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Abstract—Currently widely used federated login (single sign-
on) systems, notably those based on OAuth 2.0, offer very
little privacy for the user, and as a result the identity
provider (e.g. Google or Facebook) can learn a great deal
about user web behaviour, in particular which sites they
access. This is clearly not desirable for privacy reasons,
and in particular for privacy-conscious users who wish to
minimise the information about web access behaviour that
they reveal to third party organisations. In this paper we give
a systematic analysis of the user access privacy properties
of OAuth 2.0 and OpenID Connect systems, and in doing so
describe how simple it is for an identity provider to track
user accesses. We also propose possible ways in which these
privacy issues could to some extent be mitigated, although we
conclude that to make the protocols truly privacy-respecting
requires significant changes to the way in which they operate.
In particular, it seems impossible to develop simple browser-
based mitigations without modifying the protocol behaviour.
We also briefly examine parallel research by Hammann et
al., who have proposed a means of improving the privacy
properties of OpenID Connect.

Index Terms—OAuth 2.0, OpenID Connect, Authentication,
Authorization, Privacy

1. Introduction

Since the OAuth 2.0 authorisation framework was
published at the end of 2012 [8], it has been adopted
by many websites worldwide as a means of providing
federated identity services (what we refer to here as single
sign-on (SSO)). By using OAuth 2.0, websites can reduce
the burden of password management for their users, as
well as saving users the inconvenience of re-entering
attributes that are instead stored by identity providers
(IdPs) and provided to relying party (RP) websites as
required. There is a correspondingly rich infrastructure
of IdPs providing identity services using OAuth 2.0; for
example, Ghasemisharif et al. [6] identified 65 IdPs among
the Alexa top one million websites in 2018. Indeed, some
RPs, such as the website USATODAY1, support as many
as six different IdPs.

The security of OAuth 2.0 and OpenID Connect is
therefore of critical importance, and it has been widely
examined both in theory and in practice [1], [3]–[5],
[10]–[12], [14]–[17], [19]–[25]. Previous studies (see, for

1. https://login.usatoday.com/USAT-GUP/authenticate/?

example, [10]–[12], [21]–[25]) show that, in practice, RPs
do not always implement OAuth 2.0 correctly; as a result,
many real-world OAuth 2.0 and OpenID Connect systems
are vulnerable to attack. A range of mitigations have been
proposed for RP developers [2], [13], [15], [25], designed
to help secure OAuth 2.0 and OpenID connect systems.
However, apart from the work of Hammann et al. [7],
discussed in greater detail in Section 4.3, relatively little
attention has been paid to the degree to which OAuth
2.0/OpenID Connect protects (or, fails to protect) user pri-
vacy. The purpose of this paper is to address this issue, i.e.
to thoroughly investigate the user access privacy properties
of both OAuth 2.0 and OpenID Connect, covering all the
relevant protocol flows.

The remainder of this paper is structured as follows.
Section 2 provides an introduction to the operation of
OAuth 2.0 and OpenID Connect. In Section 3, we provide
a systematic analysis of the user access privacy properties
of OAuth 2.0 and OpenID Connect. We discuss the causes
of the identified privacy issues and propose possible mit-
igations in Section 4. Section 5 concludes the paper.

2. Background

2.1. OAuth 2.0

The OAuth 2.0 specification [8] describes a system
that allows an application to access resources (typically
personal information) protected by a resource server on
behalf of the resource owner, through the consumption
of an access token issued by an authorization server. In
support of this system, the OAuth 2.0 architecture involves
the following four roles (see Fig. 1).

1) The Resource Owner is typically an end user.
2) The Client is a server which makes requests on

behalf of the resource owner (the Client is the
RP when OAuth 2.0 is used for SSO).

3) The Authorization Server generates access tokens
for the client, after authenticating the resource
owner and obtaining its authorization.

4) The Resource Server stores the protected re-
sources and consumes access tokens provided
by an authorization server (this entity and the
Authorization Server jointly constitute the IdP
when OAuth 2.0 is used for SSO).

Fig. 1 summarises the OAuth 2.0 protocol. The client
(1) sends an authorization request to the resource owner.

https://login.usatoday.com/USAT-GUP/authenticate/?


In response, the resource owner generates an authoriza-
tion grant (or authorization response) in the form of a
code, and (2) sends it to the client. After receiving the
authorization grant, the client initiates an access token
request by authenticating itself to the authorization server
and presenting the authorization grant, i.e. the code issued
by the resource owner (3). The authorization server issues
(4) an access token to the client after successfully authen-
ticating the client and validating the authorization grant.
The client makes a protected source request by presenting
the access token to the resource server (5). Finally, the
resource server sends (6) the protected resources to the
client after validating the access token.

Figure 1. OAuth 2.0 — Protocol Flow

2.1.1. OAuth 2.0 used for SSO. As noted above, in
order to use OAuth 2.0 as the basis of an SSO system,
the resource server and authorization server together play
the IdP role; the client plays the role of the RP, and the
resource owner corresponds to the user. OAuth 2.0 and
OpenID Connect SSO systems build on user agent (UA)
redirections, where a user (U) wishes to access services
protected by the RP which consumes the access token
generated by the IdP. The UA is typically a web browser.
The IdP provides ways to authenticate the user, asks the
user to grant permission for the RP to access the user’s
attributes, and generates an access token on behalf of the
user. After receiving the access token, the RP can access
the user’s attributes using the API provided by the IdP.

2.1.2. OAuth 2.0 protocol flows. The OAuth 2.0 frame-
work defines four ways in which an RP can obtain an
access token, namely Authorization Code Grant, Implicit
Grant, Resource Owner Password, and Client Credentials
Grant. Each of these methods involves a distinct set of
protocol flows.

Two of the flows, i.e. Resource Owner Password and
Client Credentials Grant, are not relevant in the context
of SSO. The Resource Owner Password flow requires the
user to reveal his or her IdP account password credentials
to the resource owner, i.e. it requires a high level of trust in
the resource owner; this severely limits the adoption of this
flow. The Client Credentials Grant flow only involves the
client and the authorization server, i.e. no user interactions
are needed in this flow. Also, no browser redirection is
performed in these two flows; the client directly talks to
authorization server.

As a result, and given our focus on SSO privacy issues,
in this paper we restrict our attention to the Authoriza-

Figure 2. OpenId Connect — Protocol Overview

tion Code Grant and Implicit Grant protocol flows, in
which browser redirection is required. Note that, in the
descriptions below, protocol parameters given in bold font
are defined as mandatory in the OAuth 2.0 Authorization
Framework [8].

2.2. OpenID Connect

OpenID Connect 1.0 [18] builds an identity layer on
top of the OAuth 2.0 protocol. The added functionality
enables RPs to verify an end user identity by relying on an
authentication process performed by an OpenID Provider
(OP) (for consistency, we refer to an IdP instead of an OP
in the remainder of the paper). In order to enable an RP to
verify the identity of an end user, OpenID Connect adds a
new type of token to OAuth 2.0, namely the id token. This
complements the access token and code, which are already
part of OAuth 2.0. An id token contains claims about the
authentication of an end user by an OP, together with any
other claims requested by the RP. OpenID Connect (see
Fig. 2) supports three authentication flows [18], i.e. ways
in which the system can operate, namely Hybrid Flow,
Authorization Code Flow and Implicit Flow.

2.3. Tokens

The tokens used by OAuth 2.0 and OpenID Connect,
notably the code, access token and id token, are key to the
operation of these protocols and also have major privacy
implications. We therefore next describe their structure
and content.

• An authorization code is an opaque value which
is typically bound to an identifier and a URL of
an RP. Its main purpose is as a means of giving
the RP authorisation to retrieve other tokens from
the IdP. In order to help minimise threats arising
from its possible exposure, it has a limited validity
period and is typically set to expire shortly after
issue to the RP.

• An access token is a credential used to authorise
access to protected resources stored at a third party
(e.g. the Resource Owner). Its value is an opaque
string representing an authorization issued to the
RP. It encodes the right for the RP to access data
held by a specified third party with a specific scope
and duration, granted by the end user and enforced
by the RP and the IdP. It is a bearer token; that



is, it can be used by any party that gains access
to it.

• An id token contains claims about the authentica-
tion of an end user by an IdP together with any
other claims requested by the RP. Claims that can
be inserted into such a token include: the identity
of the IdP that issued it, the user’s unique identifier
at this IdP, the identity of the intended recipient,
the time at which it was issued, and its expiry time.
It takes the form of a JSON Web Token [9] and
is digitally signed by the IdP.

2.4. RP Registration

The RP must register with the IdP before it can use
OAuth 2.0, at which time the IdP gathers security-critical
information about the RP, including the RP’s redirect
URI (redirect uri). This is the URI to which the UA is
redirected after the IdP has generated the authorization
response for the RA and sent it to the UA (for conve-
nience, we also refer to the redirect URI as the Google
sign-in endpoint). During registration, the IdP issues the
RP with a unique identifier (client id) and, optionally, a
secret (client secret). If defined, client secret is used by
the IdP to authenticate the RP in the Authorization Code
Grant flow.

2.5. Authorization Flows

2.5.1. Authorization Code Grant — OAuth 2.0. The
OAuth 2.0 Authorization Code Grant flow is very similar
to the OpenID Connect Authorization Code flow (see Sec-
tion 2.5.2 below). This protocol flow relies on information
established during the registration process, as described in
Section 2.4. The protocol proceeds as follows.

1) U → RP: The user clicks a login button on the RP
website, as displayed by the UA, which causes
the UA to send an HTTP request to the RP.

2) RP → UA: The RP produces an OAuth 2.0 autho-
rization request and sends it back to the UA. The
authorization request includes client id, the iden-
tifier for the client which the RP registered with
the IdP previously; response type=code, indicat-
ing that the Authorization Code Grant method
is requested; redirect uri, the URI to which the
IdP will redirect the UA after access has been
granted; state, an opaque value used by the RP
to maintain state between the request and the
callback (step 6 below); and scope, the scope of
the requested permission.

3) UA → IdP: The UA redirects the request received
in step 2 to the IdP.

4) IdP → UA: The IdP first compares the value of
redirect uri it received in step 3 (embedded in the
authorization request) with the registered value;
if the comparison fails, the process terminates.
If the user has already been authenticated by the
IdP, then the next step is skipped. If not, the IdP
returns a login form which is used to collect the
user authentication information.

5) U → UA → IdP: The user completes the login
form and grants permission for the RP to access
the attributes stored by the IdP.

6) IdP → UA → RP: After (if necessary) using
the information provided in the login form to
authenticate the user, the IdP generates an autho-
rization response and redirects the UA back to the
RP. The authorization response contains code, the
authorization code (representing the authorization
grant) generated by the IdP; and state, the value
sent in step 2.

7) RP → IdP: The RP produces an access to-
ken request and sends it to the IdP token end-
point directly (i.e. not via the UA). The re-
quest includes grant type=authorization code,
client id, client secret (if the RP has been is-
sued one), code (generated in step 6), and the
redirect uri.

8) IdP → RP: The IdP checks the code, client id,
client secret (if present), and redirect uri and,
if the checks succeed, responds to the RP with
access token.

9) RP → IdP: The RP passes access token to the
IdP via a defined API to request the user at-
tributes.

10) IdP → RP: The IdP checks access token (how
this works is not specified in the OAuth 2.0
specification) and, if satisfied, sends the requested
user attributes to the RP.

2.5.2. Authorization Code Flow — OpenID Connect.
As previously noted, the Authorization Code flow of
OpenID Connect has a similar sequence of steps to that
of the OAuth 2.0 Authorization Code Grant. We specify
below only those steps where OpenID Connect differs
from OAuth 2.0 operation.

2. The RP produces an OpenID Connect authoriza-
tion request and sends it back to the UA. The
authorization request includes client id, the iden-
tifier for the client which the RP registered with
the IdP previously; response type=code, indicat-
ing that the Authorization Code Grant method
is requested; redirect uri, the URI to which the
IdP will redirect the UA after access has been
granted; state, an opaque value used by the RP
to maintain state between the request and the
callback (step 6 below); and scope, the scope of
the requested permission.

8. IdP → RP: The IdP checks the code, client id,
client secret (if present), and redirect uri and, if
the checks succeed, responds to the RP with an
access token and an id token.

9. RP → IdP: The RP verifies the validity of the
id token. If it is valid, the RP then passes the
access token to the IdP to request the desired
user attributes.

10. IdP → RP: The IdP checks the access token and,
if satisfied, sends the requested user attributes to
the RP.

2.5.3. Implicit Grant — OAuth 2.0. The OAuth 2.0
Implicit Grant flow is very similar to the OpenID Connect
Implicit and Hybrid flows (see Sections 2.5.4 and 2.5.5
below). This flow has a similar sequence of steps to
the OAuth 2.0 Authorization Code Grant. We specify



below only those steps where Implicit Grant differs from
Authorization Code Grant.

2. RP → UA: The RP produces an OAuth 2.0
authorization request and sends it back to the UA.
The authorization request includes client id, the
identifier for the client which the RP registered
with the IdP previously; response type=token,
indicating that the Implicit Grant is requested;
redirect uri, the URI to which the IdP will redi-
rect the UA after access has been granted; state,
an opaque value used by the RP to maintain state
between the request and the callback (step 6); and
scope, the scope of the requested permission.

6. IdP → UA → RP: After (if necessary) using
the information provided in the login form to
authenticate the user, the IdP generates an access
token and redirects the UA back to the RP using
the value of redirect uri provided in step 2. The
access token is appended to redirect uri as a URI
fragment (i.e. as a suffix to the URI following a
# symbol).

7. RP → IdP: The RP passes access token to the
IdP via a defined API to request the user at-
tributes.

8. IdP → RP: The IdP checks access token (how
this works is not stated in the OAuth 2.0 specifi-
cation) and, if satisfied, sends the requested user
attributes to the RP.

As URI fragments are not sent in HTTP requests, the
access token is not immediately transferred when the UA
is redirected to the RP. Instead, the RP returns a web page
(typically an HTML document with an embedded script)
capable of accessing the full redirection URI, including
the fragment retained by the UA, and extracting the access
token (and other parameters) contained in the fragment;
the retrieved access token is returned to the RP. The RP
can now use this access token to retrieve data stored at
the IdP.

2.5.4. Implicit Flow — OpenID Connect. As previously
noted, the Implicit Flow of OpenID Connect has a similar
sequence of steps to the OAuth 2.0 Implicit Grant. We
specify below only those steps where OpenID Connect
differs from OAuth 2.0 operation.

2. RP → UA: The RP produces an OpenID Connect
authorization request and sends it back to the UA.
The authorization request includes client id, the
identifier for the client which the RP registered
with the IdP previously; response type=token
id token (id token is always returned in this
flow), indicating that the Implicit Flow is re-
quested; redirect uri, the URI to which the
IdP will redirect the UA after access has been
granted; state, an opaque value used by the RP
to maintain state between the request and the
callback (step 6 below); scope, the scope of the
requested permission; and nonce, the value used
to associate a client session with an id token to
mitigate replay attacks.

6. IdP → UA → RP: After (if necessary) using the
information provided in the login form to authen-
ticate the user, the IdP generates an id token and

an access token if requested and redirects the UA
back to the RP using the value of redirect uri
provided in step 2. The id token and access token
are appended to redirect uri as a URI fragment
(i.e. as a suffix to the URI following a # symbol).

7. RP → IdP: The RP verifies the validity of the
id token. If it is valid, the RP then passes the
access token to the IdP to request the desired
user attributes.

8. IdP → RP: The IdP checks the access token and,
if satisfied, sends the requested user attributes to
the RP.

2.5.5. Hybrid Flow — OpenID Connect. Again as noted
above, the Hybrid Flow of OpenID Connect has a similar
sequence of steps to the OpenID Connect Implicit Flow.
We specify only those steps where Hybrid Flow differs
from Implicit Flow.

2. RP → UA: The RP produces an OpenID Connect
authorization request and sends it back to the UA.
The authorization request includes client id, the
identifier for the client which the RP registered
with the IdP previously; response type=token
id token code (code is always returned in this
flow, other tokens are returned only when re-
quested), indicating that the Implicit Flow is
requested; redirect uri, the URI to which the
IdP will redirect the UA after access has been
granted; state, an opaque value used by the RP
to maintain state between the request and the
callback (step 6 below); scope, the scope of the
requested permission; and nonce, the value used
to associate a client session with an id token to
mitigate replay attacks.

6. IdP → UA → RP: After (if necessary) using
the information provided in the login form to
authenticate the user, the IdP generates a code,
an id token or an access token if requested, and
redirects the UA back to the RP using the value
of redirect uri provided in step 2. The code, id
token and access token are appended to redi-
rect uri as a URI fragment (i.e. as a suffix to
the URI following a # symbol).

3. User Access Privacy Analysis of OAuth 2.0
and OpenID Connect

3.1. Scope of Analysis

In this analysis we consider only what an ‘honest but
curious’ IdP learns about the web access behaviour of a
single user, i.e. we do not address privacy issues relating
to use of websites. In particular we consider how readily
the IdP can determine the identity of the RPs with which
a user is interacting, simply by performing its legitimate
role in the protocols. Of course, revealing this information
may not be harmful for the user if the IdP is honest
and trustworthy; nevertheless, an honest IdP could still
use this information for website personalisation, e.g. to
deliver targeted advertisements. For example, if a user uses
Google Sign-in to log in to a music band’s web page, then



Google could use this information to deliver advertising
for new albums by this band.

The primary design goal of OAuth 2.0 and OpenID
Connect is to enable an RP to gain limited access to
an HTTP service either on behalf of the user or for the
purposes of the RP itself; there are no specific privacy
objectives of these protocols. In order to achieve the
design goals, the RP has to retrieve user data from the
IdP server; thus the IdP is able to track user activity at
an RP by monitoring its resource server. Moreover, in the
OpenID Connect protocol flows, as the id token contains
attributes of an end user, two colluding RPs could use the
id tokens they receive to link interactions belonging to the
same user, even without the help of the IdP.

In the absence of specific privacy objectives, it is
hardly surprising that hiding the RP identity from the IdP
was not a goal for the protocol designers. Indeed, it is
probably the case that many IdPs like this feature, since it
helps them build user profiles. Nonetheless, it is clearly a
privacy risk for the user, and this is why we have chosen
to investigate ways in which the advantages of OAuth 2.0
and OpenID Connect could be preserved whilst limiting
what an IdP learns about the identities of the websites
visited by a user. We now give an analysis of the user
access privacy issues that arise in a range of scenarios.

3.2. Privacy Goals

As mentioned previously, our focus on privacy is
restricted to considering what an IdP can learn about the
identity of the websites which a user visits. This seems a
reasonable focus, given that the main objective of the SSO
systems we examine is to enable authenticated sessions
between a user browser and a website, and the IdPs are
typically not involved once such sessions are established.

More precisely, in this paper, we are concerned with
the following two user privacy goals.

• User login unlinkability with respect to the
IdP. Given two honest RPs, RP1 and RP2, the
IdP cannot distinguish which of them the user
has chosen to log-in to. Meeting this goal could
prevent an IdP from building a website activity
profile for a user who uses the IdP to log-in to
multiple RPs.

• User information retrieval unlinkability with
respect to the IdP. Given two honest RPs, RP1

and RP2, the IdP cannot distinguish which of them
is accessing the user information stored at the IdP.

3.3. Privacy Issues in Registration

Both OAuth 2.0 and OpenID Connect require that the
RP registers with the IdP before it can use OAuth 2.0
or OpenID Connect services. During registration the IdP
gathers information about the RP, including the RP’s redi-
rect URI (redirect uri). The IdP also issues the RP with
a unique identifier (client id) and a secret (client secret).
Any one of these three values can be used to identify the
RP. Thus if a user’s activity can be linked to any of these
values then the IdP immediately knows the RP with which
the user is interacting, endangering both the privacy goals
enumerated above. In particular, if a code or access token

containing any of these three values is transferred to the
IdP, then the IdP can immediately determine the identity
of the RP.

3.4. Privacy Issues in Authorization Code Grant

As described in Section 2.5.1, the OAuth 2.0 Autho-
rization Code Grant is very similar to the OpenID Connect
Authorization Code Flow. The privacy issues described
below thus apply to both OAuth 2.0 and OpenID Connect.

There are several points within the protocol flow at
which an IdP could learn the identity of the RP with which
the user is interacting, as listed below.

1) Whenever an RP sends an OAuth 2.0 authoriza-
tion request (step 2 of Section 2.5.1) to the IdP
using the Authorization Code Grant flow, the
IdP can learn which RP the user is trying to
access by checking the client id and redirect uri
of the authorization request. After authenticating
the user, the IdP redirects the user to the RP (step
6). If a user uses the IdP to log-in to multiple RPs,
the IdP will learn the identities of all the RPs that
the user is accessing.

2) After the RP receives the authorization response
and the embedded code, it has to exchange the
code for an access token with the IdP (step 7).
During the exchange process, the RP has to reveal
information which reveals its identity, such as its
client id and client secret, to the IdP. The IdP
can then use this information to connect the user’s
activity to this specific RP, enabling the IdP to
track the user.

3) The access token used in both OAuth 2.0 and
OpenID Connect is a bearer token which encodes
the user’s id, its expiry time, and its intended
audience (the RP). IdPs such as Facebook2 and
Google3 (see Fig 3) provide APIs for RPs to
check the access token information. When an
RP retrieves the user’s attributes from the IdP’s
resource server (step 9) using an access token,
the IdP will learn both the RP identity and the
user attributes the RP is trying to access. The
IdP could use this information to track the user’s
accesses to the RP without the user being aware.
This is because the RP can retrieve user infor-
mation from the IdP using the access token, even
when the user is offline. When this occurs, the IdP
is obviously aware of the information retrieval,
and hence knows which RP is retrieving which
user’s information.

4) When using OpenID Connect, both an id token
and access token are issued to the RP in step 8.
As described in Section 2.2, an id token contains
claims about the authentication of an end user by
an IdP, together with any other claims requested
by the RP. It also contains the issuer and audience
of the token, which means the IdP is aware of the
RP identity when generating the id token. That

2. https://developers.facebook.com/docs/facebook-login/
manually-build-a-login-flow#checktoken

3. https://developers.google.com/identity/protocols/
OAuth2UserAgent#validate-access-token

https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow#checktoken
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow#checktoken
https://developers.google.com/identity/protocols/OAuth2UserAgent#validate-access-token
https://developers.google.com/identity/protocols/OAuth2UserAgent#validate-access-token


is, when an RP relies on an id token to grant user
access to its services, the IdP is still able to track
the access behaviour of the user.

All four of the cases considered above threaten both
of the privacy goals described in Section 3.2.

3.5. Privacy Issues in Implicit Grant

The OAuth 2.0 Implicit Grant flow shares almost
all the privacy issues we have identified in OAuth 2.0
Authorization Code Grant. The only difference is that no
code is exchanged during OAuth 2.0 Implicit Grant. Thus
the second privacy issue described in Section 3.4 does not
apply to the Implicit Grant flow.

4. Discussion

4.1. Main Issues

Both OAuth 2.0 and OpenID Connect require that
a RP registers with the IdP before using the service.
At this point the IdP collects privacy-related information
(e.g. the redirect uri) which could be used to learn the
identity of the RP with which a user is interacting; it
additionally distributes information (e.g. the client id and
client secret) that could also be used to learn which RPs
a user is accessing.

All the (relevant) authorization flows of OAuth 2.0 and
OpenID Connect rely on user agent redirections. During
the authorization process, in order to deliver the response
to the RP, the IdP needs to know the web location (the
redirect uri) to which it must deliver the response. This
redirect uri immediately reveals the RP identity to the
IdP. This is the main reason why OAuth 2.0 and OpenID
Connect do not support the user access privacy goals
enumerated in Section 3.2.

Also, both the access token and id token contain the
RP’s identity. The IdP is aware of the token audience
when issuing such a token, and can use this information
to determine the number of users that have logged in to
the RP using its identity service.

At this point it is important to observe that a range of
middleware [2], [15] has been published to try to mitigate
both the vulnerabilities and the privacy threats posed by
incorrect OAuth 2.0 and OpenID Connect implementa-
tions. However, the privacy focus of these schemes is very
limited; they all restrict their attention to mitigating the
privacy threats that can be caused by leaking the id token
or the access token to unauthorised parties, and rely on
user agent redirection to deliver the authorization request.
As a result, none of them is able to address the privacy
issues we described above. That is, they are not concerned
with user access privacy with respect to the IdP, which is
the main focus of this paper.

Given the fundamental nature of the privacy issues we
have observed, and in particular their reliance on browser
redirections, it seems impossible to enhance the privacy
properties of OAuth 2.0 (and OpenID Connect) without
making some fairly fundamental changes to the way these
systems work. That is, while it would clearly be desirable
to introduce user-privacy-enhancing obfuscations into the
protocol flows at the UA without changing the ways in

which IdPs and RPs interact, as we clarify below all such
efforts seem to be blocked by the design of the protocol
flows. Indeed, it could even be that this is a deliberate
choice by the protocol designers. We therefore conclude
this paper by considering possible ways in which these
systems could be redesigned to enable greater user privacy
protection without significantly affecting the simplicity of
protocol operation.

4.2. Possible Mitigations

As described above, the main reasons why OAuth
2.0 and OpenID Connect are not user-access-privacy-
preserving is because they both rely on user agent redi-
rection and the IdP has to exchange privacy-breaching
information with the RP. In order to attempt to mitigate
these privacy issues, we have the following recommen-
dations for possible modifications to the design and/or
implementation of these systems.

4.2.1. Protocol Changes. The following two changes to
the protocols are required to address the issues we have
identified.

1) As described in Sections 3.3 and 4.1, the reg-
istration processes for OAuth 2.0 and OpenID
Connect involve equipping the IdP with infor-
mation about the RP, notably the redirect uri,
the client id and client secret, use of any of
which will immediately reveal the identity of the
RP. If these are not used during operation of
the protocols, then there is no point in giving
them to the IdP during registration. This process
therefore needs to be redesigned to make sure
that the information exchanged by the IdP and
RP (and then used in protocol operation) will
not subsequently threaten user privacy. How this
could be achieved is not immediately clear, and
remains an issue for further research.

2) The audience attribute in both the id token and
access token needs to be removed from the token
itself. This will require the design of the pro-
tocol to be modified to ensure that no security
issues will arise after removing this attribute. In
particular, if the audience attribute is removed,
a malicious RP could use collected access token
and id token values to impersonate a victim user
to another RP.
One possible mitigation to this security problem
would be to use a challenge-response-based ap-
proach, e.g. requiring an RP to generate a random
value for each authorization request (functioning
just like the state parameter in OAuth 2.0), and
include this random value in the user’s RP session
as well as the access token and id token; this
would enable the receiving RP to verify that
the token was generated for it. As the value is
generated randomly, the IdP should not be able
to use it to build a profile of the RP.

4.2.2. Client-based Mitigations. Client-based middle-
ware (e.g. a browser extension) could be used to redi-
rect the OAuth 2.0 authorization requests and responses
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transferred between the RP and IdP. Introducing such
middleware could prevent the IdP from learning where
the authorization request is coming from and where the
authorization response is sent to, thus helping to reduce
the privacy threats to users. Such a design change could
have the helpful by-product of largely mitigating the threat
of phishing attacks, a well-known threat vector for both
OAuth 2.0 and OpenID Connect.

Again, designing such middleware to ensure privacy
without introducing new security vulnerabilities is a non-
trivial issue, requiring further research.

A further possibility might be to introduce a new
browser API specifically for SSO, that would enable RPs
to start protocol runs with an IdP of their choice. This
could address the issues caused by browser redirections.
Such a change could be supplementary to the standard
protocol, or be integrated into a modified protocol.

4.3. Privacy-Preserving OpenID Connect

The above proposals clearly need further development
in order to try to develop a completely privacy-friendly
SSO system. In particular, the precise security and privacy
properties of the modified protocols will need careful
analysis. We conclude this discussion by considering a
very recent proposal for protocol modifications which,
although intended to address the privacy issues we have
discussed, unfortunately fails to do so effectively.

4.3.1. Operation of scheme. In work conducted concur-
rently with that described here, Hammann et al. [7] very
recently proposed a privacy-preserving modification to
OpenID Connect Implicit Flow (see Figure 4), which has

some features in common with the mitigations proposed
above. They made two changes to the standard OpenID
Connect Implicit Flow, and deleted the authentication pro-
cess from the ‘standard’ OpenID Connect Implicit Flow
(see step 5 in Section 2.5.1). The operation of the modified
scheme is summarised in Fig. 4.

Two changes are of particular significance.

• Masking the client id. The original client id
is replaced by an (opaque) hash value
H(client id||rp nonce||u nonce), where H
is a cryptographic hash function, u nonce is a
cryptographically secure, unpredictable, random
value generated by the user agent, and rp nonce
is a nonce generated by the RP for replay
protection.

• User consent in user agent. A new signed token
client id binding needs to be generated during
registration. This token is used to present the con-
sent page to the user. It contains the RP’s client id;
client name; the name of the RP in a form that
can be understood and checked by the user; and
the RP’s set of registered redirect uris, i.e. valid
end-points to which the private id token can be
sent.

Note that the difference between the private id token
and the original id token is that the private id token
contains a private aud field which equals to
H(client id||rp nonce||u nonce) and replaces the
aud field in the orignal id token.

4.3.2. Analysis. As shown in Fig. 4, the modified protocol
does not include the step in which the IdP authenticates the
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end user (see step 5 in 2.5.1), which will cause problems
in practice. By putting the client id binding and rp nonce
into the URI as fragments, they implicitly assume that the
user has already been authenticated by the IdP, and the
IdP acts as if it has authenticated the user and generates
tokens for the user.

This looks like a good idea at first sight. However,
omitting the standard authentication process from the
protocol makes the proposed scheme unworkable, since
the IdP will not know the identity of the user for which
it is generating tokens. As a result, there needs to be an
authentication process in the protocol which collects user
credentials, and this process4 should occur just after step
3 in Figure 4.

However, as the authentication process needs to collect
user credentials (e.g. using a login form), normally user
agent redirections need to be involved after form submis-
sion. The user will be redirected to the user consent page
after being authenticated, and the user consent page will
have no access to the URI fragment parameters in step
2. This would render steps 4–9 unworkable. In order to
make their scheme work, a dedicated authentication pro-
cess should be designed for the protocol using JavaScript
APIs (e.g. XMLHTTPRequest/fetch or iframes that
communicate via postMessage). However, Hammann
et al. claim that ‘This authentication step is, however, not

4. If the authentication process takes place before step 3, the IdP needs
to record the URL from step 2 in the URL parameters and redirect the
user to that URL after authentication is complete; thus the IdP will learn
the value client id binding.

explicitly part of the OpenID Connect protocol, and thus
is not part of privacy-preserving OpenID Connect either’
(see section 4.3 in [7]).

In summary, because of the removal of the user au-
thentication process, the Hammann et al. scheme will
work only if the user is already authenticated at the IdP
and this may pose usability concerns. Moreover, their
scheme only focuses on privacy issues caused by the
id token (used for authentication in OpenID Connect);
the privacy issues caused by the access token (used for
authorization in OpenID Connect) are not addressed.

Additionally we point out that the Hammann et al.
attack model is somewhat unrealistic. It assumes that
the IdP is honest but curious (i.e. exactly the model
we also assume), and the proposed modified version of
the OpenID Connect protocol appears to be based on
the assumption that client-side JavaScript code could be
run independently, i.e. without the involvement of the
IdP. Specifically, in steps 4–9 of the modified OpenID
Connect protocol (see Section 4.3 of [7]), the website
which supplies the JavaScript that executes at the user
agent is under the control of the IdP. This means that a
‘slightly dishonest’ IdP could arrange for the JavaScript to
send back to the IdP every parameter involved in steps 4–
9. This includes the client id, which is the value that the
modified protocol is designed to hide from the IdP, and
the redirect uri, which is used to deliver the authorization
response to the RP. We use the term ‘slightly dishonest’
here, as the JavaScript would conduct all steps in the
protocol honestly, but would simply send back to its owner
information it learns. That is, we suggest that there is
little difference in practice between information which
inevitably passes through the IdP and that which passes
through a proxy under the control of the IdP.

Of course, in principle the JavaScript code could be
analysed, and any monitoring behaviour would be revealed
— this could be very damaging for the reputation of the
IdP. However, in practice such JavaScript is likely to be
large and complex, and extremely difficult to analyse.
Also, any transfer of data to the IdP could be packaged
with necessary data transfers and hence would be invisible
to anyone monitoring the behaviour of the JavaScript.

This demonstrates the difficulty in devising modifi-
cations that effectively meet the privacy goals without
making very major changes to protocol operation.

5. Conclusions

In this paper, we have described serious user access
privacy issues that affect both OAuth 2.0 and OpenID
Connect. We also observed that it seems impossible to
develop simple browser-based mitigations that signifi-
cantly enhance user privacy with respect to the IdP with-
out changing the underlying protocols; that is, changes
are required to both the browsers and the protocols
to make OAuth 2.0 and OpenID Connect user-access-
privacy-friendly. We have therefore also outlined possible
modifications to the operation of OAuth 2.0 and OpenID
Connect that could help mitigate the main privacy is-
sues. However, these ideas are still at an early stage of
development and need considerable further work before
detailed changes to the protocols can be proposed. We
also critically examined parallel research by Hammann et



al., who have proposed a means of improving the privacy
properties of OpenID Connect.
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