k+3,---,0},
and so to show that F € E(k, r) we need only show that (n — k + 2)r — n € E*. But since
Tr€An+ 1,k),(n —k+ 2)r — (n+ 1) € E and the result follows.
To see that =* € P(dp) we need only examine the values of jx*, where
j=n—k+1+iandi€{l,2,---,k— 1}. Choose such aj.
If i > A then
je* =+ Dn
Ci 1f]11' <]
= ) since = € P(c)
ct+n+l ifjrzj
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d,' lf]7l'<] . .
= since, given i > A,
di+n ifjrzj
G if¢;>0 )
d;= and ¢; <0 iff jw = j.
¢g+1 if¢;<0
If i < h then we have two cases to consider: i = 1 and i > 1.
If i = 1 then
st =n—k+2r*=(n—k+2re{n—k+2,n—k+3, -+ ,n},ie., jr=j.
Now, by the above, (n —k+2)r —ne€F,(n—k+2r —ne{~k+2,-k+3,---,0}

and(n—k+2)r —né¢E* Henced,=(n—k+2r —n,ie,(n—k+2)n* =d, + n
and(n—k+2mr=zn—k+2.
If2 =i = hthen

Ci-1 if jwr <,
j7r* =_]7r= .
c,»_1+n+1 lfjﬂ'éj,

d; if jr < j,
di+n ifjr=j,
since, given [ = A,
Ci—1 ifC,'_1>0 5
di= . andci*,<01ﬂ"j7r§j.
ci-1+1 lfC'l'_1<0

Hence 7* € P(dr) and we have shown that ¢ is well defined.

To complete the proof, we need to show that ¢ is one to one and onto.

First, suppose that 7, 7, € P(c) satisfy ¢(m;) = ¢(m,). Then, by definition of ¢,
imy = im, forevery i€ {1,2, ---,n+ 1} except for i = n — k + 2 + h. However, since
my and 7, are permutations, they cannot disagree in exactly one position and hence
™ = m, and thus we have shown that ¢ is one to one.

We now show that ¢ is onto, and hence complete the proof. Suppose that
m* € A(n, k, r) is contained in P(df), where F € E(k, r) contains E *.

Then let = € S, ; | satisfy

im* ifl=isn—k+1+h,
ir={ n+l ifi=n—k+2+h,
(i—Dr* ifn—k+3+h=iZn+l.

Note that = is clearly in S, since 7* € §,.
It is now straightforward to verify that # € A(n + 1, k, r), and moreover that
m € P(c) and ¢(w) = «*. This establishes that ¢ is onto and the result follows. O
THEOREM 5.6. Suppose 0 = r = k — 1,2 = kand n = 2k — 2, and let
E € E(k, r). Then w(E) = v,x(F), where F € E(k, 1) is defined by

F={ie{—k+2,—k+3, - k—1}:i=j+k—1,
je{~k+2,—k+3, - k—1}—E}.
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Proof. We first show that F as defined in the statement of the theorem is always in
E(k, ). By definition, F € E(k, s), where

s=|{ieF:ie{—k+2,—k+3,---,0}},

and so we need only show that r = s.

Suppose i € {—k + 2, =k + 3,-:-, 0}. Then, by definition, i € F if and
only if i—k+1 € E, since n = 2k — 2 (note that bars denote residue classes modulo
n = 2k — 2). Hence, again by definition,

s=k—1-|{i¢F:ie{—k+2,—k+3,---,0}}|
She § - e B s e {T,2, ¢os FAI
=r (since E€E(k,r)) and thus FEE(k,r).

Now choose an element d = (d;, d», - * * , dy—;) from Ui(F). We must show (using
the above notation) that |Ux(E)| = |P(d)|, and we will then have completed the proof.
To do this we define ¢ which maps U (E) into P(d), as follows:

Suppose ¢ = (¢1, €2, *** 5 Ck—1) € Uk(E). Then 7 = ¢(c) satisfies

@)
— ctk—1 if1=Sisk—1,
iT=1 _
di—p+1 fk=i=2k—-2,

(i) ime{1,2,+--,n}, 1 =2i=2k—-2.
We must first show that 6 is well defined, i.e., that = € P(d). We first show that w € S,,.
By definition, = maps {1, 2, - -+, n} into {1, 2, , n}, and hence we need only show
that = is one to one. Also, since c, e c, and d; % d (i # j), we need only show that
ctk—1#dforanyije{l,2,- -, k—1}

Suppose ¢;+k—1 = d,, then by definition of F, d; = s+ s+k—1, where
fe{-k+3, —k+3 e g 1}.= E. Henee. ¢; = 5, whereséEandc,eE Thlsglves

us the required contradiction, and hence 7 € §,,.
We next show that # € A(n, k). If 1| =i = k — 1, then

ir=ctk—1e{ii+1, - ,i+k—1} (since c€Ui(E)).

Ifk<i=<2k—2 thenir=di_s+ €{i—2k+2,i—2k+3,---,i—k+1} (since
de Uk(F)) =d i+, ,itk—1} (since n = 2k — 2). Hence = € A(n, k).

Next observe that by Lemma 5. 2, since F€ E(k, r)and d € Uk(F ) there exists a
x* € A(n, k, r) satisfying ir* = ir for every i € {k, k + 1, , 2k — 2}. Hence
X,(m, k) = Xi(7*, k), and so 7 € A(n, k, ). Finally, note that = € P(d) by definition, and
so ¢ is well defined.

By definition it is clear that ¢ is one to one, and so to complete the proof we need

only show that ¢ is onto. Suppose = € P(d). We must show that ifc = (cy, c, - _1)
satisfies

() ¢=ir—k+1,and

@) ge{—k+2,-kt3- — l}forevery i, then ¢ € Ui(E).

Since 7 € A(n, k, 1), in € {z z+1 -, i+k—1}, and hence ¢; = ir—k+1 €
{i—k+1,i—k+2,- , 1}. Thus we need only show that {ci, ¢, ** ", Ck- 1} = E. By

definition, = € P(d), and hence
{kr,(k+ D, -+~ ,Qk—=2)r}=F= (1=iZni=j+k—1,
je{-k+2,—k+3,--- ,k—1}—E}.
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Thus, since n = 2k — 2,
{kr+k—1,(k+ Dr+k—1, - ,Qk—2)r+k—1}={1,2,--- ,A} —E.

Finally, since 7 € S,,, {1, €2, *** , Ck—1} = E, and since n = 2k — 2,
{CI,CZ,"’,Ck7?_}=E. D

Theorems 5.5 and 5.6 now enable us to prove the main result of this paper, namely
Theorem 4.4.
Proof of Theorem 4.4. First suppose 0 = r = k — 1 and 2 = k. Then, as before we

let

(7))

r k—1-r

As in the definition of H(k, r) preceding the statement of Theorem 4.4, label the ¢ distinct
r-subsets of {—k + 2, —k+ 3, -+ ,0} : (R, Ry, -+ -, R)), and let

RY={j+1:j€R,—{0}}
for every i. Then H(k, r) = (h;,) satisfies

_ | 1 if R} isa subset of R;,
v { 0 otherwise.

We need to show that a(n, k, r) = Trace (H(k, r)") for every n = k.
Forevery i€ {1, 2, -- -, t} define
Ci={j+k—1:je{—k+2,—k+3,---,0}—-R;}.
Then C;isa (k — 1— r)-subset of {1, 2, - -+, k — 1} for every i, and (C,, C,, -+, C)
forms a labeling of all such subsets. Now let
X;j={s:s€R;or seCj},
i.e., X;;is the union of R; and C;. Then it is clear that
Ek,n={X;:15ist,1=5j=t}.
Next, for every n Z k, define the ¢ by ¢ matrix W(n) = (w(n);;) by w(n);; = v,.(X;).
We first consider W (k). By Theorem 5.5 (i),
1 if R;and C; are disjoint,
w(k)i; = Vir(Xij) = 3
0 otherwise,

where the bars denote residue classes modulo k.
We now claim that W(k) = H(k, r). This is clear since

hi;=1 iff R iscontained in R;,
iff R¥ is contained in R; (since R, is a subset of {-k+2,-k+3,---,0}
for every s),
iff §e€R;— {0} implies s+ 1 € R; (by definition of R}),
iff §eR;—{0} implies §¢ C; (by definition of C;, and working modulo k),
iff R, and C;are disjoint (since 0 ¢ C, for any s),
iff W(k), = 1

and hence W(k) = H(k, r).
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Second, consider W(n), n 2 k. By Theorem 5.5 (ii)

w(rn + 1) = v, 4 16(X3))
= 2 V(X)) (where 2 represents the sum over all s € {1,2, -+, 1t} such
* *

that R is a subset of R)),

t
=2 hisv(n)sj,

s=1
ie, W(n+1)= H(k,).W(n) = Hk, "~ **! foreveryn = k.
Now suppose 7 = 2k — 2. Then, by Theorem 5.6, and because of the chosen labeling,
(X)) = Vak — 26(X;)) = w(2k — 2);. Thus, by Theorem 5.4 we have

an,k,r)= 2 u(EY(E)
EcE(k,r)

M~
MN

(X)) Un i (X))

I
—

]

i=1j=1

I
™M~
™M ~

W(2k "2)ji.W(7’l)ij

i=1j=1

=Trace(W(n).W(2k—2))

=Trace (H(k, r)"~**'.H(k, ¥~ ")

= Trace (H(k, r)"). O

Corollaries 4.5 and 4.6(i) are immediate from Theorem 4.4. We now prove the asymptote
for a(n, k, r) given in Corollary 4.6(ii).
Proof of Corollary 4.6(ii).

a(n, k,n/(q)" = _2 (@)

i=1

t n
=2, (@) +1.
i=1\4s
i#*s
Now
t \n t In
D (1) s> <¢-1).a"
i=1\Ys i=1l9s
i*s i#+s
where d = max; « (|g:/g,) < 1. Finally, note that (¢ — 1).d" can be made arbitrarily small
given sufficiently large », and the result follows. O

To establish 4.7 and 4.8 we need to examine the matrix H(k, 1). In fact we have
LEMMA 5.7. Suppose r = 1 and k Z 2. Then if the labeling (R, R,, -+ , R)) is
chosen so that R; = {1 — i}, then H(k, 1) is the k — 1 by k — 1 matrix

where I, is the k — 2 by k — 2 identity matrik.
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Proof. First note that {0}* is empty, and hence h;; = 1 for every j. Second, note
that if / < 0, then {i}* = {i + 1}, and so if i > 1 then A; = 1 if and only if
j=i—1. O

Hence, for the case r = 1, H(k, 1) is already in Frobenius normal form, and as in
[9, p. 297] the characteristic equation of H(k, 1) is

k-2
xk=1— > xi=0.
i=0
This gives Result 4.7 as an immediate corollary. We can also now prove the final result
from § 4.

Proof of Theorem 4.8. As before let r = 1 and k = 2. Then we claim that if

1=i=<k-—1,then Hk, r) =

L Or_i—yy

where I_;_; is the (k — i — 1) by (k — i — 1) identity matrix, Ok—i—1;isthe (k—i—1)
by i all-zero matrix and d; = (d;1, dp, * * - , dig— 1)) satisfies dy=2""1=5j<k—i
By Lemma 5.7 this is clearly true for i = 1, and by induction (and by examination
of H(k, 1)) we need only observe that
ol { 1 if j=k—i,
Y El 7o if j>k—i.

Hence, ifj = k — i,
i—1
dj= > 2°"'4+1 (by the inductive hypothesis)
s=1
=il
Thus,
Trace (H(k, r)i) = dil + d(,'_ 1)2 Foumi dli (lé k— 1)

=2i"142i=24 ... 400
=2/—1. O
Note also that a(l, k, r) = 1 for every k and r since R* is contained in R iff

R={-r+1,-r+2,---,0}, and thus H(k, r) always has a unique nonzero diag-
onal entry.

6. Tabulations of computed values. The papers of Metropolis, Stein and Stein [9],
and Minc [10], contain extensive tables of values for a(n, k) for k < 9; [9] also contains
tables of the characteristic equations for H(k, r) and approximate values for the maximal
eigenvalue of H(k, 7), again for k < 9.

Using Theorem 4.4, together with a set of multiprecision routines written by Dave
Levin running on a VAX = 11/750 minicomputer, we have been able to verify all the
existing tabulations of a(n, k) and a(n, k, r), and to also produce the following tables of
values for k = 10, 11 and 12 and 1 < n = 50. (See Tables 1-3.) Note that, as in the
remarks following Corollary 4.6 in § 4, we define a(n, k, r) to be the trace of H(k, r)" for
every n = 1, and, in the natural way, we define a(n, k) to be the sum of the a(n, k, r) for
every n = 1.
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TABLE 1
a(n, 10) (1 = n=50)

n a(n, 10)

1 10
2 50
3 226
4 962
5 3840
6 16130
7 65698
8 258690
9 986410
10 3628800
11 14684570
12 59216642
13 238282730
14 957874226
15 3850864416
16 15498424578
17 62494094138
18 252579461906
19 1023207993178
20 4152609019392
21 16866126115498
22 68562634725426
23 278965798055154
24 1136049057102978
25 4630217243007040
26 18885572768497186
27 77080942110390418
28 314787782093356610
29 1286217554205276682
30 5257934625513024000
31 21503218756525334970
32 87975626996492343810
33 360060541514858306810
34 1474102716437359422226
33 6036778093871268296928
36 24728373540667369577474
37 101318258384798761261866
38 415213810742569786850322
39 1701918744817772671844282
40 6977191966118035882693120
41 28608161263286199980584138
42 117316730697716871569616818
43 481154617504945351421631490
44 1973597676853638993657364034
45 8096120287083522358723474560
46 33215073534422084882289815106
47 136279156753579083576867246210
48 559185646824298651823816588034
49 2294624949149162154512316665962
50 9416588798300969653474145747200

7. Developments of the basic problem. The determination of a(n, k) is only one of
many problems associated with the design of a sliding window time element scrambler
of the type described in § 3 above. There is also the fundamental problem of choosing n
and k, and designing the method to be used to select permutations from A(#n, k).
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TABLE 2
a(n, 11) (1 = n = 50)

a(n, 11)

S

1 11
2 61
3 299
4 1393
5 6331
6 27949
7 126095
8 554177
9 2368847
10 9864101
KR 39916800
12 176214841
13 775596313
14 3407118041
15 14951584189
16 65598500129
17 287972983669
18 1265785879297
19 5573449326001
20 24588660672953
21 . 108681408827381
22 481065936784384
23 2130831306657527
24 9445455128274737
25 41902710214254531
26 186040589545320129
27 826626380784149855
28 3675606432528120601
29 16354817596119737239
30 72817892293114361249
31 324404970589895718419
32 1446036425685642910913
33 6449154750576695662848
34 28777322874980997201469
35 128473548843752900117725
36 573831697082734230011665
37 2564217910410345862799157
38 11463508074975657944297053
39 51270268001103972812908657
40 229399692125416838094166177
41 1026818034189449323389052049
42 4597927569350275420770702533
43 20596506835524484240745827169
44 92295992963140763623590913024
45 413737754483439976252567341907
46 1855307333069535348229092448661
47 8322436742793852726661366713051
48 37344337184202486272125701583553
49 167623315461313026160891570970211
50 752619449962479689980066343390501
As before we let
An,k)={m€S,ine{i,i+1, .-+ ,i+k—1} for every i}.

Another secondary problem, similar to the a(n, k) evaluation problem, concerns choosing
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TABLE 3
a(n, 12) (1 = n = 50)

n a(n, 12)

1 12
2 72
3 384
4 1944
5 9812
6 46080
7 227680
8 1100680
9 5199648
10 24011832
11 108505112
12 479001600
13 2290792932
14 10927434464
15 52034548064
16 247524019720
17 1177003136892
18 5598118158336
19 26647751359904
20 127007092256024
21 606269105086336
22 2898753047375312
23 13880706183899752
24 66544727442343936
25 319198916117248012
26 1532071808279181592
27 7358305929283036608
28 35363678926464144632
29 170062683110076661012
30 818309438846696002560
31 3939711747851871915248
32 18977103341489089532424
33 91452381430150298900000
34 440902914787573840187976
35 2126473158349980849520200
36 10259701680625467679872000
37 49517433552724675102157540
38 239067514640241762853861328
39 1154549828245379314130268192
40 5577319090541480294809775880
41 26949490191171589347220311676
42 130250684430090783496906489856
43 629660737886339608173390416560
44 3044553776812595993002687353336
45 14723969563417452202403843439488
46 71220434757273136282267411587712
47 344554065382463547747151575797784
48 1667163251724747083829231695497216
49 8067930334499348958454566728595916
50 39048557417232324389011734475683432

permutations suitable for use from A(n, k). Clearly not every permutation in A(n, k) is
suitable for use as a scrambling pattern; consider the permutation = € S, which satisfies
ir=i—1(2=i=n)and 17 = n. Then = € A(n, k) for every k = 1, but the transmitted
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speech enciphered using 7 will, in effect, not be permuted at all, and a device using such
a permutation will offer no security at all.

The basic problem is what is commonly known as residual intelligibility. This term
refers to the amount of intelligible information remaining in the analogue signal after it
has been scrambled. Clearly, different permutations from A(#, k) will have different re-
sidual intelligibilities, and it is thus desirable to have some method of choosing permu-
tations from A(n, k) which leave the minimum residual intelligibility.

In order to assess the level of residual intelligibility associated with a permutation,
it is necessary to perform a large number of experiments to try to assess the amount of
decipherable information remaining in speech after encryption using the permutation.
Such experiments have been performed, and the results of these experiments have led
us to conclude that the most important extra criterion that a permutation 7 € A(n, k)
should satisfy in order to minimise the residual intelligibility is that

m+1#0G+ Dr, 1<i=n—1 and nr+1#1r.

This ensures that no two originally consecutive segments remain consecutive after en-
cryption.
Thus, if we let

B(n,k)={wednk):ir+1#G@+ m,1=i=n—1 and nr+1#Ix}

and b(n, k) = |B(n, k)|, then choosing permutations from B(n, k) considerably reduces
the probability of 7 leaving a high level of residual intelligibility in the scrambled speech.
For a more detailed description of the experimental results and permutation evaluation
procedures (see [3] and [4]).

Once we have made this definition, it is clearly important that some estimate be
obtained for the size of b(n, k). However, few results appear to exist on this problem,
and the following summarises the results currently known to the authors.

THEOREM 7.1. (i) b(n, 1) = b(n, 2) = 0 for every n,

(i) b(n,3)=bn—2,3)+b(n—3,3),n=6,b3,3)=3,b4,3)=2, b5, 3) =5,

(iii) b(n, 4) = 2b(n, 3), n = 4,

(iv) b(n,n) = n.2'= (=Y lan—in—i—1),n=2.

Theorem 7.1(i) is trivial. Parts (ii) and (iii) have been obtained independently by
Dr. Keith Lloyd and the authors. Part (iv) is based on a recurrence relation due to Stacey
[8], which says that b(n + 3, n + 3) =nb(n +2,n+2) + 2.(n + D.b(n + 1, n + 1) +
(n+ 1).b(n, n). The solution to this recurrence to give (iv) can be found in [7, Ex. 15.5.10].
For further references to (iv) see also [16, Exercise 21, p. 160] and [16, Exercise 8,
p. 172]. We now give a proof of (ii) and (iii).

In order to prove these two results, we first need some preliminary definitions. Let

B(n,k,r)={w€B(n,k): r€A(n,k,r)}.

As for Lemmas 4.2 and 4.3 we immediately have

LEMMA 7.2.
k-1

b(n, k)= 2 b(n,k,7).
r=0
Proof. Immediate from the definition. O
LEMMA 7.3. () b(n, k, 1) = b(n, k,k—1—-1N,0=r=k—-1=n-1.
@) b(n, k, 0)=bn, k,k—1)=0,0=k—1=n-—1.
Proof. (i) As for the proof of Lemma 4.3(i), we define the function ¢, which maps
S, into S, by
¢(w) maps i to (n+1)—sw where s€{1,2, - -+ ,n} and §=—i—k+2.
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We claim that ¢y is a one-to-one mapping from B(n, k, r) into B(n, k, k — 1 — r). This
will establish the result. By the proof of Lemma 4.3(i) we have shown that ¢, is one to
one and that if = € B(n, k, r) then ¢x(m) € A(n, k, k — 1 — r); hence we need only show
that ¢x(m) € B(n, k) in order to establish the above claim, and thence the desired result.
Now if i and j satisfy i+1 =j,5,j€{1,2,--, n}, then ig(r) + 1 = n+ 2 — tm, and
jou(w) = n + 1 — sm, where, by definition, s i
s and ¢ satisfy s+1 =, we know st+1 #
éi() € B(n, k).

(i) This part is trivial. O

We can now give the following lemma.

LEMMA 7.4. B(n, k, k —2) = B(n, 3, 1), k = 3.

Proof. We first show that if 1 = 7 < k < n, then A(n, k — 1, r — 1) is a subset of
A(n, k, 7). Suppose that = € A(n, k — 1, r = 1). Then, by definition, = € A(n, kK — 1) and
hence 7 € A(n, k). Thus, by Lemma 4.1, we need only show that | Xy(w, i)| = r for some
i€{1,2,---,n}.

Now 7 € A(n, k — 1, r — 1), and hence |Xi— (v, n — k+ 3)| = r— 1. By definition,
Xj_((w, n — k + 3) is a subset of Xi(m, n — k + 2), and

Xk(‘;r,n—k+2)—Xk_l(r,n—k+3)={(n—k+2)7r},
since m € A(n, k — 1). Thus:
| X(m,n—k+2)|=r—1+[{(n—k+2)x}|=r,

=i 1 = t. But = € B(n, k, r), and because
. Hence igp(m)+1 # jdu(w), and thus

and hence A(n, k — 1, r — 1) is a subset of A(n, k, 7). This immediately implies that
B(n, 3, 1) is a subset of B(n, k, k — 2), k= 3.

We now show that B(n, k, k — 2) is a subset of B(n, 3, 1), k = 3, and the result
follows.

Clearly, if k = 3, then the claim is automatically true, and so we suppose k = 4.
Now choose 7 € B(n, k, k — 2), and suppose = ¢ B(n, 3), i.e., suppose there exists an

he{l,2, - ,n} for which hwr = h+s, where3=s=k — L.
Now, by definition, |Xi(r, i)l = k — 2, for every i € {1, 2, wnxyiife Let
x,y€{1,2,-,n}satisfy x=h—k+3andy = h—k+4. Since

hré{h,h+1,h+2}
we have: hr € Xi(r, x) and hr € Xi(=, ). But
|Xk(7rs x)l T le(7r9 y)l = k— 2,

and hence if u, v € {1,2, -+, n} satisfy # = h+1 and D = h+2 then ur = u and
or = v. But since © = u+ 1 this contradicts the definition of B(n, k) and hence
7 € B(n, 3). The result now follows by our observing that B(n, 3) = B(n, 3, 1), since
B(n, 3, 0) and B(n, 3, 2) are empty by Lemma 7.3(11). O "y

Now since b(n, 4) = b(n, 4, 1) + b(n, 4, 2) (by Lemmas 7.2 and 7.3(ii)), and since
b(n, 4, 1) = b(n, 4, 2) (by Lemma 7.3(1)), we know that b(n, 4) = 2b(n, 4, 2). But
b(n, 4, 2) = b(n, 3, 1) (by Lemma 7.4), and hence b(n, 4) = 2b(n, 3, 1), establishing
Theorem 7.1(iii). It remains for us to prove the recurrence of Theorem 7.1(ii), noting
that the initial values of b(n, 3) for n = 5 can be verified by hand.

Proof of Theorem 7.1(ii). We first introduce some notation.

Suppose n = 3. Let

Q(n)={r€B(n,3):1xr=1} and q(n)=10(n)|.
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Also define
Qi(m)={r€Qm):3r=3} and q(n)=|0:(n)l,
Qum)={w€Q(n):3r#3} and gx(n)=|Qx(n)l.
Then Q(n) is equal to the disjoint union of Q,(n) and Q,(n), and we have
(¢)) gm=q(n)+gqn), nz3.

We also need the notion of a displacement vector. Choose m € S,, and let
d=(d,d,, -, d,) satisfy:

d;€{0,1,---,n—1} and d;=imr—i foreveryi€{1,2,---,n}.

Then we call d the displacement vector of «. Note that permutations in Q;(#) and O»(n)
have displacement vectors of the form (0, 2, -+ +) and (0, 1, 2, - - ), respectively.

Now suppose 7 2 5. We define the mapping ¢, from Q,(n) into Q(n — 2) as follows.
If = € Q,(n) has displacement vector

(0525d3ad49 nee >dn)
then let ¢,(7) be the permutation having displacement vector
(d33 d4: g oA 5dn)'

It is straightforward to show that ¢; is well defined and both one to one and onto. We
have thus shown:

) q(n)=q(n—2), nzs.

Next suppose n = 6. We define the mapping ¢, from Q,(n) into Q(n — 3) as follows. If
m € O,(n) has displacement vector

(Os 1:29d4,d55 o5 adn)
then let ¢,(w) be the permutation having displacement vector
(d4ad5’ o 9dn)'

It is straightforward to show that ¢, is well-defined and both one to one and onto. We
have thus shown:

(3) @(n) = g(n— 3), nz6.

Next suppose 7 = 4 and define a third mapping ¢, from Q,(n — 1) into Q»(n) as follows.
If € Qy(n — 1) has displacement vector

(O, 2’ d39 d4’ Tt :dn~ 1)
then let ¢ () be the permutation having displacement vector
(03 1,25 d3: d4’ i = :dn— l)'

Again it is straightforward to show that ¢, is well defined and both one to one and onto.
We then have

4 q1(n—1) = gx(n), nz4,

Finally suppose n = 3. If d is the displacement vector of = € B(n, 3), and if
m* € B(n, 3) has displacement vector d* = (dy+1, ds+2, *** , dy, dy, dy, - - -, d,), then we
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call 7* the s-fold cyclic shift of =. We now let
01.(n) = {=* : 7* = the 1-fold cyclic shift of some 7 € 0i(n)},

0>1(n) = {=* : 7* = the 1-fold cyclic shift of some 7 € 0x(n)},
Qx(n) = {7* : w* = the 2-fold cyclic shift of some = € 0x(n)}.

It is straightforward to show that all elements of Q1:(n), 0,1(n) and O»,(n) have displace-
ment vectors of the forms: (2,0, -+, 0),(1,2,0,---)and (2,0, - -+, 1), respectively.
Hence the five sets

Qi(n), Q12(n), Qo(n), 021(n), O2a(n)
are all disjoint; moreover, every element of B(n, 3) is in one of these sets. This immediately
gives
(5) b(n,3)=2q,(n)+3qx(n), n=3.

We can now combine the above results to obtain the desired recurrence. Suppose
n = 6. Then:

b(n,3) =2q:(n) + 3g2(n) by (5)
=2q(n—2)+3q(n—3) by (2)and(3)
=2¢:(n—2)+2gx(n—2)+3qi(n—3)+3q(n—3) by (1)
=2¢i(n—2)+3gx(n—2)+2¢qi(n—3)+3q(n—3) by (4)
=b(n—2,3)+b(n—3,3) by(5). O
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