combiner, are used to establish this condition and to compen-
sate for variations in the frequency response of the laser and
receiver. This equalisation provides a significant reduction in
IMD, given the resonant response of REC2. Since the receiver
sensitivity is highest for channels near the centre of the octave,
the OMD for these channels can be reduced. Typically, for the
centre channels, OMD =~ 0-056, and for the outer channels
OMD = 0-12. With 4dBm optical power into the fibre at the
head-end and a total system loss of 21dB, each of the eight
channels could be received with P, < 10~°. The IMD penalty,
measured by comparing P, for the test channel, with and
without the other seven channels, was negligible. Also, injec-
tion of light from one laser into the other does not introduce
any measurable penalty. Optical isolation is not required.

In summary, we have demonstrated one example of a bi-
directional SCM-based distribution system. Penalties associ-
ated with intermodulation distortion, closely-spaced channels,
optical reflections and bidirectional transmission are all negli-
gible. A variety of related architectures are feasible, making
SCM an attractive technique for multiuser lightwave net-
works.
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CONSTRUCTING NEW PERFECT BINARY
ARRAYS

Indexing terms: Information theory, Binary sequences, Digital
systems

Only a small number of different sizes are known for which
there exist two-dimensional perfect binary arrays. Construc-
tion methods are given which generate new two-dimensional
perfect binary arrays, four of which are larger than any pre-
viously reported.

Introduction: A perfect binary array is an n-dimensional array,
all of whose entries are +1 or —1, with the property that all
its out-of-phase periodic autocorrelation coefficients are zero.
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Such arrays were initially studied by Calabro and Wolf in
1968 and subsequent results on the existence of these arrays
have been achieved in 1979 by Chan et al.2 and in 1987 by
Bomer and Antweiler.> We are particularly concerned here
with two-dimensional perfect binary arrays, potential applica-
tions for which include 2D synchronisation, image coding and
data compression.*
More formally, suppose

A=(@), 0<i<s—1, 0<j<t—1,

is an s x t array of ‘+1’s and ‘— I’s. As throughout, this refers
to an array with s rows and ¢ columns. Define the periodic
autocorrelation function at displacement (u, v), or PACF(u, v)
by

s—1 -1

PACFu,v)= Y Y a;. Gysugen
i=0 j=0

where 0<u<s—1, 0<v<t—1 and i+u, j+v are
reduced modulo s, t as necessary.

Then A is said to be a perfect binary array, or a PBA(s, ¢), if
PACF(yu, v) = 0 for all (u, v) except (u, v) = (0, 0).

If s=t=1 then A is said to be trivial. The following
example of a PBA(6, 6) is due to Bdmer and Antweiler:?

-+ + + + -
+ - + + + -
+ + - + + -
+ + + - 4+ -
+ 4+ + + - -

- - - - -
Calabro and Wolf! proved the following:
Theorem 1: If A is a nontrivial PBA(s, ) then

(i) s . t = 4k? for some integer k.

(ii) A must contain either 2k? + k or 2k? — k entries of +1.
It is also clear that, if 4 is a PBA(s, ) then

(1) —A (i.e. the array derived from A4 by changing the signs of
all the elements in A) is also a PBA(s, t).

(ii) An array derived from A by any combination of cyclic
rotation of rows, cyclic rotation of columns, reversal of order
of rows and reversal of order of columns, is also a PBA(s, ¢).

(iii) A (the transpose of A) is a PBA(t, ).

(iv) If A has an even number of rows (or columns) then chang-
ing the sign of all the elements in the odd rows (or columns) of
A gives a PBA(s, 1).

There are only 10 pairs of values (s, t) for which a nontrivial
PBA(s, t) is known to exist, as follows: (1, 4), (2, 2), (4, 4),! (3,
12), (6, 6), (12, 12), (2, 8),° (6, 24),* (4, 16) and (8, 8).t The
(unique) PBA(1,4) is the only known nontrivial one-
dimensional PBA. In fact it is conjectured that no others
exist.®

We now exhibit some construction methods which enable
the construction of PBAs of four new sizes, namely (8, 32), (16,
16), (12, 48) and (24, 24). These methods of construction also
hold out the hope of constructing further new arrays.

Before proceeding we need a further definition. Suppose
A =(a;) is an 5 x t array of ‘+1’s and ‘—1’s, with the pro-
perty that ¢ is even, t = 2T, say. Then define the partial

* LUKE, H. D., and BOMER, L.: ‘Perfect binary arrays’, in preparation
+ BOMER, L., and ANTWEILER, M.: ‘Two-dimensional perfect binary
arrays with 64 elements’, in preparation
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periodic autocorrelation function at displacement (u, v), or
PPACF(u, v), by

s—1 T-1

PPACF(u, v)= Y ¥ aia) - Qu+uyaj+v)

i=0 j=0

where 0<u<s—1, 0<v<t—1, and i+u, 2j+v are
reduced modulo s, ¢t as necessary.

Construction method 1: Suppose A =(a;) is a PBA(s, 21).
Moreover, suppose B = (b;;) is the 25 x ¢t array defined by

boira; = Gigjra

where0 <i<s50<j<tand0<d< 1.
Then B is a PBA(2s, 1) if and only if 4 has partial periodic
autocorrelation function satisfying

PPACF(u, 20 + 1) — PPACFu + 1, 20 — 1) = 0

for every u, v satisfying 0 < u <5, 0 <v <t, and where u + 1
is reduced modulo s and 2v + 1 and 2v — 1 are reduced
modulo 2t as necessary.

As an example consider the following PBA(2, 8):

+ o+ o+ o+ o+ o+ = =
+ - + = + - - 4+

This array satisfies PPACF(0, v) = PPACF(1, v) = 0 for all
odd v, where 0 <v < 8, and hence can be used to yield a
PBA(4, 4), namely

+ + + -
+ + o+ -
+ o+ o+ -

- - - +

Finally, note that a very similar construction is used in Refer-
ence 3.

Construction method 2: Suppose
B=(,), 0<i<s—1 0<j<t-1,

is an s x t array of ‘+ 1’s and ‘— 1's. Define the periodic quasi-
autocorrelation function at displacement (u, v), or QACF(y, v)
by

s—u—-11—1
QACF(, v)= Y ¥ by.burugso
i=0 j=0
s—1 t—1
- Z Z biJ’ . b(l’+u)(.i+v)
i=s-u j=0

where 0<u<s—1, O0<v<t—1, and i+wu, j+v are
reduced modulo s, t as necessary.
Then B is said to be a quasiperfect binary array, or a
QPBAC(s, ¢), if QACF(u, v) = 0 for all (4, v) except (4, v) = (0, 0).
The following are examples of QPBAs:

+ o+ + o+ + + o+ = =+ = 4+

I e T S
+ - 4+ -+ + - — 4+

+ 4+ - - - - - - -+

- - - + + +

+ + + - 4+ +

Now, suppose A4 is a PBA(s, t) and B is a QPBA(s, t). Let D be
the 2s x t array obtained by joining two copies of 4 together
one on top of the other, and let E be the 2s x t array obtained
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by similarly joining a copy of B to a copy of —B. Let F be the
2s x 2t array obtained by interleaving alternate columns of D
and E. Then F is always a PBA(2s, 21). It is straightforward to
check that any F constructed this way has the property that
PPACF(u, 2v+ 1)=0forall y, v (0<u<25,0<v<t)and
so construction method 1 can be applied to F. Hence:

Theorem 2: If there exists a PBA(s, t) and a QPBA(s, ) then
there exists a PBA(2s, 2t) and a PBA(4s, t).

Construction method 3: Suppose
C=(Cij), 0<i<s-—1 0<j<t-—1,

is an s x t array of ‘+1's and ‘—1’s. Define the periodic
doubly-quasi-autocorrelation function at displacement (u, v),
or DQACF(y, v) by

—v=-1

Z bij . b(i+u)(j+u)

i=0
1 ¢

)}

s
i=

—u—11¢
"DQACF(u, v) = Z
<o
1

—y—
X bij . b(i+u)(j+v)

-
- O

s
Z bA'j . b(i+u)(j+v)

v

—u
—u-1

(-
-~
! -
=

w .
1

+ blj N b(i+u)u+v)

i=s—u j=t—v

“

where 0<u<s—1, 0<v<t—1, and i+wu, j+v are
reduced modulo s, ¢ as necessary.

Then C is said to be a doubly-quasi-perfect binary array, or
a DQPBAC(s, 1), if DQACF(u, v) =0 for all (u, v) except (u,
v) = (0, 0).

The following are examples of DQPBAs:

+ + o+ + 4+t -+ - =+ 4
+ o+ o+ + + + o+ -+ -+ o+
+ - -+ -+ - = - 4+
-+ + - - = -+ -+

+ + - - - %

+ 4+ + + + o+

Now suppose B is a QPBA(s, t) and C is a DQPBA(s, ). Let D
be the s x 2t array obtained by joining two copies of B
together horizontally, and let E be the s x 2t array obtained
by similarly joining a copy of C to a copy of —C. Finally let F
be the 2s x 2t array obtained by interleaving alternate rows of
D and E. Then F is always a QPBA(2s, 21).

Theorem 3: If there exists a QPBA(s, t) and a DQPBA(s, ¢)
then there exists a QPBA(2s, 2t).

New 2-dimensional perfect binary arrays: Since we know that a
DQPBA(4, 4) and a QPBA(4, 4) exist, Theorem 3 gives a
QPBAC(S8, 8). Additionally, a QPBA(4, 4) and a PBA(4, 4) can
be used to give a PBA(8, 8) (by Theorem 2). Using Theorem 2
again, we obtain the desired PBA(16, 16) and PBA(32, 8). In
exactly the same way, a PBA(24, 24) and a PBA(48, 12) may
be derived from a PBA(6, 6), a QPBA(6, 6) and a DQPBA(6,
6), examples of which are given above.

Concluding remarks: The above construction methods give
strong clues about how even larger PBAs might be con-
structed. In particular, since a QPBA(8, 8) exists, if a
DQPBA(S, 8) could be found, then it would be possible to
construct PBAs having 1024 elements.
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RESONANTLY ENHANCED TWO-WAVE
MIXING VIA POPULATION PULSATIONS IN
SEMICONDUCTOR LASER AMPLIFIERS

Indexing terms: Semiconductor lasers, Optical properties of
substances, Multiplexing, Mixers

We demonstrate theoretically the existence of enhanced
probe gain via population pulsations in nearly degenerate
two-wave mixing in a semiconductor amplifier. The enhance-
ment arises from the injection current modulation frequency
coinciding with the pump/probe detuning. Probe saturation
is shown to occur in less than 10 um cavity length.

Interband population pulsations in semiconductor lasers have
been studied recently! as a mechanism for driving nearly
degenerate four-wave mixing (NDFWM). Such studies indi-
cate that significant harmonic mixing occurs for four nearly
degenerate beams passing through a semiconductor laser
when operated below threshold as a travelling-wave ampli-
fier.! The interaction of various frequencies in travelling-wave
amplifiers is of practical importance in optical communica-
tions as intermodulation effects will limit the multiplexing
capability available.?

In this letter we analyse the simpler but closely related
process of two-wave mixing in semiconductor laser amplifiers.
Two-wave mixing via the selfdiffraction of two grating-
forming beams is well known in photorefractive materials®
and has been shown in that context to yield useful operations,
such as image amplification and edge enhancement.® The
amplifier proposed here may have similar applications. We
demonstrate that amplification is enhanced by several orders
of magnitude by modulating the device at a frequency reson-
ant with the detuning frequency.

The geometry is shown in Fig. 1. A strong pump wave E,,
and a weak probe E, interact within the semiconductor
medium to produce an interband population pulsation at the
beat frequency Q = w, — w,. This is resonantly driven by a
modulated current, I(t) = I,[1 + m cos (Qt)], where I(1 + m)
< I,;. Above-threshold operation is more complicated due to
the additional beams internally generated via stimulated emis-
s10n.

The coupled wave equations describing pump/probe energy
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exchange are obtained via a modification of the four-wave
mixing equations in Reference 1:

dA

2t Ag =0 m
ﬁ_,_a Ay =94 2
dZ 1401 o

1(t)=1g(1+m cos(Qt))

{

Ewg(z=0) ! Ewglz=L)
Ew, (2=0) \ Ewfz=L)
z=0 - z=L [so7]

Fig. 1 Geometry for enhanced two-wave mixing in semiconductor laser
amplifiers

The amplitudes A, and A, are assumed slowly varying and
the coupling constant is given by

Iogmr, 1
qV 1+ Py —iQT,

r
y=50-if) 3)

where g is the gain constant, t, is the carrier lifetime, g is the
electronic charge, V is the device active volume, P, is the
power inside the active volume normalised to the saturation
power P, = hw/T',7,,' B is the linewidth enhancement factor
and I is the mode confinement factor. The absorption con-
stants a, and «, are defined in Reference 1. The analytic solu-
tion of eqns. 1 and 2 yields an expression for the intensity gain
seen by the probe, I,(L)/,(0) and is given by

Il(L) _ Y 2 y
L0 |o —a lel* + 2]“1 — Re [x exp (—a¥z)]
+ exp [—2Re (2,2)] (4)
where
Io(0)\ /2
. (#EOD (exp (=202) — exp (—a,2) )

Fig. 2 shows the intensity gain as a function of interaction
length for various modulation depths. Device parameters from
Reference 1 were used which are typical for GalnAsP lasers.
It is seen that for an incident intensity ratio I ,,,,/I,... = 50,

(

5] [ o N L

probe intensity gain [,(2)/1,(0)
>~

cavity length, um 3507z}
Fig. 2 1,(2)/1,(0) against z for various modulation depths
Pump/probe ratio, 1,(0)/1,(0) = 50, P, = 0-1
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