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Abstract, In this papes we vse resulis on anthentication schemes to derive altermative prools for resulis on perfect
local randomness in pseude-random sequences, on block cipher systems which allord perfect secrecy against
known plaintext attacks and on sceret sharing schemes,

1. Introduction

Shannon developed a theory of secrecy in his classic paper of 1949 {10]. He showed thal if
a cipher system provides perfect secrocy then the number ol keys is greater than the number
of messages, r.c. cssentially only the one-time-pad provides perfect scoreey. In the 19807s,
Simmons | 11], [12] developed a complementary theory of authentication, relating the size
of the key space to the probability of deception. This followed the carly work of Gilbert et
al. |3]. Massey [6] put Shannon’s and Simmons’ work in a combinatorial sctting and drew
parallels between the two theories and extended them 1o consider seeurity against a known
plaintext attack.

The many papers that have followed study sccrecy and/or authentication either from a
combinatorial point of view or using information theoretic concepts. In particular the work
of Walker [16] provides inlormation theorelic bounds relating the entropy of the key space io
the probability of deceplion for carlesian authentication schemes. (Rosenbaum [8] extends
Walker’s results to non-cartesian schemes but we do not consider such schemes here.)

[t is the purposc of this paper to show that these resulls on authentication schemes may be
applied more generally 10 other crypiographic concepts such as perfeet local randomness
1n pseudo-random sequences |51, perfeet seerecy against known plaintext allacks on block
ciphers |6], and secret sharing schemes [2].

In sections 2 and 3 we deseribe authentication scheines and summarise the resulis of [16].
In sections 4, 5 and 6 we show how cach of the concepts, perfect local randomizer, block
cipher system providing perfect secrecy against known plamniext attacks and secret sharing
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scheme may be viewed as a authenlication scheme and how the results of {16] may be used
Lo derive proots of results in these topics.

2.  Authentication Schemes

We consider a non-gpliting cartesian authentication scheme, defined in [16] as a triple
(8, M, E of finite sets S, M and E satisfying the following conditions:

1. E s acollection of pairwise distinet functions (rom S into M;
2. each element of M is the image of precisely onc element in 8,

The clements of § are known as source states, those of M as encoded messages and those
of E as encoding rules.

In the model of an authentication scheme an originator conveys source slaies to the recip-
ient by transmitting across the channel the encoded messages resulting from the application
of an agreed encoding rule. The sequence of source states which the ongipator is required
to encode is modelled as a stochastic process. For each natural number 7 and each se-

quence (5, ..., 5,0 € 8" p(s, |51, ..., 5, ) denotes the conditional probability that s,
15 the ath source state given that (s, .. ., 1) 18 the preceding sequence produced by the
process. We restrict our process to one that produces distinet messages and assumc that
plsy | 51,0, $.—() = 0 if and only il s, .., s, are distinct. We assume that the agreed

encoding rule is chosen according to a probability distribution which is independent of this
pracess and denote the probahility that e & F s the agreed encoding mile by pe(e). We
assume that pg(e) £ Qtoralle € E.

Thus the probability that the sequence s = (3, ..., 3,} € 8" is produced by the process
18

P8y = pisa Vs, o 8o plsn | spsi)

and the conditional probability that m,, is the nth encoded message giventhal (mry, .., m,,.. 1)
1s the sequonce of 7 — | preceding encoded messages is

o | my, om0 ) = p(S0m) | S0my), o S, D pelEm) L Elmy, o mgo)

where for cach m € M, S{m) denotes the unigue element of S which it encodes and
for any scquence m = (my, ..., my) e M, E{m) denotes Lhe subscl of encoding rules
whose image space containg {m,, ..., my}. We also use S(m) to denole the sequence
(SGryy, .. S0myY) for any sequence m = (s, ., m;) € M' and M{(s | m) o denote
the sel {e(s) | e € E(m)} forany s & 8§ Thus M) ={m e M | S(m) = s}.

3. Channel Rounds

The authentication channel is modelled in terms of a third party, the spoofer, who ob-
serves the sequence m = {m,,...,m,) & M" of encoded messages transmitied by
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the originator, and knows the triple (S, M, E) and the associated probability distribu-
tions, As the authentication scheme is cartesian the spoofer also knows the sequence
S(m) = (S(m,}, ..., 8(0m,)) of source messages. The spoofer’s aim i3 to choose m € M
distinet from my, .. ., m, such that m is the correct encoding of some s ¢ 8 (distinct from
S(m1), ..., S(m,)) under the encoding rule agreed by the sender and receiver, For each
m C M" with pp(E(m}) % Oand cach s C 8,

vimim,s) = Z prie| E(m)) = pp{E(m} | £(m))

ecFim.n)

is the probabtlity that m € M () is the encoded message for s, given that m is a sequence
of correctly encoded messages.

The stralegy the spoofer should use is to choose m and s which maximises @ (m | m, s)
subject to the condition that p(s | S(m)) # 0. We use P(m, s) to denote the maximum
probability of success if the spoofer chooses an encoded message in M(s) and we use
P{m) to denote the probability of success il he adopts an optimal strategy. Further we
denote the spoofer’s expected probability of success after having observed n messages by
Py =3 0 p(m}P(m).

Now

HM) [m)=— Y wim|m. s)ogy(m|m,s)
meM(x)

1s the uncertainty faced by the spoofcr as (o which encoded message is the correct encoding
for the source state s, given that he has observed the sequence of cncoded messages m.
Walker [16] shows that —/og, P(m) < H(M | m, S) where H(M | m, 5) = > _.p(s |
S{m}) H (M (s) | m) is the expected value of this uncertainty,

4. Perfect Local Randomizers

Maurer and Massey [5] define a (&, n)-sequence generator (& as a function & : {0, 1}F —
{0, 1)*. Yor any given key z € {0, 1%, G(z) is the output sequence and it could be uscd
as the keystream in a stream cipher A desieahle property of a4 keydream genceralar is
that knowledge of some of the bits should not provide information aboul other bits of the
keystream. Maurcr and Massey also describe an application of a (k, r)-sequence generator
to key scheduling where this is also a desirable property

They define a (k, n, ) perfect local randomizer (PLR} to be a (k, #)-sequence generator
G such that, tor any uniformly diswibuled z € {0, 11, every subset of ¢ bits of the output
& = £i(7) ic a wel of independent coin-lossing random vartables. That s, for any e given
bit positions, the 2* output scquences of G, when restricted to those bit positions, produce
cach clement of {{, 1}¢ equally often. Clearly knowledge ol less than ¢ bits of an output
keystream of 2 PLR can give no mformation about any other bit,

Maurcer and Massey [5] show thal no (k, n, ¢) PLR exists for e = &, a (k, n, ¢) PLR
with & = k 15 an MDS (Maximum Distance Scparable) code, and give constructons and
examples for (b, », #) PT. R« for ¢ < k. They also observe that althowgh a (&, 2, ) PLR 1g
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secure against an opponent who obtains e bits or lewer of the output, no (k, r)-sequence
generator is secure against an opponent who may, for some ¢ (possibly e = 1), obtain e bits
of (suitable) information about the output. The reason for this is that o keystream generator
may be thought of as an autheniication scheme which authenticates the keysircam bits of
the stream cipher. From this viewpoint the shared key assures the receiver of the integrity of
the keystream {which is added to some reccived ciphertext in order to recover the plaintest
enciphered by a stream cipher). The concept of perfect local randomizer (viewed as an
authentication scheme) therefore concerns the provision of security against an opponent
irying 1o predict a subsequent cneoded message (keystream bit) aller obscrving a scquence
of encoded messages (i.c. with knowledge of some ouiput bits of the generaior).

We may view 1 (k, n)-sequence generator G as an aulheniication scheme as follows. The
soutce slates are the bit positions of the output sequence S — {1, ..., n}. The encoding
rules are the elements of the domain {0, 1)* of &. Thus £ = {0, I}¥. The cncoded
messages belong to the set M = § x {0, 1}. fz ¢ £ and i € § then the encoded message
corresponding 1o source state ¢ under encoding rule ¢ is (4, 5;) where & 15 the Jth bit of the
oulput sequence s = G ().

Now the authentication scheme provides sccurily against an opponent who observes
encoded messages (4, 37) correspouding to source states { produced by a stochastic process.
An opponcni who observes a sequence (£, 8, ), ..., (i,. 8, ) cannot predict the cheek bil s;
ol the encoded message (1, 5,) corresponding to another source state i That 1s, an opponent
who has knowledge of 1 keystrean bits 3, . .., 35, caneot predict another keysoream bit 5;.

In this inferpretation, using the notation of section 3, M (3) = {(s, 0), (¢, D} and H (M (s} |
m) < 1. Thus by Walker [16, Lemma 4] P(m,s) = 1/2 with equality «f and only if
Wim | m, 5y is uniform on M(s) lor all 5 & S(m). That FP(m) = POm, 55 = 1/2 for
all 5 & S(m) is cxactly the condition that an opponcnl who observes m should have no
information about any other bil and any other bit should be 0 or | equally likely.

Thus a (k, n, ¢) PLR, viewcd as an avilicutication scheine is ones for which £1(n) — 1/2
forn < ¢ — 1 and Walker’s bound [16, Theorem 2| irnplies that the information conveyod
about the encoding rule by an observed sequence ol ¢ cncoded messages /(£ | M°) =
H(EY—H(E | M*) = e. Since k = log| E| = H(E) = {(E | M it[ullows immediately
that in a ¢k, 7, &) PLR we have & = e. Morcover, equality holds if and only if pg is the
uniform distaibation, H(E | M*) = 0 and the authentication scherne 15 (e - 1)-perfect | 16].
Such an authentication scheme is associated with an orthogonal array [71, or in other words
an MDS code.

5. Secrecy Against Known Plaintext

We consider block ciphers in which a message is represented ag a cequence of plaintext
blocks and s encrypted by transforming cach block by one from aset of cncryption funciions.
Such an encryplion function 1¢ a bijection from the sct of plaintext blocks 1o the set of
ciphertext blocks, ol the same size, and is determined hy a key agreed upon by the sender
and receiver. A message is encrypied by transforming each plainiext block according to
this bijection. The resulting sequence of ciphertext blocks is transmitted.

Thus a block cipher system v a triple (P, £, ) where P is a get ol plainiext hlocks,
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C is a set of ciphertext blocks and 7' is a set of bijective mappings from P onto C. We
assume that a sender and receiver agree in advance upon a transformation chosen according
to a probability distribotion gy on 7" such that pr (1) = Oforall ¢ ¢ T. A message is a
sequence xy, ..., x,, of arbitrary length »n, of plaintext blocks and if ¥ € T is the agreed
transformaticn then the message is encoded by the sender as the sequence of ciphertext
blocks ¢y — #(x3, ., ¢, — t(x,).

We are interested in the security of the cipher systemn against a known plaintext attack. That
15, we assume thal an cavesdropper has inlercepted £ — 1 distingt plaintext/ciphertext pairs
(x,e) — {x;, &2}, ..., (xr_1, €g 1), and afurther distinet ciphertext block ¢y corresponding
to some unknown plaintext block xy,. all encrypted under some transformation ¢ € 7T
We assume that the probability distribution on sequences of plaintext blocks is such that

the probability, p(x | %), that plaintext block x follows the sequence x — (xy, . .., %)
s non-zero Tor all x & P\lxy, ..., x5} That is, the eavesdropper cannot rule out any
plainiext block as that corresponding 1o ¢, other than the plainlext blocks xp, ..., xy

whose corresponding ciphertext blocks hie already knows. The cipher system has L-Told
perfect secrecy against a known plaincext attack il p(x, = x | (x, €), ¢p) = plx, = £ | x)
forall x € P\{x;, ... x, .} A cipher system which has i-fold perfect secrecy against a
known plaintext attack Tor all 7 = L is said to have M(L)-sccrcoy [4].

Our aim is to apply the results off Watker [16], so we recast this known plaintext attack
on a block ¢ipher as an authentication scheine. Given a block cipher system (£, C, T) we
consider the authentication scheme {5, M, E) where § = O, M — P < Cand £ — {e, |
t € T}is defined ag follows. If + € T then e, : § — M s defined by e,(c) = e, o)
for all ¢ € §. The probability distribution py, on E is delermined by py(e;) = pr{(t) lor all
t ¢ T We lcave the probability distribution on sequences ol source states (from § = €}
unspecified,

For any scquence ol plaintext/ciphertext pairs (x, €} = ((x1. 1), ..., (X, ¢o 1), we wrile
E(x,e)={fe, |t{x;) —c;, ¢ —1,.. . n}

LemMa ) Let (5, M, E) be an authertication scheme obluined from a block cipher system
(P, C, Ty with M{IL}-secrecy. Let (xy, ), .. (xp_(,rp 1) be distinct plaintext/cipher et
pairs enciphered under some { € T and ¢ a further distinct ciphertext. Then for { =
0, ., L~ 1there is a constant A; such that for afl x € P\{xy, .., %}, p(E{(x;.¢), ...,
(v, (o 1)) — AL

FProof By M(L)-sccreey, forallx e P\{x;,. .. x} El(c, o), oo, (o), (e, cipn)) #
¢ and

P(-Yx"ﬁ-l = X ‘ (.\'| s Cvi)v ] (’Y(‘ Ci)! C;‘-H\)
_____ plx | XIpCE(Ce. ¢, o, (g, ), (6, cia )

Do PO pCE(G ) o, (g, 60, (X, 61 )))

P =xx, .., Xi)-
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Hence

PCE((n, e), (e (e D) = 3 ple | 0pCErn, a), L 06, €, (6, 6n))

is a constant independent of x. ]

COROLLARY 2 Let (S, M, E) be the authentication scheme determined by a block cipher
system (P, C, TYywithM(L)-secrecy ond k plaintext blocks P. Let (x1,¢(). ..., (Xp—1,€L--1)
be distinct plaintext/ciphertext pairs and ¢ a further distinct ciphertext enciphered under
somet € T. Then

(i) foreach i, 0 <i < L —1, ¥((x,0) | (x;, )., (e, ) = Vk — i) for all
ceC\ey,...,qlandall {x,c) € M{c)withx € P\{xy,...,x}

(ii) foreachi O <i <L —1, P{i)=1/k—1).
(iii) H(E) = Y5 Hogalk — i),

Proof By the lemma, ¥ ((x, ¢} | (%1, €1), .., (5, ), €) 1s the same for each x. As there
arc k — t choices for x, (1) foltows. Now (i1) and (iii) follow immediately by Walker [16].
|

This cstablishes the bound |F| = ]—[f_ol (k — 1) on the number of transformations of a
block cipher which offers perfect [.-fold secrcey against a known plainiext altack. This is
the same bound as that established in Godlewski and Mitcheli [4] for secrecy codes offering
the stronger sccurity of ordered perfect L-fold secrecy.

6. Secret Sharing Schemes

Blakley [ 1] and Shamir [9] introduced the concept ol threshoid scheme to share a secret key
among several users for the application of robust key management. Stmmmons [13], [14],
[15] considered a more general application of ghared control of information and/or actions
and provided a model based on geometry lor the study of scoret sharing schemes.

A secret sharing scheme is a way of distributing partial information about a key to a finite
set of participants so that only certain specified subsets of participants can determine the
key. The partial information about a key that s assigned (0 a participant 18 called a share.
When a subsct of participants together use their picees of partial information to determine
a key we say they pool their shares.

The model of a secret sharing scheme that we use here is that described by Brickell and
Stinson |2]. Let T be a set of s elements called shares and let P be a scl of w participants.
An assignment is a mapping & : P — T. Let D be a collection of assignments and let
Py be a probability distribution on £, For any £ € 7 and mapping f: £ — ¥ define
DQ, Hy=1d e DA = F1Q) forall 0 € ). This sct identifics the assignments

which assign a given collection of shares to a given subset of participants. Lot X be a
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partition of [ into ¢ classes called keys and let I" be a collection of subscts of P. Then
(P, T, D, X)is a secret shaning scheme for T if (or all d € D we have D(2, d) C k for
some k € X when Q < I"and D(82, d) Nk # & for al leust two clemenis & € X when
2 ¢ I'. Thus if d € k has been used to distribute shares to the participants then a subset
of participants can pool their shares to determine the key & if and only il €2 € I'. The set I
is called a monclone access structure and identifies the authoriscd subscts of participants
who can determine the key by pooling their shares.

A sceret sharing scheme for w participants such that any subset of at least ¢ participants
can pool their shares Lo determine a key and no subsct of fewer than ¢ participants can so
pool their sharcs 1s called a (¢, w)-threshold scheme. In this case the access structure I is
the collection of all subscts of P of cardinality at least 7.

The probability disiribution gy on D determines a probability distributon py on X by
px(k) =73 ., pold tork € X. Let R < Pand f : P — T be such that D(R, f) # ¥.
Then f determines a partial assignment of shares to the participants in R which agrees with
at least one assignment in D, Put pk | R, f) — ngknD(R‘f) pp(d). The conditional
probability that the key is & given that the participants in R have been assigned the corre-

sponding shares in F(R)is ¥ (k | B, f) = E)(M(‘:R)n" A sceret sharing scheme is perfect
PR
it px(k) =k | R, f) whenever R ¢ T'. Of course, if £ € F'then (k| R, f) cquals |

if DR, £) € k and cquals O otherwise. Note that if €2 ¢ I then forall € Dand k € X
we have D(§2, d) Mk # B

A secret sharing scheme is regular if pp is the umform probability distribution and
[D{R, ) Nk} ts independent of k for R ¢ I". It is casily checked that a regular sccret
sharing scheme is perfect. The sceret sharing schemes considered by Brickell and Stin-
son |2] are rogular. We shall see that a perfect (z, w)-threshold scheme for which py is the
uniform distribution and which meets an authentication bound, in a sense described later,
15 necessarily regular.

Another concept ol interest in the relationship between secret sharing schemes and authen-
tication schemes is that of an ideal secret sharing scheme. Suppose R ¢ I'bul RU{OD} € [
If the secret sharing scheme is perfect then for all & € £ we have D(R. d) Nk # ¥ for
all k ¢ X and D(R U{Q)}).d) C k for some k ¢ X. 11 lollows that for a perfect secret
sharing scheme o, (@) % da(Q) for dy, dy € D(R. d) belonging (o distinct classes. Thus
[T = |X]. A perfect sceret sharing scheme 1s called ideal if |7 = | X]|.

In an ideal secrct sharing scheme, if R e Tand d’ & DR, d) for some d € D then d and
d’ belong to the same class and d'( Q) = d(Q) forall @ ¢ P Thus we may ideniify ¢ and
d'sie. D{R,d) = {d} consists of a single clement.

Let (P, 7, 1, X) be a secrel sharing scheme, We define |X| authentication schemes
(Se. My Eyd k€ X, asfollows, Tork e X,put S, = P My =P xTand £y ={ey | d €
k) where, forcachd € D,ey . P — PPxTisdefined by e, (Q) = (0. d{QN forall Q e P.
Put ppeq) = ppld)/pxk) foralld € k. Alsoput (S, M, EY = (P, P x T, Upex Ep)
with prley) = pr(d). We leave ihe probability distribution on sequences of source states
unspecified.

FEMMA 3 Lei (P, D, T, X} bea perfect (¢, w)-threshold scheme and let the authentication
schemes {85, M, EY and (S¢, My, E}), k € X, be determined as above. Let R © P with
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|R| <t —2 and let f be a partial assignment of shares to the participants of R. Then, for
allk € X and all Q € P\R,

(i) M{Q | R, [)=M{(QI|R, ) and
(i) wim | R [)=vnm| R, [3=1/|M(Q|R, filforallme M(Q| R, )
Proof LetQ e P\R. Toranym € M(Q | R, f),lct f,, bethe partial assignment of shares

to the participants of & U {Q} which agrees with { on R and satisfies m = (Q, f.(O)).
Then, forall k& = X,

plk | RULQY 1a)
Yooy kT RULQY. £.0

pu

pxlk) =

forall m € M(Q | R, [). Now (1) 15 immtediate and {11) follows since

plk | RULDY. fo)
Z:m’eM(Q{R\j) plk | RU{QL fuw)

is independent of m € M(Q | R. £y, u

Vilm | R, f) =

The argument thal shows that {77] > | X| m a perlect secret sharing scheme actually
shows that [M (@ | R, £ > | X| Tor any partial assignment of shares to a subscl R of ¢ — 1§
participants of a perfect (f, w)-threshold scheme. Since any partial assignment lo fewer
than ¢ — 1 participants may be extended to a partial assignment {o ¢ - 1 participants, we
have the foliowing corollary.

CORULLARY &4 Let (P, D, T, X), K and | be as in Lemma 3. Then, for all k € X and all
Qe PR ¢(m | K.Y= 1/|X|forallm e MO | R, ).

The following corollarics follow from Walker [16] and the fact that E == Uiy By is a
disjoint union.

COROLLARY 5 For each authenticarion scheme (Sp, My, Ex) the probability of deception
having observed (R, 1) satisfies P(K, )= 1/]X]|.

COROLLARY 6 For each authenticarion scheme Sy, My, Eu), H(E) = (¢ — Dloga|X).

COROLLARY 7 {n a perfect (¢, w)-threshold scheme (P, D, T, X), | D] = |E] = | X]".

I eqquality halds in Corollary 6 [or some & ¢ X, then equality holds in Corollary 4 so
that (P, T, 3, X is ideal. Moreover, by Rosenbaurn |8, Lemma 3.4, py, is the uniform
distribution. Further, py is uniform if and only if equality holds in Corollary 6 forall k € X.
In this case (P, DT, X3 is regular and corresponds to a (¢ — D-perfect authentication
scheme, that is, 10 an orthogonal array.

Finally, we remark that, in this case, (PUX), (P xTHYUX, E)Ywith E' = {¢, | d € D}
where, forall d ¢ D, prlel) = ppldyand &, © P U{X} = (P x T) U X salisiles
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e, () = (Q,4(Q) forall Q € P and X)) = kil d € k, also corresponds (o an
orthogonal array.

7. Conclusions

We have shown how the information theoretic bounds given by Walker | 16] for cartesian
authentication schemes may be applicd to other cryplographic concepts.

The close connection between the perfect local randomizers of Maurer and Massey [5]
and MDS codes is seen to arise exactly because it is a problem in authentication. In a
stream cipher an eavesdropper should not be able Lo predict any bit of the keystream even
with knowledge of part of the keystream, just as, in an authentication scheme the spoofer
should not be able 1o predict which encoded messages are authentic even with knowledge
of some authentic encoded messages. The probabilily of success of the cavesdropper or
the spootfer 1s a minimum (so that they arc reduced 1o guessing the keystican ur authentic
encoded messages) when the bounds of Walker [16] are met,

In a known plaintext atlack against a block cipher, corresponding plaintext/ciphertext
pairs may be vicwed as authentic encoded messages. Applying bounds of Walker [16] on
authentication schemes we have established a bound on the number of keys required of a
block cipher system providing M (L)-secrecy. Our result shows that M (L) SECrecy requires
the same number of keys as the stronger condition of uuordeied perfect L-fold secrecy
considered by Godlewski and Mitchell |4).

We have also shown that there 1s a relationship between sceret sharing schemes and
authentication schemes. We have applicd the results of Walker [16] (o (he authentication
schemes arising from a perfect threshold scheme o establish the bounds on the number
of assignments in a perfect (¢, w)-threshold scheme. Further, when the bound is met, we
obtatn the correspondence between weal tueshold schemes and orthogonal arrays.
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