AN INFINITE FAMILY OF SYMMETRIC DESIGNS

Christopher J. MITCHELL
Mathematics Department, Westfield College, University of London, Kidderpore Avenue, London NW3 7ST, UK

Received 2 March 1978
Revised 7 November 1978

Abstract

In this paper, using the construction method of [3], we show that if $q>2$ is a prime power such that there exists an affine plane of order $q-1$, then there exists a strongly divisible $2-\left((q-1)\left(q^{h}-1\right), q^{h-1}(q-1), q^{h-1}\right)$ design for every $h \geqslant 2$. We show that these quasi-residual designs are embeddable, and hence establish the existence of an infinite family of symmetric $2-\left(q^{h+1}-q+1, q^{h}, q^{h-1}\right)$ designs. This construction may be regarded as a generalisation of the construction of [1, Chapter 4, Section 1] and [4].

1. Introduction

The study of symmetric 2-designs, or "Symmetrical BIBD's", can be divided into two main sections. Firstly, the proving of theorems showing the non-existence of symmetric designs with given parameters, see, for instance [5], [7]; and, secondly, the construction of designs for certain parameter sets. Some examples of infinite families of symmetric 2-designs are: finite projective planes (a finite projective plane may be regarded as a symmetric design with $\lambda=1$); Hadamard Designs (symmetric 2-($4 \lambda+3,2 \lambda+1, \lambda$) designs) and symmetric designs satisfying the condition $v=4(k-\lambda)$ obtained from the construction method of [8]. A partial list of known results on symmetric 2 -designs may be found in [6].

In this paper we use a well-known family of group divisible 1-designs in conjunction with affine 2-designs of appropriate parameters, to construct a family of strongly divisible 1 -designs, using the method of [3]. These strongly divisible designs are quasi-residual 2 -designs in the case when the affine 2 -designs are affine planes, and, in this case, we show that they are the residual designs of a family of symmetric 2 -designs. Infinitely many of these designs have parameters for which no design was previously known to exist.

2. The construction

For definitions and results used, see [2], [3] and [6]. Suppose $q>2$ is a prime power, and let $h>1$ be any integer. Then put $\mathbf{A}^{\prime}=\mathbf{A}_{h-1}(h, q)$, the design consisting of the points and hyperplanes of h-dimensional affine geometry over
$G F(q)$; (see, for instance, [6]). Choose some point P of \mathbf{A}^{\prime} and, using the notation of [6], let $S=\left(A^{\prime}\right)^{P}$.

Then it is not difficult to show that S is a $1-\left(q^{h}-1, q^{h-1}, q^{h-1}\right)$ design, admitting a strong tactical division $T(S)$ with n point and block classes $\left(n=\left(q^{h}-1\right) /(q-1)\right)$ of $q-1$ points and blocks each. The point classes of $T(S)$ are the lines of A^{\prime} which contain P, (with P removed in each case), and the block classes are just the parallel classes of \boldsymbol{A}^{\prime} with the block containing P omitted.
S has connection and intersection numbers $\lambda_{i j}^{\prime}, \rho_{i j}^{\prime}$ where $\rho^{\prime}=\lambda^{\prime}=\rho_{i i}^{\prime}=\lambda_{i i}^{\prime}=0$ ($1 \leqslant i \leqslant n$), and $\rho_{i j}^{\prime}=\lambda_{i j}^{\prime}=q^{h-2}(1 \leqslant i, j \leqslant n, i \neq j)$. Finally it is clear that no block of S contains all the points of a point class of S. (Note that to construct S with the above properties, we needed only that \mathbf{A}^{\prime} was an affine design with constant line size, and that \boldsymbol{A}^{\prime} was smooth. Hence we could replace $\mathbf{A}_{1}(2, q)$ by an arbitrary affine plane of order q.)

We now require the following from [3].

Result 1. Suppose there exists
(i) A 2-($\left.\mu m^{2}, \mu m,(\mu m-1) /(m-1)\right)$ affine design \mathbf{A}; and
(ii) A 1-(mn, $\left.k^{\prime}, k^{\prime}\right)$ design S admitting a strong tactical division with n point and block classes of m points and blocks each, with connection and intersection numbers $\lambda^{\prime}=\lambda_{i i}^{\prime}, \lambda_{i j}^{\prime}, \rho^{\prime}=\rho_{i i}^{\prime}, \rho_{i j}^{\prime}$; and such that no block of S contains all the points from a point class of the strong tactical division.

Then there exists a $1-\left(\mu m^{2} n, \mu m k^{\prime},\left(\mu m^{2}-1\right) k^{\prime} /(m-1)\right)$ design D admitting a strong tactical division $T(D)$ with n point classes of μm^{2} points each, and $\left(\mu m^{2}-1\right) n /(m-1)$ block classes of m blocks each. The classes admit a labelling such that the connection and intersection numbers are

$$
\lambda=\lambda_{i i}=(\mu m-1) k^{\prime} /(m-1)+\mu m \lambda^{\prime} ; \quad \lambda_{i j}=\left(\mu m^{2}-1\right) \lambda_{i j}^{\prime} /(m-1) ;
$$

$\rho=\rho_{i i}=\mu m \rho^{\prime}$ and $\rho_{i j}$, where

$$
\rho_{i j}=\mu m \rho_{t u}^{\prime}, \quad i \equiv t \neq u \equiv j(\bmod c), 1 \leqslant t, u \leqslant c
$$

and

$$
\rho_{i j}=\left(\rho^{\prime}+k^{\prime} / m\right) \mu m, \quad i \equiv j(\bmod c), i \neq j
$$

Theorem 1. If there exists an affine

$$
2-\left(\mu(q-1)^{2}, \mu(q-1),(\mu(q-1)-1) /(q-2)\right) \quad \operatorname{design} \mathbf{A}
$$

and $q>2$ is a prime power, then for every $h \geqslant 2$ there exists a

$$
\text { 1-(} \left.\mu(q-1)\left(q^{h}-1\right), \mu q^{h-1}(q-1), q^{h-1}\left(\mu(q-1)^{2}-1\right) /(q-2)\right) \text { design } D
$$

admitting a strong tactical divison $T(D)$ with n point classes each of $\mu(q-1)^{2}$ points and c block classes $\left(c=\left(\mu(q-1)^{2}-1\right)\left(q^{h}-1\right) /(q-1)(q-2)\right)$ each of $q-1$ blocks. The classes of $T(D)$ may be labelled so that the connection and intersection numbers
are

$$
\begin{aligned}
\lambda & =\lambda_{i i}=(\mu(q-1)-1) q^{h-1} /(q-2), \quad(1 \leqslant i \leqslant n) \\
\lambda_{i j} & =\left(\mu(q-1)^{2}-1\right) q^{h-2} /(q-2), \quad(1 \leqslant i, j \leqslant n, i \neq j)
\end{aligned}
$$

$\rho=\rho_{i i}=0,(1 \leqslant i \leqslant c) ;$ and $\rho_{i j}$, where

$$
\rho_{i j}=\mu q^{h-2}(q-1), \quad i \neq j(\bmod n),(1 \leqslant i, j \leqslant c)
$$

and

$$
\rho_{i j}=\mu q^{n-1}, \quad i \equiv j(\bmod n),(1 \leqslant i, j \leqslant c, i \neq j)
$$

Proof. Since $q>2$ is a prime power let \boldsymbol{S} be as above. Then \boldsymbol{S} and \mathbf{A} satisfy the conditions of Result 1 and the Theorem follows.

Corollary. If there exists an affine plane of order $q-1$, and $q>2$ is a prime power, then for every $h \geqslant 2$, there exists a

$$
2-\left((q-1)\left(q^{h}-1\right), q^{h-1}(q-1), q^{h-1}\right) \quad \text { design } D
$$

admitting a strong tactical decomposition $T(D)$ with n point classes each of $(q-1)^{2}$ points, and c block classes $\left(c=q\left(q^{h}-1\right) /(q-1)\right)$ each of $q-1$ blocks. The intersection numbers are $\rho=\rho_{i i}=0(1 \leqslant i \leqslant c)$; and $\rho_{i j}$, where

$$
\rho_{i j}=q^{h-2}(q-1), \quad i \neq j(\bmod n), \quad(1 \leqslant i, j \leqslant c)
$$

and

$$
\rho_{i j}=q^{h-1}, \quad i \equiv j(\bmod n), \quad(1 \leqslant i, j \leqslant c, i \neq j)
$$

Proof. D of Theorem 1 is a 2 -design if and only if

$$
\left(\mu(q-1)^{2}-1\right) q^{h-2} /(q-2)=(\mu(q-1)-1) q^{h-1} /(q-2)
$$

i.e. $\mu=1$ or $q=1$; i.e. D is a 2 -design if and only if \mathbf{A} is an affine plane (since $q>2$).

3. The embedding

We first require
Result 2 ([2, Corollary 6.3]). A quasi-residual

$$
2-((k-1)(k-\lambda) / \lambda, k-\lambda, \lambda) \quad \text { design } D
$$

with three intersection numbers: $0, \lambda(k-\lambda) / k$ and k / m is embeddable in a symmetric $2-(v, k, \lambda)$ design if and only if there exists a strongly resolvable $2-(k, \lambda,(\lambda-1) / m)$ design $\overline{\boldsymbol{D}}$.

We may now state
Theorem 2. If there exists an affine plane of order $q-1$, and $q>2$ is a prime power, then for every $h \geqslant 2$, there exists $a 2-\left(q^{h+1}-q+1, q^{h}, q^{h-1}\right)$ design.

Proof. By the Corollary of Theorem 1, for every $h \geqslant 2$ there exists a

$$
2-\left((q-1)\left(q^{h}-1\right), q^{h-1}(q-1), q^{h-1}\right) \quad \text { design } D
$$

with intersection numbers: $0, q^{h-2}(q-1)$ and q^{h-1}. Hence, by Result 2, D is embeddable in a symmetric $2-\left(q^{h+1}-\dot{q}+1, q^{h}, q^{h-1}\right)$ design if and only if there exists a strongly resolvable

$$
2-\left(q^{h}, q^{h-1},\left(q^{h-1}-1\right) /(q-1)\right) \quad \text { design } \overline{\boldsymbol{D}} .
$$

But such a design always exists, namely $\bar{D}=A_{h-1}(h, q)$, and the theorem follows.

Remark. Hence, since there exists an affine plane of order $q-1$ whenever $q-1$ is a prime power, we have shown that whenever q and $q-1$ are prime powers, there exists an infinite family of symmetric 2 -designs with the above parameters, since h may be chosen arbitrarily.

Acknowledgements

The results of this paper form part of my doctoral thesis at the University of London. I am indebted to my supervisor Professor F.C. Piper and to Dr. H.J. Beker for their invaluable guidance and encouragement.

References

[1] H.J. Beker, On constructions and decompositions of designs. Ph.D. Thesis, University of London (1976).
[2] H.J. Beker and W. Haemers, 2-designs having an intersection number $k-n$, to be submitted.
[3] H.J. Beker and C.J. Mitchell, A construction method for point divisible designs, J. Statist. Planning Inf., to appear.
[4] H.J. Beker and F.C. Piper, Some designs which admit strong tactical decompositions J. Combinatorial Theory 22 (1977) 38-42.
[5] S. Chowla and H.J. Ryser, Combinatorial problems, Canad. J. Math. 2 (1950) 93-99.
[6] P. Dembowski, Finite Geometries (Springer-Verlag, New York/Berlin, 1968).
[7] S.S. Shrikhande, The impossibility of certain symmetrical balanced incomplete block designs, Ann. Math. Statist. 21 (1950) 106-111.
[8] G.P. Sillitto, An extension property of a class of balanced incomplete block designs, Biometrika 44 (1957) 278-279.

