
A Delegation Framework for Liberty
Waleed A. Alrodhan

Information Security Group
Royal Holloway

University of London
Egham, Surrey, TW20 0EX, United Kingdom

Email: W.A.Alrodhan@rhul.ac.uk

Chris J. Mitchell
Information Security Group

Royal Holloway
University of London

Egham, Surrey, TW20 0EX, United Kingdom
Email: C.Mitchell@rhul.ac.uk

Abstract—Building support for delegation services into an
identity federation system enhances its flexibility and scalability.
Users may need to delegate all (or a subset) of their access
rights or privileges to other parties in the system. However, the
Liberty Alliance, an industry consortium that aims to build open
standard-based specifications for identity federation systems, does
not include delegation functionality in its specifications. In this
paper we propose a delegation framework for Liberty that can be
readily integrated into the currently deployed specifications. The
framework takes advantage of the trust relationships that exist
by definition within the Liberty circles of trust, and is based on
extending the use of attribute statements in SAML assertions.
The framework is built on SAML 2.0 and the Liberty ID-FF
1.2 single sign-on profiles, and supports both direct and indirect
delegation.

I. INTRODUCTION

Identity federation systems are based on the notion of shar-
ing authentication information between an identity provider
and service providers within a certain circle of trust. The
access rights given to a particular user by a service provider
(SP) are determined according to the shared authentication
information. Providing support for delegation services in an
identity federation system enhances its flexibility and scal-
ability, and builds upon the trust relationship between the
identity provider and the service provider. Moreover, most
identity federation systems provide reliable approaches for
transforming sensitive information about the system users (e.g.
using SAML, SOAP and WS-*). These approaches can be used
to help support delegation.

The Liberty Alliance Project1 (henceforth abbreviated to
Liberty) is one of the most prominent collaborations (started
in December 2001) aiming to build open standard-based spec-
ifications for identity federation systems. The Liberty spec-
ifications have been adopted by many identity management
product vendors, including Sun2 and Ping Identity3.

Whilst some identity federation systems, such as Shibbo-
leth4, support delegation services [4], the Liberty specifications
lack delegation support. However, the Liberty frameworks ID-
FF and ID-WSF [13], [15] provide a solid basis on which
to build customised delegation services. In this paper we
extend the use of SAML, an XML-based standard for security
assertion specification and exchange, to support delegation
services.

The remainder of this paper is organised as follows. Section

II provides an overview of delegation and its advantages. In
section III we propose a delegation framework for Liberty, and
in section IV we discuss possible issues with the proposed
framework. Section V highlights related work, and section VI
concludes the paper.

II. AN OVERVIEW OF DELEGATION

In this section we provide a brief introduction to the concept
of delegation, and discuss the significance of designing a
delegation model for Liberty.

A. Introduction to Delegation

Delegation enables an entity to delegate some or all of
its rights to other entities in a specific domain [2]. The
notion of delegation is widely used as an effective access
control method. For example, many Digital Rights Manage-
ment (DRM) systems offer delegation services to consumers
so that they can delegate their access rights to a protected
piece of media to a number of devices. Grid systems provide
another example where delegation is widely used; many such
systems adopt delegation frameworks to enhance efficiency
and scalability [1].

The following definitions for delegation-related terminology
are used in this paper:

• Privilege: A right to access specific resources or to
perform certain tasks. A user may have a number of such
privileges.

• Delegation: The act of (temporarily or permanently)
transferring privileges from one entity to another.

• Delegator: The entity that transfers (delegates) all or a
subset of its privileges to a Delegatee.

• Delegatee: The entity that receives all or a subset of
the Delegator’s privileges in order to use them on the
Delegator’s behalf.

• Delegation Assertion: An assertion of the correctness
and authority for a delegation, issued by a Delegation
Authority to a Delegatee.

• Delegation Authority: An entity that controls delegation
and issues delegation assertions.

1http://www.projectliberty.org
2http://www.sun.com/software/products/identity/standards/liberty.xml
3http://www.pingidentity.com
4http://shibboleth.internet2.edu



There are two widely discussed models for delegation. The
first is the direct delegation model, in which a delegator di-
rectly delegates all (or a subset) of its privileges to a delegatee,
which uses the delegated privileges to perform specific tasks
or retrieve information. The second is the indirect delegation
model, in which a delegator indirectly delegates all (or a
subset) of its privileges to a delegatee through one or more
agents. In this latter model there will be more than one
delegation step before the delegatee can use the delegated
privileges. Figures 1 and 2 show these two delegation models.

Fig. 1. Direct delegation model

Fig. 2. Indirect delegation model

It merits mentioning here that delegation does not imply
authorisation. That is, if the service provider accepts the
delegation act (i.e. accepts the delegation assertion), it does
not have to grant the requested privileges to the delegatee. It
is always up to the service provider to decide whether or not
to accept the access requests initiated by the delegatee.

The delegation assertion must explicitly prove the delega-
tor’s consent to the delegation. The delegator may also want to
impose certain conditions on the delegation (e.g. the delegation
validity period, whether or not the delegation assertion is re-
delegatable to another entity, the type of information that
can be retrieved, etc.); these conditions must be stated in the
delegation assertion.

Finally, when required, preserving privacy is a very impor-
tant issue that needs to be addressed, without affecting the
performance or the flexibility of the model.

B. Delegation and Liberty

Although Liberty does not specify a delegation model, sup-
porting delegation would potentially enhance systems adopting

the Liberty specifications. As an example, we consider the
hypothetical Liberty framework shown in figure 3, in which
there are two SPs, an estate agent and a bank, and a single
identity provider (IdP) that has a federation agreement with
both SPs. Suppose that a user who has accounts with both
SPs and with the IdP (and her/his SPs accounts are federated
with her/his IdP account), wants to make an offer to purchase a
house advertised by the estate agent (SP1) website. In order to
approve the proposed purchase, the estate agent must check
the financial status of the user to determine whether or not
she/he can afford to buy the selected house. Since the website
of the bank that holds the user’s account is in a circle of trust
that includes the estate agent website, both SPs (i.e. the estate
agent and the bank) trust the same IdP.

Fig. 3. Liberty model

When using the currently deployed Liberty specifications,
which do not support delegation, the only way for the estate
agent to get hold of the financial status information of the
user, without asking the user to present her/his financial status
herself/himself, is for the estate agent to have a predefined
trust relationship with the bank; however, this is not a realistic
assumption, since each bank may have to deal with a large
number of estate agents. However, banks can set up trust
relationships with a (relatively small) number of IdPs, that
between them have relationships with a large range of estate
agents.

Life would be much easier if a delegation system was
available, in which the IdP plays the role of a delegation
authority. The user then can simply delegate to the estate agent
the ability to get information about her/his financial status from
the bank. If this delegation is approved by the IdP, then the
bank would accept it, since it trusts the IdP for the purpose
of authentication decisions.

The infrastructure to build a delegation framework for
Liberty is already in place; for example, Liberty supports
a number of data transport and security protocols such as
SAML, SOAP and WS-Security. These techniques can be
used to transport sensitive information for delegation purposes
(notably delegation assertions). However, designing a dele-
gation framework for Liberty is not a straightforward task;
many issues need to be addressed, such as representing user
consent, handling pseudonyms (i.e. opaque user identifiers),
and preserving user privacy. These issues are addressed in the



scheme described in section III.

III. A DELEGATION FRAMEWORK FOR LIBERTY

In this section we provide a brief introduction to the security
assertion markup language (SAML). We then describe the
form of the delegation assertion used in the proposed delega-
tion framework. Finally, we propose a delegation framework
for Liberty.

A. The Security Assertion Markup Language (SAML)

The security assertion markup language (SAML) is an
XML-based standard for exchanging authentication and/or
authorisation information between network entities [3].

A SAML assertion, as defined in [3], can carry three types
of security information (or statements):

1) Authentication statement: this indicates whether or not
the user has been authenticated, and, if so, it specifies
the authentication method used (e.g. password) and the
time of the authentication.

2) Attribute statement: this contains information about the
user (e.g. first name, email address, etc.).

3) Authorization decision statement: this contains a rec-
ommended access control decision (i.e. whether or not
the user should be allowed to access a given resource).

SAML assertion requests and responses need to be mapped
to communications protocols for transmission; this process
is known as binding. The most commonly discussed binding
options are to transmit SAML messages over HTTP or SOAP
[11]. SAML messages can be protected using the WS-Security
protocol, which provides message integrity using XML Sig-
nature [6] and data confidentiality using XML Encryption [7]
(the use of XML Encryption can be omitted if the messages are
carried over a secure channel such as is provided by SSL/TLS
or IPSec).

The latest version of SAML is SAML 2.0 [3], which is
incompatible in many respects with its predecessor SAML
1.1 [10]. The Liberty specifications have supported SAML 2.0
since 2005.

B. The Delegation Assertion

Before we present the proposed delegation framework, we
must describe the structure of the delegation assertion we
propose for use in the framework. As stated earlier, our
solution is based on extending the attribute statement in the
SAML assertion to build a delegation assertion. Although we
are using SAML 2.0 to build the delegation assertion, it is also
possible to use SAML 1.* to build a similar assertion, although
this would require some minor changes to the syntax.

The delegation assertion is issued and signed by the IdP,
and should not be issued without explicit consent from the
user (or the privilege owner) for the delegation. This consent
can be given online, by asking the user directly at the time
of delegation, or it can be given in advance or offline (e.g. by
telling the IdP in advance that any delegation request made at
a particular time with particular delegatees should always be
approved). Since the user ID is included within the assertion,

the IdP’s signature on the assertion implicitly implies user
consent.

As shown in figure 5, in Liberty the IdP and the SPs use
different pseudonyms (also known as opaque handles) for the
same user. These pseudonyms are short-term identifiers, used
in order to provide unlinkability and thus preserve user privacy.
For example, when referring to a user named Alice, the IdP
would use one pseudonym (xxx, say) when it negotiates with
service provider SP1, and a different pseudonym (yyy, say)
when it negotiates with another service provider SP2. More-
over, each pair of entities may use two different pseudonyms
when referring to the same user; for example, if an IdP uses
pseudonym yyy for a user when negotiating with SP2, then
SP2 may use a different pseudonym (y123, say) for this user
when negotiating with the IdP.

Fig. 4. Pseudonyms in Liberty

Obviously, the IdP will have established pseudonyms for a
user with an SP if that user has federated its SP identity to that
IdP. The framework requires the user (the delegator) to have
federated the delegation assertion target (i.e. the SP that holds
the resource to which access is to be delegated) to the IdP that
is acting as a Delegation Authority. Hence this IdP will share
pseudonyms for the user with the delegation assertion target.
To provide a degree of anonymity, the ID of the user included
within the assertion is the pseudonym that is understood by
the delegation assertion target. This pseudonym is encrypted
using the delegation assertion target’s public key.

In order for the delegatee to demonstrate its rightful pos-
session of the delegation assertion, SAML 2.0 offers three
methods called confirmation methods (all of which are also
supported by SAML 1.* [12]). We propose here use of the
confirmation method known as holder-of-key. This method
requires the delegatee to include a signature for certain data in
the delegation assertion request that it sends to the delegation
authority (i.e. the IdP). This signature is verified by the IdP
using the delegatee’s public key (use of an XML Signature
is recommended). The delegatee’s signature and public key
information are then included in the delegation assertion,
to prove that this delegatee is the rightful possessor of the
assertion.

Figure 6 shows the structure of the delegation assertion. We
extend the <AttributeStatement> to include new tags
for the purpose of delegation. Given below is a description of



the contents of a delegation assertion.

• <Issuer> : The URI of the IdP that issued the asser-
tion.

• <ds: Signature> : The IdP’s signature on the en-
tire assertion.

• <Subject> : This contains the URI of the delegatee,
the confirmation method to be used (which in our frame-
work must be holder-of-key) and the confirmation data. It
also contains information about the delegatee’s key that
can be used to verify the confirmation data.

• <Conditions> : This contains constraints that apply
to the delegation (e.g. the validity duration of the asser-
tion, and/or the URI of the entity to receive the assertion).
In SAML 2.0, this item can be extended to include any
required conditions.

• <AttributeStatement> : This includes informa-
tion about the delegation act in the form of assertion
attributes. The defined attributes are:

– <Delegator> : The pseudonym of the user (or
the privilege owner) that is agreed upon between the
IdP and the target SP. This attribute is encrypted
using the target SP’s public key.

– <Delegatable> : A boolean value that indicates
whether or not the assertion is delegatable (i.e.
indirect delegation is allowed).

– <Resource> : The URI where the requested re-
source is located.

– <Role> : If the user has multiple access control
roles at the target SP system, she/he can use this
attribute to specify which role is to be delegated to
the delegatee. This attribute is optional.

– <Description> : A description of the purpose
of the delegation. This attribute is optional.

– <OutputData> : This attribute holds two values.
The first is a boolean value that indicates whether
or not the result data should be encrypted using
the delegatee’s public key, and the second value
states the type of the result data using WSDL (Web
Services Description Language) [5].

An equivalent Document Type Definition (or DTD) for the
extended <AttributeStatement> would be:

<!DOCTYPE AttributeStatement [
<!ELEMENT AttributeStatement (Delegator,

Delegatable, Resource,
Description, Role, OutputData)>
<!ELEMENT Delegator (]PCDATA)>
<!ELEMENT Delegatable EMPTY>
<!ATTLIST Delegatable Indirect (True|False)

"False">
<!ELEMENT Resource (]PCDATA)>
<!ELEMENT Description (]PCDATA)>
<!ELEMENT Role (]PCDATA)>
<!ELEMENT OutputData (]PCDATA)>

<!ATTLIST OutputData Encrypted (True|False)

"False"> ]>

Figure 7 contains an example of a delegation assertion.

Fig. 5. Structure of the delegation assertion

C. The Delegation Framework

The proposed delegation framework is based on the Single
Sign-On Profiles described in the Liberty ID-FF 1.2 spec-
ifications and adopted by SAML 2.0 [9], [15]. The three
relevant profiles are the artifact profile, the POST profile and
the enabled-client profile. In this section we describe three
variants of the delegation framework for Liberty modelled on
these three profiles. We emphasise here that all the message
transfers in the three profiles must be carried over a secure
channel (e.g. as provided by SSL/TLS, IPSec, SSH, etc.).

1) Delegation Framework Based on the Artifact Profile:
The message flow is summarised in figure 8, and involves the
following steps:

1) The user requests a service from SP1’s web site via a
user agent (i.e. a web-browser); the user request includes
a delegation request to permit SP1 to obtain certain data
from SP2 on the user’s behalf (where the user has a
pre-existing relationship with SP2).

2) SP1 redirects the user agent to the the IdP’s web site,
along with a delegation assertion request embedded
within an HTML get or post command. This request
should include information about the delegatee (i.e.
SP1), the target SP (i.e. SP2) and the confirmation
data to be included in the token. After receiving the
delegation assertion request, the IdP checks whether it
has a federation relationship with the target SP for this
user. If so, then the IdP checks whether the user has
already provided consent to such a delegation (i.e. offline
consent). If the user has not, the IdP must, by some
means (e.g. an interactive dialogue box), ask the user for
consent to the delegation, and whether or not the user



Fig. 6. Example of delegation assertion

wishes the result to be encrypted. Once user consent has
been obtained, the IdP creates a delegation assertion and
give it a “reference” string (known as a SAML artifact).

3) The IdP directs the user agent to SP1’s web site, along
with the assertion reference embedded within an HTML
get or post command.

4) SP1 sends a SAML assertion request that includes the
reference received in step 3.

5) The IdP sends the delegation assertion to SP1.
6) SP1 forwards the delegation assertion to the target SP

(i.e. SP2). Steps 4, 5 and 6 are conveyed over SOAP.
If the delegation is approved by SP2, and the delegator
(i.e. the user) is authorised to access the requested data
(or perform the requested task), then SP2 proceeds with
the requested action.

7) SP2 sends the resulting data to SP1 (SP2 will first
encrypt the resulting data using SP1’s public key, if
requested to do so in the delegation assertion).

8) SP1 grants the user the requested service (or sends the
requested data to the user).

2) Delegation Framework Based on the POST Profile: The
message flow is summarised in figure 9. In the POST profile
there is no direct communication between the delegatee (i.e.

Fig. 7. Delegation framework based on the artifact profile

SP1) and the delegation authority (i.e. the IdP).
The first two steps of this profile are identical to the first two

steps of the previous profile. However, in step 3, instead of
sending an assertion reference to SP1 (via the user agent),
the IdP sends the delegation assertion itself to SP1, after
embedding it within an HTML form and redirecting the user
agent to SP1’s URI. Steps 4, 5 and 6 are identical to steps 6,
7 and 8 of the previous profile.

Fig. 8. Delegation framework based on the POST profile

3) Delegation Framework Based on the enabled-client Pro-
file: The message flow is summarised in figure 10. This profile
requires the user agent to be SAML-enabled (i.e. to be capable
of understanding and processing SAML assertion requests
and responses); this can be achieved by installing appropriate
software components on the user machine.

The first step is similar to the first step of the previous
profiles. In step 2, SP1 sends a delegation assertion request
(including the confirmation data) to the user agent, and in step
3 the user agent forwards the assertion request to the IdP. In
step 4, the IdP sends the delegation assertion to the user agent,
after approving the request and obtaining user consent. Steps 3
and 4 are conveyed over SOAP. In step 5, the user forwards the
delegation assertion to SP1 by embedding it within an HTML
form. Steps 6, 7 and 8 of this profile are identical to steps 6,
7 and 8 of the profile described in III-C1.

IV. ADDITIONAL SERVICES

In this section we discuss a number of possible issues with
the proposed delegation framework.



Fig. 9. Delegation framework based on the enabled-client profile

A. Indirect Delegation

Although the delegation scheme described in section III-C
supports direct delegation, the framework can also support
indirect delegation.

Figure 11 shows how the delegation assertions are handled
in the indirect delegation case. As shown in the figure, the
delegation assertion is forwarded to the new delegatee, which
then forwards it to the IdP in order to obtain a new delegation
assertion. The IdP first checks whether the delegation is
delegatable or not, and, if so, checks whether the user has
consented to delegation to the new delegatee (in the case of
indirect delegation, user consent must be obtained in advance).
If (and only if) all the checks succeed, the IdP issues the new
delegatee with a revised delegation assertion.

The above process can be applied iteratively if further
transfers of a delegation are required.

Fig. 10. Handling delegation assertions in the indirect delegation model

B. Delegation Assertion Revocation

Another important issue is revocation of a delegation asser-
tion. The user may at any time wish to revoke a delegation
assertion, e.g. for security or operational reasons.

To meet this requirement, a revocation list can be imple-
mented, containing details of all delegation requests subse-
quently withdrawn by the users concerned. Each IdP acting as
a delegation authority will be responsible for publishing and

updating such a list. A user wishing to revoke a delegation re-
quest makes a revocation request (which can be an XML-based
message signed using XML signature) to the appropriate IdP.
The IdP will authenticate the request, and, if the authentication
succeeds, will add the revoked assertion to the revocation list.
If this addition is made to the scheme, then a target SP will be
required to check the status of every assertion before accepting
it.

C. Privacy

The level of privacy provided by the proposed framework
depends on the privacy features provided by the Liberty’s cur-
rently deployed single sign-on framework. The unlinkability
property is preserved by using the same opaque handles (i.e.
pseudonyms) as are used in Liberty in an encrypted form
within a delegation assertion. Moreover, explicit user consent
for the delegation process is mandatory, and the resulting data
can be encrypted if the user so requests.

V. RELATED WORK

In this section we consider previous work relevant to the
proposed delegation framework.

The notion of extending the attribute statements in SAML in
order to facilitate delegation has been discussed previously by
a number of authors (see, for example, [8], [14]). However,
unlike the framework proposed here, previous schemes are
generic (i.e. not designed specifically for Liberty), do not
assume trust relationships between the system parties, and
do not take into consideration the existing communication
profiles for SAML 2.0 and Liberty. There are also a number
of differences in the delegation assertion structure and the
message flow model between the solution described in this
paper and the solutions described in [8], [14].

A number of other approaches to delegation have been
discussed, such as the grid delegation protocol of Ahsant,
Basney and Mulmo [1], which is designed for grid applications
and uses the WS-Trust protocol. The Wohlgemuth-Müller
scheme [16] is built on proxy-based PKI services.

Finally, we mention the Sun One Identity Server, that
implements the Liberty specifications. This product, produced
by Sun5, supports delegation services. However, the details of
its delegation system are proprietary and do not appear to have
been published.

VI. CONCLUSION

In this paper we have proposed a delegation framework for
Liberty based on SAML 2.0 and the Liberty ID-FF 1.2 single
sign-on profile. The framework extends the attribute statements
defined for a SAML assertion to include delegation related
information. The framework is designed to support both di-
rect and indirect delegation. The framework can be readily
integrated with the currently deployed Liberty specifications,
and it preserve the privacy protection measures in the original
framework.

5http://www.sun.com



We have also discussed a number of related issues, including
an approach to support revocation of delegations.

REFERENCES

[1] M. Ahsant, J. Basney, and O. Mulmo. Grid delegation protocol.
Technical Report YCS-2004-380, University of York, Department of
Computer Science, July 2004.

[2] O. L. Bandmann, B. S. Firozabadi, and M. Dam. Constrained delegation.
In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
pages 131–140. IEEE Computer Society, 2002.

[3] S. Cantor, J. Kemp, R. Philpott, and E. Maler (editors). Assertions and
Protocols for the OASIS Security Assertion Markup Language (SAML)
V2.0, March 2005. OASIS Standard Specification, OASIS Open.

[4] S. Cantor (editor). SAML 2.0 single sign-on with constrained
delegation, October 2005. http://shibboleth.internet2.edu/shibboleth-
documents.html.

[5] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) — version 1.1, March 2001.
The World Wide Web Consortium (W3C).

[6] D. Eastlake, J. Reagle, and D. Solo (editors). XML-Signature syntax and
processing, February 2002. The World Wide Web Consortium (W3C).

[7] D. Eastlake and J. Reagle (editors). XML-Encryption syntax and
processing, December 2002. The World Wide Web Consortium (W3C).

[8] H. Gomi, M. Hatakeyama, S. Hosono, and S. Fujita. A delegation
framework for federated identity management. In DIM ’05: Proceedings
of the 2005 workshop on Digital identity management, pages 94–103,
New York, NY, USA, 2005. ACM Press.

[9] J. Hughes, S. Cantor, J. Hodges, F. Hirsch, P. Mishra, R. Philpott, and
E. Maler (editors). Profiles for the OASIS Security Assertion Markup
Language (SAML) V2.0, March 2005. OASIS Standard Specification,
OASIS Open.

[10] E. Maler, P. Mishra, and R. Philpott (editors). Assertions and Protocol
for the OASIS Security Assertion Markup Language (SAML) V1.1,
September 2003. OASIS Standard Specification, OASIS Open.

[11] N. Mitra and Y. Lafon (editors). SOAP — version 1.2, April 2007. The
World Wide Web Consortium (W3C).

[12] R. Monzillo, C. Kaler, A. Nadalin, and P. Hallem-Baker (editors). Web
Services Security: SAML Token Profile 1.1, February 2006. OASIS
Standard Specification, OASIS Open.

[13] J. Tourzan and Y. Koga (editors). Liberty ID-WSF web services
framework overview — version: 1.1. Liberty Alliance Project.

[14] J. Wang, D. D. Vecchio, and M. Humphrey. Extending the security
assertion markup language to support delegation for web services and
grid services. In IEEE International Conference on Web Services (ICWS
2005), volume 1, pages 67–74. IEEE Computer Society, 2005.

[15] T. Wason (editor). Liberty ID-FF architecture overview — version: 1.2.
Liberty Alliance Project.

[16] S. Wohlgemuth and G. Müller. Privacy with delegation of rights
by identity management. In Proceedings of the Emerging Trends
in Information and Communication Security, International Conference
(ETRICS 2006), number 3995 in LNCS, pages 175–190. Springer, 2006.


