

New technologies and future security challenges

Chris Mitchell Royal Holloway, University of London http://www.isg.rhul.ac.uk/~cjm

Goals

- Examine two key issues for future cyber security:
 - Technology trends what do they mean for future cyber security?
 - Conflicting requirements security/privacy requirements versus economic and technological pressure.

1. Technology trends

- We look at four key emerging technology trends with serious security and privacy implications:
 - Ubiquitous/ambient computing;
 - Clouds/proxies/Grids;
 - Growing system and component complexity;
 - Integrated peripherals.

Ubiquitous computing

- The advent of always connected devices is already with us (mobile phones, wireless PC connectivity, RFID, ...).
- Systems have evolved piecemeal no overall security architecture.
- Network access protocols offer very limited security (device authentication of network is sometimes non-existent):
 - 'fake network' attacks (GSM, 802.11, ...);
 - compromised access points (either by software or hardware attack).
- Similarly, pair-wise device authentication is sometimes not robust.
- Growing risk of widespread malware attacks, as devices become more 'smart' and flexible.
- Apart from poor security fundamentals, privacy is a major issue device tracking is far too simple.

Third party computing

- There is growing trend to move data and processing to the cloud.
- Security and privacy concerns are widely documented –
 especially as the cloud providers offer very little
 guarantees about security, privacy and availability.
- This is just one part of a long-term trend to outsource IT provision.
- Users of outsourced services need to start asking deep questions about security and availability.

Complexity

- Another long-term trend is that towards increasing complexity, covering:
 - hardware of individual devices;
 - software running on devices (e.g. move towards general purpose OSs on special purpose devices);
 - system itself growing interconnectivity adds huge complexity.
- Long known that complexity is the enemy of assurance.
- A lot of wishful thinking about emergent properties permeates the industry ...

Ubiquitous peripherals

- Ubiquitous computing devices come equipped with growing numbers of external interfaces – cameras, microphones, biometric readers, ...
- Who controls these?
- Do you trust all your applications running on all your devices not to misuse these functions?
- These peripherals represent a huge threat to personal and organisational security and privacy.
- Ubiquitous sensors pose a related threat.

Other issues I

- Privacy technology requirements for providing anonymity will make it more difficult to trace attacks.
- We can expect continued growth in orchestrated attacks, by governments or other organisations (e.g. terrorist groups, criminal gangs, protesters, ...).
- New and unexpected types of malware are bound to emerge. Also, malware will spread across multiple platform types – e.g. rootkits on mobile phones ...
- Security threats to embedded devices pose an everincreasing safety threat through their control of physical devices (e.g. vehicle control systems, radio power control and battery management systems in mobiles, ...),

Other issues II

- Provenance of software/hardware has become almost impossible to determine – how do we know our systems do not incorporate deliberately engineered vulnerabilities?
- Automatic updating of complex software is both very helpful and a huge risk – e.g. through ownership/influence of large corporates and foreign governments.
- User authentication techniques are not getting any better

 still overwhelmingly rely on passwords (tokens, public keys, etc. are still not widely used).

2. Growing conflicts

- Requirements:
 - High robustness because of criticality of IT;
 - Privacy protection growing legal frameworks and user interest.
- Economic/technological factors:
 - Increasing complexity (inevitable technological drift) directly threatens robustness;
 - Increased use of third parties (outsourcing) makes privacy and security assurance very hard.
 - Smarts everywhere (flexibility) also threatens robustness.

Efficiency versus robustness

- Efficiency pressures:
 - use of third party providers;
 - integration across sectors;
 - just in time issues (minimise IT investment);
 - green/environmental issues.
- Robustness requirements:
 - avoid reliance on systems outside of direct control and single points of failure;
 - avoid possibility of cascading failures;
 - redundancy (multiple systems, ...).

Efficiency versus diversity

- Efficiency pressures:
 - minimise number of types of platform/system to reduce maintenance and purchasing costs;
 - minimise number of suppliers (economies of scale).
- Diversity requirements:
 - reduce impact of vulnerabilities by using diverse systems;
 - spread risk through diversity.

Complexity versus reliability

- Complexity pressures:
 - hardware and software development more and more removed from human understanding – more complex – more intermediary layers (libraries, CAD tools, ...).
- Reliability requirements:
 - the simpler a system is, the easier it is to make it reliable.

Flexibility versus stability

- Flexibility pressures:
 - re-use of a standard platform (e.g. a PC),
 even in embedded applications, reduces cost;
 - end users want flexibility to gain maximum benefit from their investment.
- Stability requirements:
 - keeping things simple increases assurance;
 - flexibility vastly increases the attack surface.

3. Are we all doomed?

- Conclude by highlighting some areas in which we might discern security-positive events:
 - growing diversity of platform types (e.g. games platforms as IT platforms);
 - better software;
 - growing awareness of seriousness of security threats;
 - possible future in 'locked down' devices.