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THE COMBINATORICS OF PERFECT AUTHENTICATION SCHEMES *
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Abstract. The purpose of this paper is to prove the equivalence of perfect authentication schemes and
maximum distance separable codes.
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1. Introduction. In this paper, we consider the following communications scenario,
which involves an originator of messages, a recipient of messages, and a third party called
the spoofer. The originator wishes to send a sequence s, ..., s, of n distinct source
messages to the recipient. To enable the recipient to verify the authenticity of these
messages, the originator encodes them, prior to transmission, into a sequence of encoded
messages m,, . . . , My, using one of a finite set of encoding rules that is agreed in advance
with the recipient. The recipient verifies the authenticity of the message m1; by checking
that it is a valid encoding of s; for the agreed encoding rule e. The spoofer observes the
sequence of encoded messages 1y, . . . , m, and attempts to construct a correctly encoded
message for a different source message. That is, he attempts to find a message m that is
the encoding under the (to him unknown) encoding rule e of some source message that
is distinct from sy, . . ., S,.

In [6] one of the authors established an information-theoretic lower bound for the
expected probability P(#) that the spoofer succeeds in this task and for the arithmetic
mean of P(0), P(1), ..., P(N), where N is the maximum length of the sequence that
the originator might be required to send using the same encoding rule. In addition,
necessary and sufficient conditions on the encoding scheme are derived that ensure that
these bounds are met, and these conditions lead to the concept of an N-perfect authen-
tication scheme.

Associated with an authentication scheme is an incidence structure, and the con-
ditions that ensure that the information-theoretic bounds are met are reflected in structural
requirements on this incidence structure. In this paper, we characterise the incidence
structures associated with N-perfect authentication schemes and thereby prove that perfect
authentication schemes are equivalent to maximum distance separable codes.

The theorem proved in this paper extends a result in [3], where it is shown that an
incidence structure is associated with a 1-perfect authentication scheme if and only if it
is a net. It also establishes the converse of the observation made in [6], and independently
by Stinson in [5], that an MDS code (or, equivalently, a transversal design) may be used
to construct a perfect authentication scheme.

2. Authentication schemes, incidence structures, and codes. An authentication
scheme is a triple A = A(S, M, E) of finite sets S, M, and E, where each element of E
is an injective function of S into M, and each element in A is the image under this set
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of functions of precisely one element in S. The elements of S are known as source
messages, those of M are called encoded messages, and the functions in E are called
encoding rules.

An authentication scheme as defined above is often referred to in the literature as
a nonsplitting, Cartesian scheme (see [4]). The nonsplitting property means that, once
an encoding rule has been selected, then the encoded message for each source message
is unambiguously defined. For each encoding rule e € E and each source message s € S,
we denote by m = e(s) the encoded message for s produced by e. The Cartesian property
means that there is no secrecy in the scheme, in the sense that, if an encoded message is
observed, then there is no ambiguity about which source message it encodes, even if the
encoding rule is unknown. This is a consequence of the requirement that each encoded
message is the encoding of precisely one source message. We use the notation s = S(in)
to denote the unique source message corresponding to the encoded message .

With an authentication scheme A4, we may associate an incidence structure I(4) =
I(E, M, I). The set of points of this incidence structure is E, the set of blocks is M, and
the incidence relation [ is defined by the rule

elm if and only if m = e(S(m)).

That is, point e is incident with block m precisely when the encoded message m is obtained
by encoding S(m) under the encoding rule e. We use standard notation for inci-
dence structures, as may be found, for instance, in [1]. Thus we denote by (m) = {e€ E|
e(S(m)) = m} the set of all points incident with the block m, and by (e) = {m € M|
e(S(m)) = m} the set of all blocks incident with the point e. Moreover, we extend this
notation by defining (s) = { m € M|S(m) = s} to be the set of all encoded messages that
are encodings of the source s. Finally, we denote by [ x] the cardinality of the set (x).

The incidence structure / = I(A) enjoys the properties that {(s)|s € S} is a parti-
tion of M, and, for each s € S, the set {(m)|m € (s)} is a partition of E. That is,
{(s)|s € S} is a parallelism of I, where we recall that a parallelism of an incidence
structure is a partition of its blocks into classes with the property that each point of the
structure is incident with precisely one block from each of the classes. The property of
having a parallelism actually characterises those incidence structures that are associated
with authentication schemes as described above.

To see this, let 7 = I(P, B, I) be an incidence structure, with points P and blocks
B, which possesses a parallelism .S. To avoid complications, assume that I does not have
repeated points; that is, if (p) = (p’), then p = p’. We use each point p € P to define a
function from S into B as follows: For each s € S, set p(s) to be the unique block in the
class s that is incident with p. Then it is trivial to check that 4 = A(S, B, P) is an
authentication scheme and that I(4) = 1.

Having defined and characterised the incidence structure associated with an au-
thentication scheme, we now turn to considering codes for authentication schemes. The
approach we take is via the associated incidence structure. Although there are a number
of other ways of associating codes and authentication schemes, this is the most convenient
for our purposes.

We begin by recalling that a code C of length r over a finite alphabet 4 is a nonempty
set of r-tuples with entries in 4. The elements ¢ = (¢, . . ., ¢,) of C are called codewords.

With any code C, we can associate an incidence structure I = I(C), which has a
parallelism. The points of / are the codewords c¢. The blocks of I are the pairs (i, a),
where i€ {1,...,r}, a€ 4, and a is the ith entry of at least one codeword. Incidence
is then defined by the rule

cI(i,a) ifandonlyifc; = a.
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Now if, for each i € {1, ..., r} we define (i) to be the set of all blocks of the form
(i, @), then {(i)|i€ {1,...,r}}is a parallelism of I.

Conversely, to any incidence structure J with a parallelism, we can associate a code
C such that I(C) = I. To see this, let ] = I(P, B, I) be an incidence structure with
parallelism S. Let r = |.S| and label the parallel classes 1, ..., r. For each parallel
class i € {1, ..., r}, let ¢, be an injection from (i) into a suitably large set 4 and
identify block b € (i) with the pair (i, ®i(b)). For each point p € P, define codeword
(P15..., D) by p; = @;(b), where b is the unique block in the parallel class ; incident with
p-Thentheset C= {(p;,...,p)|pe P} is a code of length r over 4 and I1=IC).

Combining the observations of this section, we see that, to any authentication scheme
A4 =A(S, M, E), we can associate a code C = C(4 ) This code has length | S|, contains
| E| codewords, and is defined over an alphabet A4 of size equal to the maximum of the
number of encodings of a source message. Conversely, given a code C, we can construct
an authentication scheme 4 with C(4) = C.

3. MDS codes and perfect authentication schemes. Let Cbe a code of length r over
a finite alphabet 4 of cardinality ¢q. Then C is a maximum distance separable (MDS)
code if and only if, for some ¢, it satisfies the following condition: Given any ¢ distinct
positions iy, . . ., i, and any sequence a;, . . . , a; of not necessarily distinct elements of
A, there is exactly one codeword ¢ = (q, . . . , ¢;) € C with ep=adoti= 1, ... L.

We refer to a code of this type as an MDS code with parameters (r, ¢, q). For further
information on MDS codes, refer to [2]. It should be noted that our notation (% 1 g)
is different from that used in [2].

We need the following characterisation of MDS codes in terms of their associated
incidence structures as defined in the last section. The result is straightforward to prove
using counting arguments and is therefore presented without proof. We use the following
extension to the notation established for incidence structures in the last section. Let b =
(b1, ..., b)) be a sequence of j blocks of an incidence structure. Then (b) is the set of
points that are incident with all the blocks by, ..., b;, and [b] is the cardinality of
this set.

LEMMA 3.1. Let I = I(C) be the incidence structure associated with an MDS code
with parameters (r, t, q), let 0 < j < ¢, and let b= (b, ...,b)) bea sequence of j blocks
belonging to different parallel classes. Then

[b]=q'.

Conversely, if I is an incidence structure with a parallelism that satisfies this condition
Jor some q, some t, and all 0 < j < ¢, then C = C(1) is MDS with parameters (r, ¢, q),
where r is the number of paralleled classes gl

COROLLARY 3.2. If an incidence structure satisfies the conditions of Lemma 3.1,
then each parallel class contains exactly q blocks.

We use this lemma to establish the equivalence of MDS codes and perfect authen-
tication schemes. We begin by recalling the definition and characteristic properties of a
perfect authentication as presented in [6]. To do this, we must first review the information
theoretic measure of the security of an authentication scheme. For a more detailed dis-
cussion of the concepts, refer to [6].

Let A = A(S, M, E) be an authentication scheme. To use this scheme, an originator
and recipient of messages share an encoding rule e, which is selected from E according
to some probability distribution p(e). When the originator wishes to communicate a
source message, he encodes it using e and sends the encoded message m = e(s). Upon
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receiving m, the recipient validates it by using e to confirm that e(S(m)) = m. Suppose
that the originator sends a sequence m,, . . . , m, of distinct encoded messages, all produced
using the same encoding rule e, and that these messages are observed by a spoofer. The
spoofer attempts to construct the correct encoding under e for some source message
distinct from S(m,), . .., S(m,). It is assumed that the spoofer has knowledge of 4 and
plays the best strategy open to him. All he does not a priori know is the particular
encoding rule e. We denote by P(n) the expected probability that the spoofer succeeds
in his task. We assume that # is not allowed to exceed some maximum value NV and we
let Py be the arithmetic mean of P(0), P(1), ..., P(N). The following lower bound for
Py is proved in [6]:

—log Py < H(E)/(N+ 1) <log |E|/(N + 1),

where H(E) is the entropy of the distribution p(e). These inequalities lead to the definition
of an N-perfect authentication scheme.

An authentication scheme is said to be the N-perfect if —log Py = H(E)/(N + 1)
with p(e) the uniform distribution (so that, in this case, H (E) = log | E|). Necessary
and sufficient conditions for an authentication scheme to be N-perfect are given in [6].
These conditions form the basis for the main theorem of this paper and are summarised
below in Lemma 3.3. To state these conditions and prove our theorem, it is first necessary
to model the way in which source and encoded messages are generated and also to
introduce more notation.

The sequence of source messages s; = S(m;), ..., S, = S(m,) generated by the
originator and observed by the spoofer is modelled by a stochastic process p(Sy, . . ., Sp).
We denote by p(s, +1]s1, . .., s,) the probability that the spoofer selects source message
Sn+1 With which to launch his attack, given that he has observed S1, -« ., Sy. All source
messages are assumed to be distinct, so the process satisfies p( 8il$1,. .., 5-1)=0whenever
S € {s1,...,8-1}. We also assume the converse. Thus our process satisfies

p(Sjlsl, TIT Sjﬁl) =0 ifand Only iije {Sl, Ve ,Sj_l}.

We assume that the selection of the encoding rule is independent of the process that
generates the source messages. Thus the probability that a sequence m = (my, ..., m,)
of encoded messages is produced by the originator and observed by the spoofer is given
by

p(m) = p(S(m))p((m)),

where we use the notation
S(m) = (S(my), ..., S(my)) and (m)={ecE|e(S(m))=m;,j=1,...,n}.

The following additional notation will be used in the statement of Lemma 3.3 and in
the proof of Theorem 3.4. Let m = (my, ..., m,) be such that p((m)) # 0 and let
s € S. For each m € (s), define

(slm) = {me(s)|p((m)|(m))#0}.

Thus, in terms of the incidence structure I associated with 4, the set (s|m) consists of
all those blocks in the parallel class (s) that are potential valid encodings for s, given
that the sequence m of encoded messages has already been produced. Observe that, if
n = 0 so that m is the empty sequence, then (s|m) consists of all those blocks of the
incidence structure 7(A) that belong to the parallel class (s) and are incident with at
least one point e € E for which p(e) # 0.
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LEMMA 3.3. An authentication scheme A = A(S, M, E) is N-perfect if and only if,
Jor every 0 < n < N, the following holds: If m = (my, . . ., m,) with p(m) # 0, ifsesS
with p(s|S(m)) # 0, and if m € (s|m), then

log |E|/(N+ 1) =H(E)/(N+ 1) = —log p((m)|(m)) = log |(s|m)]|.

The proof of the lemma follows immediately from [6, Thm. 2] and the definition
of N-perfect. With the help of this result and Lemma 3.1, we may now prove our main
theorem.

THEOREM 3.4. Let C = C(A) be the code associated with an N-perfect authenti-
cation scheme A with source messages S. Then C is an MDS code with parameters
(IS|, N + 1, q), where q = [s] for all s € S. Conversely, if C is an MDS code with
parameters (r, N + 1, q), then C = C(A) for some N-perfect authentication scheme A
with r source messages and q encodings for each source message.

Proof. Let A = A(S, M, E) be an N-perfect authentication scheme and let
1 = I(A) be the incidence structure associated with it. Applying Lemma 3.3 with # = 0
yields

log[s] =1log |E|/(N+ 1) forallsesS.

Thus the number of blocks in each parallel class of [ is a constant ¢, and | E| = ¢gV*!.
We show that, if 0 < j < N + 1l and if m = (my, ..., m;) is a sequence of blocks of I
belonging to different parallel classes, then [m] = g+ ! ~/. The first part of the theorem
then follows directly from Lemma 3.1.

To prove the above statement, we proceed by induction on j. We have already
proved the result for j = 0, so we assume that 1 <j < N + 1, and the statement is true
forj— 1. Let m' = (my, ..., m;_,) and consider the terms in the identity

p((m)) = p((m) |(m'))p((m")).

Since p(e) is uniform, and, as | E| = ¢"*!, we have p((m)) = [m]g~"* " and similarly
for p((m')). Thus [m] = p((m;)|(m’))[m']. Applying the induction hypothesis to [m']
now gives

s [m] = p((m) | (m))g"* 16D,

Now consider the term p((m;)|(m')). First, we apply Lemma 3.3 with n = j — 1 to m’
and S(my;). This gives

log [(S(m))|m')| =log | E|/(N+ 1) =loggq.

However, we know that [S(m,)] = g, so (S(m;)|m’) = (S(m;)). Thus m; € (S(m;)|m"),
and Lemma 3.3 tells us that —log p((m,)|(m’")) = log g. Thus p((m;)|(m')) = ¢!, and
substitution of this in (1) proves [m] = ¢ *!~/, as required.

To prove the final part of the theorem, let 7 = I(C) be the incidence struc-
ture associated with the MDS code and let 4 = A(J) be the authentication scheme
associated with . Let p(e) be the uniform distribution on the set E of points of I
and let p(sy, ..., s,) be a process defined on the parallel classes S of I that satisfies
p(silsy, ..., s-1)=0if and only if s;€ {51, ..., 5;_1 }. We prove that 4 is N-perfect
by using Lemma 3.1 to show that the conditions of Lemma 3.3 are satisfied.

To this end, let 0 < n <N, let m = (m,, ..., m,) be such that p(m) # 0, let
s € § with p(s|S(m)) # 0, and let m € (s|m). Since p(m) = p(S(m))p(m)) # 0,
it follows that the parallel classes S(m;), ..., S(m,) are distinct. Moreover, since
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p(s| S(m)) # 0, the parallel class s is distinct from S(m;), ..., S(m,). Thus, from
Lemma 3.1, we have

Thus

p((m)|(m)) = [m, m]/[m] = q™".

It follows that (s|m) = (s). However, H(E) = log | E|, | E| = ¢"*! by Lemma 3.1,
and [s] = ¢ by Corollary 3.2; so all the equalities in Lemma 3.3 hold.
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