
Security issues in OAuth 2.0 SSO
implementations

Wanpeng Li and Chris J Mitchell

Information Security Group, Royal Holloway, University of London
Wanpeng.Li.2013@live.rhul.ac.uk, C.Mitchell@rhul.ac.uk

Abstract. Many Chinese websites (relying parties) use OAuth 2.0 as
the basis of a single sign-on service to ease password management for
users. Many sites support five or more different OAuth 2.0 identity
providers, giving users choice in their trust point. However, although
OAuth 2.0 has been widely implemented (particularly in China), little
attention has been paid to security in practice. In this paper we report
on a detailed study of OAuth 2.0 implementation security for ten major
identity providers and 60 relying parties, all based in China. This study
reveals two critical vulnerabilities present in many implementations, both
allowing an attacker to control a victim user’s accounts at a relying party
without knowing the user’s account name or password. We provide sim-
ple, practical recommendations for identity providers and relying parties
to enable them to mitigate these vulnerabilities. The vulnerabilities have
been reported to the parties concerned.

1 Introduction

Since OAuth 2.0 was published in 2012 [1], it has been used by many websites
worldwide to provide single sign-on (SSO) services. By using OAuth 2.0, websites
can ease password management for their users, as well as saving them the in-
convenience of re-typing attributes that are instead stored by identity providers
and provided to relying parties as required.

OAuth 2.0 is very widely used on Chinese websites, and there is a correspond-
ingly rich infrastructure of identity providers (IdPs) providing identity services
using OAuth 2.0. For example, some relying parties (RPs), such as the travel
site Ctrip, support as many as eight different IdPs. At least ten major IdPs
offer OAuth 2.0-based identity management services. RPs wishing to offer users
identity management services from multiple IdPs must support the peculiarities
of a range of different IdP implementations of OAuth 2.0.

Use of OAuth 2.0 by Facebook, Google and Microsoft has previously been
studied, and issues have been identified [2–5]. However, despite the wide use of
OAuth 2.0 for SSO in China, the authors are not aware of any published research
on the properties of Chinese implementations. The very large and essentially
self-contained OAuth 2.0 infrastructure in China is an important area for study,
motivating the work described here. Also, as an early adopter of OAuth 2.0,
lessons learnt from studying the Chinese infrastructure may apply globally.

2 Wanpeng Li and Chris J Mitchell

OAuth 2.0 is used to protect access to hundreds of millions of user accounts in
China alone, and so its security in practice is very important. Assessing practical
security is non-trivial, especially as system operation relies on closed code and
proprietary specifications and implementation guidance. In the absence of de-
tailed specifications, security assessments require exhaustive experimental eval-
uation and analysis. In this paper we report on such investigations, including a
detailed discussion of serious vulnerabilities found. We also provide recommen-
dations for system improvements that address the identified vulnerabilities.

The paper is structured as follows. §2 introduces OAuth 2.0 and describes
related work. In §3 we give two general classes of vulnerability in OAuth 2.0
SSO systems, both of which have been observed in practice. §4 covers our study
of real-world OAuth 2.0 systems in China, including details of instances of the
classes of vulnerability described in §3. Possible reasons for these vulnerabilities
are considered in §5, together with proposed mitigatations.

2 Background and Related Work

OAuth 2.0 OAuth 2.0 [1] allows an application to access resources protected by
a resource server on behalf of the resource owner, by consuming an access token
issued by the authorisation server. OAuth 2.0 involves four roles. The Resource
Owner is a host acting on behalf of an end user who can grant access to protected
resources. The Resource Server is a server which stores the protected resources
and consumes access tokens provided by an authorisation server. The Client is an
application running on a server, which makes requests on behalf of the resource
owner (the Client is the RP when OAuth 2.0 is used for SSO). The Authorisation
Server generates access tokens for the client, after authenticating the resource
owner and obtaining its authorisation (the Resource Server and Authorisation
Server together constitute the IdP when OAuth 2.0 is used for SSO).

In order to use OAuth 2.0 for SSO, the resource server and authorisation
server together play the IdP role, the client plays the role of the RP, and the
resource owner corresponds to the user. OAuth 2.0 SSO systems build on user
agent (UA) redirections, where a user (U) wishes to access services protected
by the relying party (RP) which consumes the access token generated by the
identity provider (IdP). The UA is typically a web browser. The IdP provides
ways to authenticate the user, asks the user to allow the RP to access the user’s
attributes, and generates an access token. The RP uses the access token to access
the user’s attributes using an API provided by the IdP.

OAuth 2.0 supports four ways for RPs to obtain access tokens, namely Au-
thorisation Code Grant, Implicit Grant, Resource Owner Password, and Client
Credentials Grant. In this paper we are only concerned with the Authorisation
Code Grant procedure, outlined below.

1. U → RP: The user clicks a login button on the RP website, as displayed by
the UA, causing the UA to send a HTTP request to the RP.

Security issues in OAuth 2.0 SSO implementations 3

2. RP → UA: The RP produces an OAuth 2.0 authorisation request and sends
it back to the UA. The authorisation request includes client id, the iden-
tifier for the client, which the RP registered with the IdP previously; re-
sponse type=code, indicating the Authorisation Code Grant method; redi-
rect uri, the URI to which the IdP redirects the UA after access is granted;
state, an opaque value used by the RP to maintain state between request
and callback (step 6 below); and the scope of the requested permission.

3. UA → IdP: The UA redirects the request received in step 2 to the IdP.
4. IdP → UA: If the user has already been authenticated by the IdP, then

steps 4/5 are skipped. If not, the IdP returns a login form used to collect
user authentication data.

5. U → UA → IdP: The user completes the login form and grants permission
for the RP to access the attributes stored by the IdP.

6. IdP → UA: After using the login form data to authenticate the user, the IdP
generates an authorisation response and sends it to the UA. This contains
code, the IdP-generated authorisation code, and state, sent in step 2.

7. UA → RP: The UA redirects the response received in step 6 to the RP.
8. RP → IdP: The RP produces an access token request and sends it to the

IdP token endpoint directly (i.e. not via the UA). The request includes the
client id, the code generated in step 6, the redirect uri and also a client secret
shared between the IdP and the RP.

9. IdP → RP: The IdP checks the client id, client secret, code and redirect uri
and responds to the RP with access token, an access token.

10. RP → IdP: The RP passes access token to the IdP via a defined API to
request the user attributes.

11. IdP → RP: The IdP checks access token and, if satisfied, sends the requested
user attributes to the RP.

Identity Federation for OAuth 2.0 Like OpenID [6], OAuth 2.0 does not
support identity federation as defined in Shibboleth [7] or SAML [8]. A commonly
used means of achieving identity federation involves the RP locally binding the
user’s RP-managed account with the user’s IdP-managed account, using the
unique identifier for the user generated by the IdP. After binding, a user can log
in to the RP-managed account using his or her IdP-managed account.

Such a federation scheme operates as follows. After receiving the access token,
the RP retrieves the user’s IdP-managed account identifier and binds the user’s
RP-managed account identifier to the IdP-managed account identifier. When the
user next tries to use his or her IdP-managed account to log in to the RP, the RP
looks in its account database for a mapping between the supplied IdP-managed
identifier and an RP-issued identifier. If such a mapping exists, then the RP
simply logs the user in to the corresponding RP-managed user account.

In real-world OAuth 2.0 SSO systems supporting federation, RPs typically
use one of two ways to perform the binding. Firstly, suppose a user chooses
to log using SSO. After finishing the authorisation process with the IdP, the
user is asked either to bind the IdP-managed account to his or her RP-managed

4 Wanpeng Li and Chris J Mitchell

account or to log in to the RP directly. The user will need to provide his/her RP-
managed account information (e.g. account name and password) to complete the
binding. Alternatively, after a user has already logged into an RP, he or she can
initiate a binding operation. After being authenticated by the IdP and granting
permission to the RP, the user can bind his or her RP-managed account to the
IdP-managed account. After binding, many RPs allow users to log in to their
websites using an IdP-managed account.

Related Work The OAuth 2.0 specification [1] and threat model [9] describe
possible threats and countermeasures. Pai et al. [10] confirm a security issue
described in the OAuth 2.0 Threat Model ([9] §4.1.1) using the Alloy framework
[11]. Chari et al. [12] analyse OAuth 2.0 in the Universal Composability Security
framework [13], and show that OAuth 2.0 is secure if all communications links
are SSL-protected. Frostig and Slack [14] discovered a cross site request forgery
attack in the Implicit Grant flow of OAuth 2.0, using the Murphi framework
[15]. However, all this work is based on abstract models of OAuth 2.0, and so
delicate implementation details are ignored.

To understand the real-world security of OAuth 2.0, Wang et al. [5] examined
a number of deployed SSO systems, focussing on a logic flaw present in many
such systems, including OpenID. In parallel, Sun & Beznosov [4] also studied
deployed systems. Both these studies restricted their attention to systems using
English. Indeed, very little research has been conducted on the security of OAuth
2.0 systems using other languages, some of which, like those in Chinese, have
very large numbers of users. In this paper, we redress this imbalance by reporting
on an analysis of Chinese-language OAuth 2.0 systems.

Like Sun & Beznosov [4], this paper considers the security of deployed OAuth
2.0 systems; however, there are two major differences in approach. First, we do
not exploit specific web browser and application vulnerabilities. Second, Sun
& Beznosov focus on attacks involving stealing the user’s access token from
an RP; specific web browser and application vulnerabilities are used to allow
the attacks. By contrast, this paper focuses on the security of OAuth 2.0 SSO
systems supporting identity federation, and the security flaws identified do not
exploit browser or application vulnerabilities.

3 Threats to OAuth 2.0 Identity Federation

OAuth 2.0 is intended to let an RP gain limited access to a service either on
behalf of the user or for the RP’s own purposes. Hence identity federation, as
in Shibboleth [7] or SAML [8], is not supported. As discussed in §2, in order to
provide identity federation for OAuth 2.0, RPs typically employ ad hoc means
to bind an RP-managed account to an IdP-managed account.

Cross Site Request Forgery Attacks A cross site request forgery (CSRF)
attack [16–22] operates in the context of an ongoing interaction between a target

Security issues in OAuth 2.0 SSO implementations 5

web browser (running on behalf of a target user) and a target website. In the
attack, a malicious website somehow causes the browser to initiate a request of
the attacker’s choice to the target site. This can cause the target site to execute
actions without the involvement of the user. In particular, if the target user is
currently logged in to the target site, the browser will send cookies containing
the target user’s authentication tokens, along with the attacker-supplied request,
to the target site. The target site will process the malicious request as if it was
initiated by the target user. The target browser could be made to send the
spurious request in various ways; e.g., a malicious site visited by the browser
could use the HTML tag’s src attribute to specify the URL of a malicious
request, causing the browser to silently use a GET method to send the request.

The OAuth 2.0 specification ([1], §10.12) describes a possible CSRF attack
in which the target website corresponds to redirect uri, i.e. the URI to which the
target browser is directed by OAuth 2.0. The attack involves an attacker causing
the target browser to send the target site a request containing the attacker’s own
authorisation code or access token. As a result, the target site might associate
the attacker’s protected resources with the target user’s current session; possible
undesirable effects could include saving user credit card details or other sensitive
user data to an attacker-controlled location.

In this paper we show that a CSRF attack could also be used to attack the
federation process of an OAuth 2.0 SSO system, with potentially very serious
effects. Suppose a target UA is logged in to a target RP. The UA visits the
malicious site, perhaps by following a link on the target RP’s site. The malicious
site now forces the UA (unbeknownst to the user) to send a request to the
target site containing a binding request for the attacker’s IdP account. If not
appropriately secured, the target website might now bind the attacker’s IdP-
managed account to the target user’s RP-managed account. The attacker can
now log in to the target user’s RP-managed account at will. If the vulnerability
is present, this simple attack could be launched on a very large scale to take
control of multiple RP-managed accounts. Note that the attacker would need
to use a distinct IdP-managed account for each instance of the attack, although
this should not be an issue in practice.

The OAuth 2.0 specification recommends inclusion of a state parameter in
the authorisation request to protect against CSRF attacks. This allows the RP
to verify the source of a request by matching the state value to the user-agent’s
authenticated state (as recorded in a session cookie). However, for this to work
the state value must not be guessable; otherwise the attacker could include the
guessed value in its fraudulent request. However, despite this advice, we have
found that many real-world RPs either omit the state parameter from the autho-
risation request or fail to use state correctly (e.g., some RPs allocate a fixed value
to state). We have also observed that some RPs do not check the correctness
of the state value even if it is non-guessable. As a result, many RPs supporting
identity federation are vulnerable to a CSRF attack against the RP’s redirect
URL, allowing an attacker to gain full access to the victim’s RP-managed ac-
count without knowing the user’s account name or password.

6 Wanpeng Li and Chris J Mitchell

Logic Flaws To achieve identity federation, the RP must support a way to
bind the user’s RP-managed and IdP-managed accounts. The binding operation
is clearly security-critical since, after binding, the owner of the IdP-managed
account has full control over the RP-managed account. Design flaws in binding
could allow an attacker to bind the victim user’s RP-managed account to the
attacker’s IdP-managed account, without the knowledge of the user.

Binding security largely depends on the RP, since binding is done by the
RP and the IdP simply provides an access token. The RP chooses how binding
works, and decides whether or not to perform it. Since there is no standard for
binding, different RPs use different ways of completing it. As a result the secu-
rity of binding largely depends on the security awareness of the implementers.
This is clearly dangerous, and the almost inevitable result is that some RP im-
plementations of OAuth 2.0 SSO contain serious logic flaws, potentially enabling
an attacker to bind its IdP- managed account to any RP-managed account. The
consequences of such an attack could be very serious indeed.

Adversary Model We assume all RPs and IdPs are benign, i.e. we only con-
sider attacks involving third parties. However, we suppose an attacker can share
malicious links and/or post comments which could contain malicious content on
a benign RP website, and send malicious links to the victim, e.g. via email. The
malicious content constructed by the attacker could cause the browser to initiate
an HTTP request to either the RP or the IdP (or both).

4 Case Studies

We report on an investigation of the security of real-world implementations of
SSO systems using OAuth 2.0, including both RPs and IdPs. In particular we
looked for vulnerabilities of the types described in §3 above. We focussed our
study on RPs using OAuth 2.0 for identity federation, especially those supporting
the second method of binding specified in §2. This is because the first method
requires a user to provide account information to complete binding, which seems
to make using a CSRF attack to achieve a false binding much more difficult.

Conducting a security analysis of commercially deployed OAuth 2.0 SSO
systems requires a number of challenges to be addressed. These include lack of
access to detailed specifications for the SSO systems, undocumented RP and
IdP source code, and the complexity of APIs and/or SDK libraries in deployed
SSO systems. The methodology we used is similar to that employed by Wang
et al. [5] and Sun & Beznosov [4], i.e. we analysed the browser relayed messages
(BRMs). We treated the RPs and IdPs as black boxes, and analysed the BRMs
produced during binding to look for possible exploit points.

We used Fiddler (http://www.telerik.com/fiddler) to capture the BRMs
sent between RPs and IdPs; we also developed a Java program to parse the BRMs
to simplify analysis and to avoid mistakes resulting from manual inspection.
After confirming an exploit point, we used widely deployed browsers, including
IE, Safari, Firefox, and Chrome, to replay or relay the browser request. At no

Security issues in OAuth 2.0 SSO implementations 7

time during our experiments did we access any user accounts without the explicit
permission of the user concerned.

Renren Network Renren Network (http://www.renren.com) is a Chinese social
networking service which has been described as the ‘Facebook of China’. It claims
to have about 320 million active users. Renren Network supports several SSO
IdPs, including Baidu [23] and China Mobile [24]. A user can thus sign in to
Renren Network using a Baidu or China Mobile account.

A Renren-Baidu account binding attack. In order to use an IdP-managed
account to log in to Renren via OAuth 2.0, a user’s Renren-managed account
must first be bound to an IdP-managed account. Suppose a user already logged in
to Renren wants to bind his or her Renren-managed and Baidu (IdP) accounts
(step 1 in §2.2). Renren generates an OAuth 2.0 authorisation request (step
2) and redirects the user browser to Baidu (step 3). The authorisation request
generated by Renren does not contain a state value. After authenticating the user
(steps 4 and 5), Baidu generates the authorisation response (step 6), which only
contains the redirect uri and code. The user agent will send the authorisation
response to Renren (step 7) with cookies containing the user’s session identifier.
Renren uses the code to exchange an access token with Baidu (steps 8 and 9).
Renren then uses the access token to retrieve the user’s Baidu account’s identifier
(steps 10 and 11), and employs the user’s session identifier to retrieve the user’s
Renren account identifier. Finally, Renren binds the user’s Renren-managed and
Baidu-managed accounts, based on the identifiers it received earlier.

The RP needs to know the identifiers of the user’s RP-managed and IdP-
managed accounts in order to complete binding. Renren does not implement
any measures to protect against a CSRF attack on the redirect uri. Thus if
an attacker can replace the code in the authorisation response with its own
IdP-generated code, then the identifier that the RP retrieves from the IdP will
correspond to the attacker’s IdP-managed account. This will cause the victim
user’s RP-managed account to be bound to the attacker’s IdP-managed account.

We tested the viability of such an attack by initiating the Renren-Baidu
authorisation process. We used a Baidu account to perform authentication to
Baidu (acting as the IdP). Baidu then generated and sent a response (as in step
6 of §2.2) containing a redirect uri and code. We intercepted this response and
posted it as a link on a web forum. If a victim user who has previously logged
in to Renren clicks on the link, the victim’s browser will submit the request
with the cookie containing the victim’s session identifier to the redirect uri of
Renren. When we tested this, Renren successfully bound the victim’s account to
our IdP-account. We could thus access the victim’s account via our IdP-managed
account, without knowing the victim user’s account name or password.

A Renren-China Mobile account binding attack. We analysed the data flow
for Oauth 2.0 SSO performed between Renren Network (RP) and China Mobile
(IdP). Unlike Renren-Baidu, both the authorisation request (step 1) and the
authorisation response (step 6) contain a clientState value, which we assume is
used by Renren to try to prevent CSRF attacks.

8 Wanpeng Li and Chris J Mitchell

However, we observed that the clientState value is the same for multiple
requests and responses (in fact clientState=9 in all requests and responses we
observed). That is, the clientState is guessable. Thus, and as we observed in
practical tests, Renren-China Mobile federation is also susceptible to a CSRF
attack that enables an attacker to bind his or her own China Mobile-managed
account to a victim user’s Renren-Managed account.

For both the above scenarios, the response generated in step 6 begins with
the Renren host name. Thus, if posted on a website it will resemble a benign
sharing link, so a victim user will have no reason not to click on it.

Ctrip Ctrip (www.ctrip.com) is a China-focused travel agency with around 60
million members and 2.5 million user reviews. Its services cover around 9,000
flight routes and 200,000 hotels across the world. In order to access Ctrip services,
a user must have a membership with either Ctrip itself or with one of the SSO
systems it supports. Ctrip supports eight OAuth 2.0 SSO IdPs, including Renren
[25], Wangyi [26], Taobao [27], MSN [28] and Sina [29].

A logic flaw in Ctrip. To study the security of the Ctrip-supported SSO sys-
tems, we analysed BRMs exchanged between Ctrip (the RP) and Renren (the
IdP) while the user is binding his or her Ctrip-managed and Renren-managed
accounts using the second method described in §2. As for the Renren-Baidu
binding, the OAuth authorisation request in step 2 and the authorisation re-
sponse in step 6 do not contain the state value. This immediately suggested
that Ctrip-Renren binding might be vulnerable to a CSRF attack. To test this,
we relayed an intercepted IdP-generated authorisation response to a victim user
agent which had already logged in to Ctrip. The user agent sent the authori-
sation response to Ctrip, along with the cookies containing the victim user’s
session identifier. However, instead of binding the attacker’s Renren account to
the victim user’s Ctrip account, Ctrip just responded with a web page asking the
user to input his or her account name and password. We also tried to perform
the attack on other IdPs supported by Ctrip. In each case, Ctrip responded with
a web page requesting the user to input his or her account name and password.
Hence Ctrip, by some means, resists the attack described above.

However, we observed that the request generated in step 1 contains a Uid,
the Ctrip-generated user identifier. Observing that Ctrip account identifiers are
guessable, we conjectured that if we could replace the Uid value in the request
generated in step 1 with the Uid corresponding to the victim user, then it
might be possible to force Ctrip to bind the attacker’s IdP-managed account
to the victim user’s Ctrip-managed account. We therefore tested this approach.
In order not to cause damage to a real user of the Ctrip website, we mod-
ified the Uid value to correspond to an account created for the purposes of
the experiment. We relayed the request to Ctrip and completed the authori-
sation procedure with the IdP. Ctrip responded with a blank web page with
the URL http://RP@Recp=0, indicating that Ctrip had successfully bound the
IdP-managed and Ctrip-managed accounts.

Security issues in OAuth 2.0 SSO implementations 9

Fig. 1. The request generated in step 1

To understand why Ctrip is vulnerable to this attack, we analysed all BRMs
exchanged in both a normal binding operation (where a logged-in user initiates a
binding operation) and an attack binding operation (where an attacker initiates
the request in Fig. 1 without logging in to the Uid account). We observed that,
in a normal binding operation the browser sent Ctrip the request in step 1 with
cookies containing the user’s session identifier. However, in the attack binding
operation, as no cookies had previously been set for the Uid account, the user
agent just sent the request (step 1). Ctrip generated the authorisation request
and set a session identifier cookie for the Uid account (step 2). After receiving
the IdP-generated authorisation response (step 6), the browser sent both the
authorisation response and the cookie containing the session identifier to Ctrip.
Ctrip treated the combination of session identifier and authorisation response
as a legal binding operation, and so it bound the IdP-managed account to the
victim user’s Ctrip account. From this we deduced that Ctrip fails to verify the
validity of the request in step 1 before generating the authorisation request, i.e.
Ctrip does not check the request is initiated by the real owner of Uid. An attacker
can thus successfully forge a request to bind his or her IdP-managed account to
the Uid account, i.e. an attacker can circumvent Ctrip’s user authentication.

A generic Ctrip binding attack. We used our observations regarding the op-
eration of the Ctrip website to devise the following attack on federation. When
a user initiates a binding operation to a different IdP, only the IdPLogin value
(the RenrenLogin/Authorize.aspx in Fig. 3) changes in the request. An attacker
can use this to control the binding between RP and IdP. That is, an attacker
can bind any RP-managed account to any IdP just by replacing the IdPLogin
value and the Uid value in the request sent in step 1. We further observed that
Ctrip provides a user forum to share information and initiate events. An attacker
can readily find user Uid values by examining the forum, since Ctrip does not
effectively conceal them. Using a simple guessing attack, many Uid values can
be recovered from the poorly-protected forum entries.

We reported these flaws to the Ctrip Security Response Centre and helped
Ctrip fix them. Ctrip has listed this report on its acknowledgement page.

5 Discussion and recommendations

Scope of study We studied a total of 60 Chinese RPs supporting SSO via
identity federation to an IdP using OAuth 2.0. Of these, 14 only support the
first method of binding described in §2.3, and so are not vulnerable to the CSRF
attack in §4. Of the remaining 46, a total of 21, i.e. almost half, are vulnerable
to the CSRF attack. Many millions of users were potentially affected by this
vulnerability, since Renren alone has around 320 million active users.

10 Wanpeng Li and Chris J Mitchell

We further analysed the BRMs to find out why the 21 RPs are vulnerable.
Since these RPs support an average of at least three IdPs, we had to analyse 68
distinct sets of RP-IdP browser relayed messages. Of these 68 OAuth 2.0 autho-
risation processes, 48 do not involve the use of any countermeasures to a CSRF
attack. However even in the 20 cases where countermeasures were employed,
poor implementation means that the attack remains possible.

One possible reason why some implementers use a constant value for state
is that the IdP-provided documentation [23, 25, 29, 27, 26, 30] does not describe
how to generate it. In the absence of guidance on the use of state, implementers
may reasonably, but falsely, believe they have implemented effective protection
against CSRF attacks by using a constant value. Secondly, some RPs which use
the same redirect uri for multiple IdPs use the state value to distinguish between
IdPs, i.e. so they can determine to which IdP the RP-managed account should
be bound. That is, they do not appear to understand the intended purpose of the
state variable, and the need for such values to be non-guessable; as a result they
may use guessable state values, which again represents a possible vulnerability.
Thirdly, even if the state value is ‘opaque’ (i.e. non-guessable), problems can
still arise if the RP does not perform the necessary checks. In particular, we
discovered that some RPs fail to check that the state value in the request used
to trigger binding correctly maps to the user’s session identifier.

In summary, there are a variety of ways in which the binding vulnerability
can arise. The common element is the lack of clear and detailed guidance for the
use of CSRF countermeasures in the context of identifier binding for federation.
This is hardly surprising since identity binding is not standardised within the
OAuth specifications. This lack of clear standards for identity federation is the
main underlying source of all the vulnerabilities we have observed.

Recommendations OAuth 2.0 SSO systems have been widely deployed by
Chinese RPs and IdPs, and it appears likely that increasing numbers of Chi-
nese RPs and IdPs will implement OAuth 2.0 for SSO. However, our study has
revealed serious vulnerabilities in existing systems, and there is a significant
danger that these vulnerabilities will be replicated in future systems. Below we
make a number of recommendations, directed at both RPs and IdPs, designed
to address the identified vulnerabilities. These recommendations should help to
address problems in current systems was well as assist in ensuring that future
systems are built in a more robust way. Ideally, a standardised federation system
for OAuth 2.0 would be developed, and these recommendations are also intended
as input to such work.

In OAuth 2.0 SSO systems supporting identity federation, RPs design the
binding process. We have the following recommendations for RPs.

– Deploy countermeasures against CSRF attacks. One reason the OAuth
2.0 systems we investigated are vulnerable to CSRF attacks is that the RPs
do not implement countermeasures. Many IdPs [23, 25, 29, 26] recommend
RPs to include the state parameter in the OAuth 2.0 authorisation request,
and RPs should follow such recommendations.

Security issues in OAuth 2.0 SSO implementations 11

– Do not use a constant or predictable state value. Some RPs include
a fixed state value in the OAuth 2.0 authorisation request. In this case an
attacker can forge a response, since the RP cannot distinguish a legitimate
response produced by a valid user from a forged response. Thus the inclusion
of the state value does not mitigate CSRF attacks. Thus RPs must generate
a non-guessable state value bound to the user’s session identifier, so that the
state value can be used to verify the validity of the response.

– Check the state value. RPs that include an opaque state value in their
OAuth 2.0 request should check the state value in the response before com-
pleting binding. We recommend that RPs use a session-dependent state
value, although such a procedure slightly enlarges the state table which the
RP must maintain in order to validate the state value.

– Require the user to input account information. Perhaps the simplest
way to prevent the CSRF attack is to require users to input their account
names and passwords before completing binding. However, the user will then
be required to ‘log in’ twice during a single session, damaging the user ex-
perience; this also goes against the OAuth 2.0 design goals.

In an OAuth 2.0 SSO system, the IdP designs the OAuth 2.0 protocol process
and provides the API for RPs. An RP wishing to support a particular IdP must
therefore comply with the requirements of that IdP, and so the IdPs play a
critical role in the system. We have the following recommendations for IdPs.

– Include the state in sample code. IdPs typically provide sample code to
help RP developers correctly code interactions with the IdP. However, many
[23, 25, 24, 29, 26, 28, 30] fail to include the state value in their sample code.
This may be the main reason why more than half of the RP-IdP interactions
we analysed are vulnerable to CSRF attacks. Including the state value in IdP
sample code should help encourage RPs to reduce the risk of CSRF attacks.

– Emphasise the consequences of CSRF attacks. Since IdPs are respon-
sible for designing the way in which OAuth 2.0 is used, RP developers must
use the IdP-provided documentation to enable interoperation. In the ex-
amples of IdP documentation we examined, many simply mention the pos-
sibility of CSRF attacks without emphasising the potentially very serious
consequences. This may help explain why some RPs do not appear to take
the CSRF threat as seriously as they should.

Concluding Remarks We studied the security of 60 implementations of OAuth
2.0 for federation-based SSO, as deployed by leading Chinese websites. We dis-
covered that nearly half are vulnerable to CSRF attacks against the federation
process, allowing serious compromises of user accounts. These attacks allow a
malicious third party to bind its IdP-managed account to a user’s IdP-managed
account, without knowing the user’s account name or password. As a result of
the lack of a standardised federation process, we have further discovered logic
flaws in real-world implementations of federation, which again allow binding of
an attacker’s IdP-managed account to a user’s RP-managed account.

12 Wanpeng Li and Chris J Mitchell

We reported our findings to all RPs and IdPs affected by the attacks; we also
provided them with possible mitigations. We hope our study will be of broader
value in warning IdPs and RPs of the dangers of CSRF attacks on OAuth 2.0
identity federation process. Ideally, a robust federation process for OAuth 2.0
will be standardised, helping to reduce the likelihood of future problems.

References

1. Hardt, D.: The OAuth 2.0 authorization framework (2012) http://tools.ietf.

org/html/rfc6819.
2. Hanna, S., Shin, R., Akhawe, D., Boehm, A., Saxena, P., Song, D.: The emperor’s

new APIs: On the (in)secure usage of new client-side primitives. In: Proc. W2SP
2010. (2010)

3. Miculan, M., Urban, C.: Formal analysis of Facebook Connect Single Sign-On
authentication protocol. In: Proc. SofSem 2011, OKAT (2011) 99–116

4. Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: An empirical
analysis of OAuth SSO systems. In Yu, T., Danezis, G., Gligor, V.D., eds.: Proc.
CCS ’12, ACM (2012) 378–390

5. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook
and google: A traffic-guided security study of commercially deployed single-sign-on
web services. In: Proc. IEEE Symp. on Security and Privacy 2012, IEEE (2012)

6. Recordon, D., Fitzpatrick, B.: Open ID Authentication 2.0 — Final. (2007) http:
//openid.net/specs/openid-authentication-2_0.html.

7. Morgan, R., Cantor, S., Carmody, S., Hoehn, W., Klingenstein, K.: Federated
security: The Shibboleth approach. Educause Quarterly 27 (2004) 12–17

8. Scott, C., Kemp, J., Philpott, R., Maler, E.: Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2.0. (2005) http://docs.

oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.
9. Lodderstedt, T., McGloin, M., Hunt, P.: OAuth 2.0 Threat Model and Security

Considerations. (2013) http://tools.ietf.org/html/rfc6749.
10. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal vericication of OAuth

2.0 using alloy framework. In: Proc. CSNT 2011, IEEE (2011) 655–659
11. Jackson, D.: Alloy 4.1. (2010) http://alloy.mit.edu/community/.
12. Chari, S., Jutla, C.S., Roy, A.: Universally composable security analysis of OAuth

v2.0. IACR Cryptology ePrint Archive 2011 (2011) 526
13. Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. In: Proc. FOCS 2001, IEEE Computer Society (2001) 136–145
14. Slack, Q., Frostig, R.: Murphi Analysis of OAuth 2.0 Implicit Grant Flow. (2011)

http://www.stanford.edu/class/cs259/WWW11/.
15. Dill, D.L.: The murphi verification system. In Alur, R., Henzinger, T.A., eds.:

Proc. CAV ’96. Volume 1102 of LNCS., Springer (1996) 390–393
16. Burns, J.: Cross site reference forgery: An introduction to a common web applica-

tion weakness. Security Partners, LLC (2005) http://dl.packetstormsecurity.

net/papers/web/XSRF_Paper.pdf.
17. Jovanovic, N., Kirda, E., Kruegel, C.: Preventing cross site request forgery attacks.

In: Proc. SecureComm 2006, IEEE (2006) 1–10
18. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request

forgery. In Ning, P., Syverson, P.F., Jha, S., eds.: Proc. CCS 2008, ACM (2008)
75–88

Security issues in OAuth 2.0 SSO implementations 13

19. Zeller, W., Felten, E.W.: Cross-site request forgeries: Exploitation and prevention.
Bericht, Princeton University (2008)

20. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with
browser-enforced authenticity protection. In Dingledine, R., Golle, P., eds.: Proc.
FC 2009. Volume 5628 of LNCS., Springer (2009) 238–255

21. Shahriar, H., Zulkernine, M.: Client-side detection of cross-site request forgery
attacks. In: Proc. ISSRE 2010, IEEE Computer Society (2010) 358–367

22. De Ryck, P., Desmet, L., Joosen, W., Piessens, F.: Automatic and precise client-
side protection against CSRF attacks. In Atluri, V., Dı́az, C., eds.: Proc. ESORICS
2011. Volume 6879 of LNCS., Springer (2011) 100–116

23. Baidu Inc.: Baidu Open Connect. (2014) http://developer.baidu.com/wiki/

index.php?title=docs/oauth/authorization.
24. China Mobile Communications Corporation: ChinaMobile Open Connect. (2014)

http://dev.10086.cn/wiki/?p5_01_02.
25. Renren Network: Renren Open Connect. (2014) http://wiki.dev.renren.com/

wiki/Authentication.
26. Wangyi Inc.: Wangyi Open Connect. (2014) http://reg.163.com/help/help_

oauth2.html.
27. Taobao Marketplace: Taobao Open Connect. (2014) http://open.taobao.com/

doc/detail.htm?id=118.
28. Microsoft: Microsoft Live Connect. (2014) http://msdn.microsoft.com/en-us/

library/live/hh243647.aspx.
29. Sina Corp: Sina Open Connect. (2014) http://open.weibo.com/wiki/Oauth2/

authorize.
30. Douban.com: Douban Open Connect. (2014) http://developers.douban.com/

wiki/?title=oauth2.

