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COMMENT 

BLOCKING METHOD FOR RSA 
CRY PTOSYSTEM WITHOUT EXPAN DING 
CIPHER LENGTH 

A recently proposed RSA blocking method is shown to be 
insecure and of very limited value. 

Blocking method: A recent paper' described a 'blocking 
method' for using the RSA cryptosystem2 which has the 
advantage that ciphertext produced using this technique is no 
longer than the corresponding plaintext (unlike normal uses of 
RSA). It operates as follows. 

Suppose N ,  the RSA modulus, has an n-bit binary represen- 
tation. Define the one-to-one function Fe, mapping integers 
from the closed interval [0 ,2"  - 13 onto itself as follows: 

N 0 5 x < N 
N < x < 2 "  

Suppose also that T is a one-to-one function from [0, 2" - 11  
onto itself which satisfies 

T(x)  < N i f x 2 N  (1) 

The blocking method then encrypts data in n-bit blocks. 
Suppose M is such a message block; then C ,  the correspond- 
ing ciphertext block, is obtained from M by 

The fact that T satisfies eqn. 1 ensures that M is always 
RSA-encrypted as least once. A typical choice for T (as sug- 
gested by Shimada and Tanaka') would be 

T ( x )  = (x + 2"-')  mod 2" 

Limitations of technique: The main problem with the tech- 
nique, as indicated by Shimada and Tanaka,' is that it does 
not completely conceal the message. If C 2 N then it can 
immediately be deduced that M satisfies M < N regardless of 
the choice for T; whereas if C < N then M satisfies M 2 N 
with probability (2" - N ) / N ,  again regardless of the choice of 
T as long as T is a one-to-one function. Shimada and Tanaka 
contend that this problem is minor since the amount of data 
thus leaked is always less than one bit in every n bits of 
message data (where a typical value for n might be 512). 

However, in some circumstances this leakage is a major 
problem. Basically, if the leakage was distributed over all n 
bits of the message block (i.e. the cryptanalyst can only deduce 
very small amounts of information about each of the n 
message bits), then the problem would not be so severe. 
However, this is not the case for the system under consider- 
ation. 
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Consider the following scenario. Suppose N is quite close to 
2"- ' .  To be more specific suppose, say, that N satisfies 

2"-1 < N ~ 2"-1 + y-6 

which, if N is chosen at random, would be expected to occur 
for every 1 in 32 such N .  

Then, given any C ,  there are two cases to consider: C < N 
and C 2 N ;  if M is random then these will occur roughly 
equally often. If C < N then M 2 N with probability greater 
than 31/33. If C 2 N then we know with certainty that 
M < N .  Hence, as far as the most significant bit of M is 
concerned, roughly half the time we know this bit is probably 
0, and the other half of the time we know the bit is probably 1. 
In other words, the most significant bit of M is sent virtually 
unencrypted ! 

In the same scenario, even worse things might occur. 
Suppose we know with certainty (by some other means) that 
the most significant bit of M is 1. Then, if M is otherwise 
random, the probability that M satisfies 

I M < N  ( 2 )  2"- 1 

could be as much as 1/33. The above analysis tells us that, if 
M does satisfy expr. 2,  then it is very likely that C 2 N, and 
hence knowledge of C will reveal that M satisfies expr. 2. 
However, if M does satisfy expr. 2,  then the five next most 
significant bits of M will all be zero. Hence, in this scenario, 
knowledge of C could reveal five bits of the plaintext message 
block ! 

One response to the above analysis would be to require that 
N is always chosen to be substantially larger than 2"- ' ; 
however, unless N is always chosen to be quite close t o  2", 
potentially serious leakage problems will remain. Such a tight 
restriction on the value of N is probably impractical and is 
potentially a security risk in itself. 

Finally, note that although the penalties for using the pro- 
posed scheme are potentially very high, the rewards for its use 
are minimal. The data expansion of unmodified RSA is very 
small (typically 1 bit in 512), so the saving offered is relatively 
trivial. Moreover, use of this scheme also virtually doubles the 
number of RSA operations. Even with 'fast' RSA hardware the 
time for an RSA operation is still significant, and in software 
the overhead would be very great. 

Conclusion: The proposed blocking scheme has been shown to 
have very serious data leakage problems. Moreover, the gains 
to be obtained by using it are minimal by comparison with 
the leakage problem and the considerable computational 
overhead it imposes. These limitations make the scheme com- 
pletely unusable. 

C. MITCHELL 27th July 1989 
Hewlett-P ackard Laboratories 
Filton Road, Stoke Gifford, Bristol BSI2 6Q2, United Kingdom 

REPLY 

In general, if we choose N and integer x > 0 such that 

( 3 )  N 5 2"- 1 + 2n-X- 1 

Mitchell's attack could reveal x bits of a plaintext M .  
However, if we chose N such that 

N > 2"-' + 2"-2  (4) 

the attack could not reveal any bits of M deterministically. 
Note that the right-hand side of the above inequality is not so 
close to 2". Thus, we can probably make any other statistical 
attacks ineffective, without imposing so tight a restriction on 
the value of N as to make the cryptosystem impractical. 

Mitchell has said that the rewards for the use of the pro- 
posed scheme are minimal. This is true, as far as we can 
design the information processing system on which we imple- 
ment the RSA cryptosystem. However, in many circumstances 
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the information processing system has already been designed, 
when we come to design the cryptosystem, and we would 
struggle with the expanded bits. Suppose we implement the 
cryptosystem on a disc drive system which has 1024 bytes per 
sector, and we encrypt a plaintext of 1024 bytes on it. In this 
case, one bit expansion doubles the time for reading/writing a 
plaintext. Furthermore, if the time for an RSA operation is 
shorter than the disc read/write time per sector (‘fast’ RSA 
hardware makes it possible), the proposed scheme could 
improve the performance of the disc drive system. This shows 
that the one bit saving is not always trivial. 

We should emphasise that the proposed scheme of Refer- 
ence 1 is usable in many circumstances. 

M. SHIMADA 9th October 1989 
Satellite Communications Systems Development Department 
Microwave & Satellite Communications Division 
NEC Corporation 
4035 Ikebe-cho, Midoriku, Yokohama 213, Japan 

K. TANAKA 
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DISTANCE-INVARIANT ERROR CONTROL 
CODES FROM COMBINATORIAL DESIGNS 

Indexing terms: Codes and coding, Information theory, Error- 
detection codes 

Recently proposed techniques for constructing nonlinear 
distance-invariant codes from combinatorial designs are gen- 
eralised. Such codes are of particular interest among non- 
linear codes because their decoding error probabilities can be 
readily calculated. 

Introduction; A recent letter’ described methods of construc- 
tion for distance-invariant (DI) codes from combinatorial 
designs. As defined by Delaney and Farrell’ a code is 
distance-invariant if the number of codewords at distance i 
from a codeword ( N i )  is independent of the choice of code- 
word. If a code is DI (and the values of N i  are known) then 
the probability of undetected errors can easily be computed. 
This makes DI codes of interest. Note that all linear codes are 
DI; in a linear code Ni is simply the number of codewords of 
weight i. 

In this letter I give general constructions for DI codes from 
combinatorial designs which include all the examples of 
Delaney and Farrell’ as special cases. For notation and 
results about designs see Beth et al.’ or Hughes and Piper.3 

Construction method: Suppose A is the U x b incidence matrix 
of a 2 -(U, k, 1) design with b blocks and r blocks incident 
with every point, where 

bk = ur (1) 

and 

i.(u - 1) = r(k - 1) (2) 

Then, by definition of design, every row of the incidence 
matrix contains r ones (and b - r zeros) and every pair of 
rows has exactly 1 ones in the same positions (i.e. the logical 

AND of the two rows will contain exactly A ones). Note that 
we assume that U > k > 0 and A > 0, and hence r # bJ2. 

Following Reference 1, we derive three codes from A:  

(1) T y p e  1 :  Take as codewords the rows of A. 

(2) T y p e  2: The codewords of type 1 with their complements. 

(3) T y p e  3 :  The codewords of type 2 with the all-zero and 
all-one codewords. 

If we define an ( N ,  M, d)-code to be one which has M code- 
words of length N and minimum distance d,  then the next 
result follows immediately from the definition of a 2-design. 
Note that the main result of Reference 1 corresponds precisely 
to theorem 1 for the case U = b (and hence r = k). 

Theorem I ;  Type 1 codes have parameters [b, U, 2(r - A ) ] ,  
with equal energy codewords, and are DI with N o  = 1 and 
N,(,- , ,  = U - 1. Type 2 codes have parameters {b, 2u, min 
[b - 2(r - A), 2(r - A ) ] } ,  and are DI with N o  = 1, N,( , - , ,  = 

U - 1, N b - z ( r - , )  = U - 1 and N ,  = 1. If (b - r )  = 2(r - A) then 
type 3 codes have parameters [b, 2u + 2, min (r,  b - r ) ] ,  and 
are DI with N o  = 1, N,( , - , ) ,=  U, N , - , ( , - , ,  = U and N ,  = 1. 

In fact, when the condition for type 3 codes (namely that 
(b - r )  = 2(r - 1)) is combined with eqns. 1 and 2, it simplifies 
to either k = U (a trivial case) or k = (U - 1)/2. In the square 
(U = k) case this means that the set of nontrivial designs 
satisfying the type 3 condition is precisely the well known 
family of Hadamard designs. Delaney and Farrell’ pointed 
out that the Hadamard designs satisfy the type 3 code condi- 
tions, but they do not note the converse. In fact, the type 3 
codes obtained from the Hadamard designs correspond pre- 
cisely to the Hadamard codes B, described on p. 49 of 
Reference 4. 

Further generalisations. 

( a )  A ‘t-class association scheme’ is defined as a set V of 
U elements and a mapping f from the 2-subsets of V into 
{ 1, 2, . . . , t} with the following properties: 

(i) There exist constants U,, U’, ..., U, such that, for any 
element P of V ,  there are precisely vi other elements Q of V 
such that f ( { P ,  Q}) = i (and hence u1 + u2 + . . . + U, = U - 1). 

(ii) There exist constants wijk, such that if P and Q are 
any elements of V satisfying f ( { P ,  Q}) = k then the number 
of other elements R in V satisfying f ( { P ,  R}) = i and 
f ( { Q ,  RI) = j is wijk. 

Note that if f ( { P ,  Q}) = i, then we say that P and Q are ith 
associates. 

Observe that 2-class association schemes correspond pre- 
cisely to strongly regular graphs. 

(b) A ‘partially balanced design with t associate classes’ 
[PBD(t)] is then a 1 - (U, k, r) design with a t-class association 
scheme defined on its U points, such that if any two points are 
ith associates they are commonly incident with l ( i )  blocks, for 
some constant A@. In incidence matrix terms this means that, 
if A is the U x b incidence matrix of a PBD(t), then if two rows 
correspond to points which are ith associates, then these two 
rows have A(i) positions in which they both contain a one. 
Note that many examples of PBD(t) designs are known to 
exist. 

If we derive type.1, type 2 and type 3 codes from A as we 
did previously (and we assume that each point has vi ith 
associates) then we obtain the following. 

Theorem 2:  Type 1 codes have parameters ( b ,  U, mini{2[r 
- 1 ( i ) ] } ) ,  with equal energy codewords, and are DI with 

N o  = 1 and Nz[ , -A( i ) l  = ui.  Type 2 codes have parameters 
( b ,  214 mini{b - 2[r - d(i)], 2[r - 1 ( i ) ] } ) ,  and are DI with 
N o  = 1, N21r- l ( i ) l  = vi, N b - z I r - l ( i ) l  = ui and N ,  = 1. If 
(b  - r )  = 2[r  - 1(j)] for some j ,  then type 3 codes have pziram- 
eters ( b ,  2u + 2, mini{b - 2[r - 491, 2[r - l ( i ) ] } ) ,  and are 
DI with N o  = 1, N21,- l ( i ) l  = ui ( i  # j), N z [ r - , u ) l  = uj + 1, 
Nb-z[ , - l ( i ) l  ( i  #J), Nb-2[,-l(,ll = Uj + 1 and N ,  = 1. 
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