
Cryptanalysis of the EPBC authenticated
encryption mode

Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

c.mitchell@rhul.ac.uk

Abstract. A large variety of methods for using block ciphers, so called
‘modes of operation’, have been proposed, including some designed to
provide both confidentiality and integrity protection. Such modes, usu-
ally known as ‘authenticated encryption’ modes, are increasingly im-
portant given the variety of issues now known with the use of unau-
thenticated encryption. In this paper we show that a mode known as
EPBC (Efficient error-Propagating Block Chaining), proposed in 1997
by Zúquete and Guedes, is insecure. Specifically we show that given a
modest amount of known plaintext for a single enciphered message, new
enciphered messages can be constructed which will pass tests for authen-
ticity. That is, we demonstrate a message forgery attack.

1 Introduction

Traditionally, the recommended way to use a block cipher to provide both in-
tegrity and confidentiality protection for a message has been to encrypt the data
and then compute a CBC-MAC on the encrypted data, using two distinct secret
keys. This approach is rather unattractive for some applications because it re-
quires each block of data to be processed twice. This observation has given rise
to a number of proposals for combining encryption and integrity protection (see,
for example, Sect. 9.6 of [1]).

At the same time, in recent years two major problems have been identified
which have highlighted the need for better-defined integrity and confidentiality
modes. Firstly, issues have been identified with certain combinations of encryp-
tion and use of a CBC-MAC — see, for example, Bellare, Kohno and Nam-
prempre [2]. That is, it is vital to define precisely how the two operations are
combined, including the order of the computations; otherwise there is a danger
of possible compromise of the data. Secondly, even where integrity is not explic-
itly required by the application, if integrity is not provided then in some cases
padding oracle attacks may be used to compromise secret data (see, for example,
[3–7]).

This has given rise to a number of proposals for well-defined authenticated-
encryption modes, including OCB [8], EAX [9] and CCM [10, 11]. These tech-
niques are also the subject of ongoing international standardisation efforts —
the third committee draft of what is intended to become ISO/IEC 19772 on

authenticated encryption was published in June 2007 [12] (see also Dent and
Mitchell, [13]).

In this paper we examine another authenticated-encryption mode, known as
EPBC, which was introduced by Zúquete and Guedes in 1997 [14]. We show
that this mode is subject to a message forgery attack using only a modest
amount of known plaintext, and hence does not provide adequate integrity
protection. When combined with other recent cryptanalyses of authenticated-
encrypted modes [15], this emphasises the need to only use modes which have
robust evidence for their security, e.g. OCB, EAX or CCM.

2 Integrity Protection

Before discussing any possible attacks, we need to explain how EPBC mode is
intended to be used to provide both confidentiality and integrity protection. The
idea is very simple. First divide the data to be encrypted into a sequence of n-bit
blocks, padding as necessary, where n is the block length for the block cipher
in use. Then append an additional n-bit block to the end of the message, where
this block can be predicted by the decrypter (e.g. a fixed block); this is referred
to as the integrity control value by Zúquete and Guedes [14]. When the message
is decrypted, a check is made that the final block is the expected value and, if
it is, the message is deemed authentic.

Before proceeding observe that this general approach possesses an intrinsic
weakness. That is, suppose that a fixed final block (the terminator block) is used
to detect message manipulations (as above). Then an attacker might be able to
persuade the legitimate originator of protected messages to encrypt a message
which contains the fixed terminator block somewhere in the middle of the mes-
sage. The attacker will then be able to delete all ciphertext blocks following the
encrypted terminator block, and such a change will not be detectable.

Despite this weakness, using an appropriate encryption mode combined with
a method for adding verifiable redundancy to a message is still used for message
integrity protection — e.g. in Kerberos (see, for example, [13]). As far as this
paper is concerned we note that such an attack could be prevented by ensuring
that the legitimate encrypter refuses to encrypt any plaintext message contain-
ing the terminator block. We further note that such an attack requires chosen
plaintext, and the attack we demonstrate later in this paper requires only a
limited amount of known plaintext.

3 The Zúquete-Guedes EPBC Mode

First suppose that the data is to be protected using an n-bit block cipher, i.e. a
block cipher operating on plaintext and ciphertext blocks of n bits. We further
suppose that n is even, and put n = 2m (as is the case for all standardised
block ciphers — see, for example, [16]). We write eK(P) for the result of block
cipher encrypting the n-bit block P using the secret key K, and dK(C) for the
result of block cipher decrypting the n-bit block C using the key K. Suppose the

plaintext to be protected is divided into a sequence of n-bit blocks (if necessary,
having first been padded): P1, P2, . . . , Pt.

The scheme uses two secret n-bit Initialisation Vectors (IVs), denoted by F0

and G0. The EPBC encryption of the plaintext P1, P2, . . . , Pt is then defined as:

Gi = Pi ⊕ Fi−1, (1 ≤ i ≤ t), (1)
Fi = eK(Gi), (1 ≤ i ≤ t), (2)
Ci = Fi ⊕ g(Gi−1), (2 ≤ i ≤ t), (3)

where C1 = F1 ⊕ G0, ⊕ denotes bit-wise exclusive-or, and g is a function that
maps an n-bit block to an n-bit block, defined below. The operation of the mode
(when used for encryption) is shown in Figure 1. Note that we refer to the values
Fi and Gi as ‘internal’ values, as they are computed during encryption, but they
do not constitute part of the ciphertext.

Fig. 1. EPBC encryption

The function g is defined as follows. Suppose X is an n-bit block, where
X = L||R and L and R are m-bit blocks (and, as throughout, || denotes con-
catenation). Then

g(X) = (L ∨R)||(L ∧R)

where ∨ denotes the bit-wise inclusive or operation, ∧ denotes the bit-wise logical
and operation, and X denotes the logical negation of X (i.e. changing every zero
to a one and vice versa).

Finally, note that decryption operates similarly. We have:

Fi = Ci ⊕ g(Gi−1), (2 ≤ i ≤ t), (4)
Gi = dK(Fi), (1 ≤ i ≤ t), (5)
Pi = Gi ⊕ Fi−1, (1 ≤ i ≤ t). (6)

and F1 = C1 ⊕G0, where d denotes block cipher decryption.

4 Some Preliminary Observations

We first establish some simple results on the operation of the EPBC scheme. In
particular, we consider the operation of the function g.

Lemma 1. Suppose g(X) = L′||R′, where X is an n-bit block and we let L′ =
(`′1, `

′
2, . . . , `

′
m) and R′ = (r′1, r

′
2, . . . , r

′
m) be m-bit blocks. Then, for every i (1 ≤

i ≤ m), if `′i = 0 then r′i = 0.

Proof Let X = L||R, where L = (`1, `2, . . . , `m) and R = (r1, r2, . . . , rm).
Suppose `′i = 0 for some i. But, by definition, `′i = `i ∨ ri, and hence `i = ri = 0.
Hence r′i = `i ∧ ri = 0. 2

The above Lemma implies that output bit pairs (`′i, r
′
i) can never be equal

to (0,1). In fact, we can obtain the following more general result which gives
Lemma 1 as a special case.

Lemma 2. Suppose that, as above, X = L||R where L = (`1, `2, . . . , `m) and
R = (r1, r2, . . . , rm). Suppose also that g(X) = L′||R′ where L′ = (`′1, `

′
2, . . . , `

′
m)

and R′ = (r′1, r
′
2, . . . , r

′
m). Then if (`i, ri) ∈ A then (`′i, r

′
i) ∈ B, where all possi-

bilities for A and B are given in Table 1. Note that, for simplicity, in this table
we write xy instad of (x, y).

Proof The result follows from a simple case by case analysis. 2

Before proceeding we make a general observation which underlies the attack
procedure described below. That is, given a random set A of any particular size
(not equal to 1), then the expected value of |B| is always smaller than |A|.

5 Attack Stage 1 — Deducing Internal Pairs

The objective of this stage of the attack is to use knowledge of known plain-
text/ciphertext pairs (Pi, Ci) to learn the values of corresponding ‘internal pairs’
(Fi, Gi). In the second stage of the attack, described in Sect. 6, we show how to
use these internal values to complete a forgery attack on EPBC mode.

Suppose an attacker knows s consecutive pairs of plaintext/ciphertext blocks
for some s > 1. That is, suppose

(Pj , Cj), (Pj+1, Cj+1), . . . , (Pj+s−1, Cj+s−1)

Table 1. Input/output possibilities for g

A (set of input pairs) B (set of output pairs)

{00, 01, 10, 11} {00, 10, 11}
{01, 10, 11} {00, 10, 11}
{00, 10, 11} {10, 11}
{00, 01, 11} {00, 10}
{00, 01, 10} {00, 10, 11}
{10, 11} {10, 11}
{01, 11} {00, 10}
{01, 10} {00, 11}
{00, 11} {10}
{00, 10} {10, 11}
{00, 01} {00, 10}
{11} {10}
{10} {11}
{01} {00}
{00} {10}

are known, where we also suppose that j > 1.
First observe that we know that Cj = Fj ⊕ g(Gj−1) (since j > 1). From

Lemma 1, we also know that, if g(Gj−1) = L′||R′ where L′ = (`′1, `
′
2, . . . , `

′
m)

and R′ = (r′1, r
′
2, . . . , r

′
m), then (`′i, r′i) can never equal (0,1) for any i. Hence

knowledge of Cj will immediately yield knowledge about Fj . Specifically, it will
yield the information that certain bit pairs cannot occur in Fj , where each bit
pair contains a bit from the left half and the corresponding bit from the right
half. More precisely, given that there are m such bit pairs in Fj , and for each
such pair one of the four possible bit pairs will be ruled out, the number of
possibilities for Fj will be reduced from 22m to 3m.

Using Lemma 2, we can extend this observation making use of subsequent
plaintext/ciphertext block pairs. Since Gj+1 = Pj+1 ⊕ Fj , information about
forbidden bit pairs in Fj , combined with knowledge of Pj+1, gives information
about forbidden bit pairs in Gj+1. This yields information about (potentially)
even more forbidden bit pairs in g(Gj+1). Given that

Cj+2 = Fj+2 ⊕ g(Gj+1),

and given knowledge of Cj+2, this gives even more information about forbidden
bit pairs in Fj+2, and so on.

That is, it is possible to deduce increasing amounts of information about the
sequence of n-bit blocks:

Fj , g(Gj+1), Fj+2, g(Gj+3),

Hence, assuming that we know sufficiently many pairs to perform the calcula-
tions, for sufficiently large w there will only be one possibility for Fj+2w. Using

knowledge of Pj+2w+1, this immediately gives certain knowledge of Gj+2w+1.
I.e., for all sufficiently large values of w, complete knowledge can be obtained of
Fj+2w and Gj+2w+1.

In the above discussion we did not use all the available information to
make the deductions. In fact we only used knowledge of Cj , Cj+2, Cj+4, . . . and
Pj+1, Pj+3, Pj+5, We have also only shown how to derive information about
Fj , Fj+2, Fj+4, . . . and Gj+1, Gj+3, Gj+5,

However, we can simply repeat the above argument starting with Fj+1,
using the remainder of the information available. That is, repeating the pro-
cess starting one block later will enable the deduction of information about
Fj+1, Fj+3, Fj+5, . . . and Gj+2, Gj+4, Gj+6, Finally note that the above anal-
ysis does not make use of knowledge of Pj , only of Cj .

The above discussion has been rather informal, in that ‘sufficiently large’ has
not been quantified. However, Lemma 2 enables us to make this more precise.

Consider any pair of bit positions in an n-bit block: (i, i + m), say, where
1 ≤ i ≤ m. Then, from Lemma 1, we know that g(Gj−1) cannot have (0,1) in
these two bit positions. Hence, given knowledge of Cj , we know that the bits
in positions (i, i + m) in Fj = Cj ⊕ g(Gj−1) can only take three of the four
possible values. Precisely which three possibilities will depend on the pair of bits
in positions (i, i + m) in Cj , which we assume are randomly distributed.

As a result we know that the bits in positions (i, i+m) in Gj+1 can only take
three of the four possible values. From an examination of Table 1, the number
of possibilities for the bits in positions (i, i+m) in g(Gj+1) will either be two or
three, depending on the three possibilities for the bit pair in Gj+1. Specifically,
there is a 50% chance that there will only be two possibilities for the bit pair in
Gj+1, and a 50% that there will be three possibilities for the bit pair in Gj+1.

Extending this analysis using standard probabilistic arguments for stochas-
tic processes, it follows that the probability p that there will only be a single
possibility for the bit pair after v iterations of the above process is equal to the
bottom left entry in the vth power of the four by four matrix given in Figure 2.
The entry in the i row and the jth column of this matrix represents the proba-
bility that a set A of size i will map to a set B of size j (as derived from Table 1).
Some values of this matrix entry (i.e. of p) for various values of v are given in
Table 2.

1 0 0 0
1/6 5/6 0 0
0 1/2 1/2 0
0 0 1 0

Fig. 2. Transition probability matrix

Table 2. Probability of a unique possibility for a bit pair

v prob. p v prob. p v prob. p

10 0.71027 20 0.95305 30 0.99241
40 0.99878 50 0.99980 60 0.99997

That is, after 30 iterations, i.e. given knowledge of 60 consecutive plain-
text/ciphertext pairs, the probability p that a bit pair will be known with cer-
tainty is 0.99241. We are actually interested in the probability q that an entire
n-bit block will be known with certainty. It is straightforward to verify that

q = pn/2.

In Table 3, this probability is tabulated for the same values of v as given in
Table 2, assuming the use of a 128-bit block cipher.

Table 3. Probability of a unique possibility for a 128-bit block

v prob. q v prob. q v prob. q

10 very small 20 0.04607 30 0.61409
40 0.92485 50 0.98728 60 0.99808

Hence, for such a cipher, if 60 consecutive pairs of plaintext/ciphertext blocks
are known (bearing in mind that each iteration involves alternate blocks), then
there is a 60% chance that the final internal variables Fi and Gi will be com-
pletely known. This probability increases to nearly 99% if 100 consecutive block
pairs are available.

6 Attack Stage 2 — Completing the Forgery

We now suppose that the attack procedure described in the previous section has
been completed, i.e. matching pairs of consecutive plaintext/ciphertext blocks
have been used to learn internal values Gi, for some i. We suppose also that the
EPBC mode is being used to provide both confidentiality and integrity using a
fixed n-bit integrity control value V . That is, when a message is decrypted, the
final plaintext block must equal V if the message is to be accepted as genuine.
To demonstrate a forgery attack, we therefore need to show how to construct a
message for which this will be true.

We suppose that the following resources are available to an attacker.

– An encrypted message C1, C2, . . . , Ct for which the attacker knows the in-
ternal value Gs, for some s ≤ t.

– The final two blocks (C ′u−1, C ′u) of an encrypted message for which the
attacker also knows the internal value G′u−2. Note that we are assuming
that P ′u = V , where P ′u is the final plaintext block corresponding to this
enciphered message.

Note that we assume also that the same secret key K has been used to compute
both the ciphertexts involved (in fact, the same message could be used to yield
both of the sets of values required).

We now define the ‘forged’ ciphertext message C∗1 , C∗2 , . . . , C∗s+2 as follows:

C∗i = Ci, (1 ≤ i ≤ s),
C∗s+1 = C ′u−1 ⊕ g(G′u−2)⊕ g(Gs), and
C∗s+2 = C ′u.

It remains to show that, when the above forged message is decrypted, the
final recovered plaintext block will equal V . Suppose that, when decrypting
C∗1 , C∗2 , . . . , C∗s+2, the internal values are F ∗i and G∗i (1 ≤ i ≤ s + 2).

We first note that it follows immediately from the definitions that F ∗i = Fi

and G∗i = Gi (1 ≤ i ≤ s), where Fi and Gi are the internal values generated
during the encryption process that yielded the ciphertext message C1, C2, . . . , Ct.
We now consider the decryption of C∗s+1.

We have

F ∗s+1 = C∗s+1 ⊕ g(G∗s) (from Sect. 3)
= C ′u−1 ⊕ g(G′u−2)⊕ g(Gs)⊕ g(G∗s) (by defn. of C∗s+1)
= C ′u−1 ⊕ g(G′u−2) (since G∗s = Gs)
= F ′u−1.

Hence G∗s+1 = G′u−1.
We now consider the decryption of C∗s+2. We have

F ∗s+2 = C∗s+2 ⊕ g(G∗s+1) (from Sect. 3)
= C ′u ⊕ g(G′u−1) (by defn. of C∗s+2)
= F ′u.

Hence G∗s+2 = G′u. Finally, we have

P ∗s+2 = G∗s+2 ⊕ F ∗s+1 (from Sect. 3)
= G′u ⊕ F ′u−1 (from above)
= P ′u
= V,

as required.

7 Further Observations

7.1 Attack Performance

It is of interest to try to understand the overall complexity of the attack de-
scribed above, i.e. to understand what information is required to complete an
attack, and what computations need to be performed. For a 128-bit block ci-
pher, we have shown in Sect. 5 that knowledge of 80 consecutive pairs of known
plaintext/ciphertext blocks will be very likely to yield certain knowledge of the
‘final’ internal variable Gi.

Thus, if the attacker has access to two messages encrypted using the same
key, and the attacker knows the final 80 plaintext blocks for both messages
(as well as the ciphertext), then the attacker will almost certainly have sufficient
information to perform the procedure described in Sect. 6. The computations in-
volved in both stages of the attack are trivial — indeed, they involve only a small
number of computations of the (very simple) function g, and some exclusive-or
operations on pairs of blocks.

Thus the attack will have a relatively high success probability given only
a modest amount of known plaintext, and the computations involved are com-
pletely trivial.

7.2 The Choice for the Function g

As should be clear from the discussions above, completing the attack as described
in Sect. 6 requires knowledge of internal variables Gi. It is possible to learn these
values as a result of the procedure described in Sect. 5; this procedure only works
because the function g is non-bijective, and has a very simple structure. This
raises two questions.

Firstly, why is the function g chosen to be non-bijective? Secondly, if there
is a good reason to use a non-bijective function, then why not use one with less
obvious structure?

The answer to the first question can be found in the original paper of Zúquete
and Guedes [14]. As stated in [14], EPBC is very similar to a previously devised
mode called IOBC, proposed by Recacha in 19961. Indeed, the only difference
is that the function g used in IOBC is bijective, involving some fixed bit per-
mutations. However, as very briefly outlined in [14], IOBC is subject to known-
plaintext attacks if the message being encrypted contains more than n2/4 blocks,
where n is the block cipher block length, i.e. around 4000 blocks for AES. The
exact attack approach is not clear from [14], which states that a detailed descrip-
tion can be found in the 1996 paper of Recacha. Because of the existence of this
attack, EPBC was designed to use a non-bijective function g, which (apparently)
rules out the known-plaintext attacks applying to IOBC.

The answer to the second question is less clear. Obviously, g could be im-
plemented using one or more block cipher encryptions, which, if done correctly,
1 Unfortunately, the 1996 Recacha paper cited in [14] does not appear to be readily

available.

would certainly remove the simple structures exploited in Sect. 5. However, such
an approach would significantly increase the complexity of the mode of oper-
ation, and one of the main design goals was to devise a scheme with minimal
complexity. Designing a function g which is both sufficiently complex to prevent
attack, but is nevertheless very fast to perform would, perhaps, be an interesting
research question; however, given that highly efficient provably secure authenti-
cated encryption modes are now known to exist (as discussed in Sect. 1), this is
probably not likely to be a particularly fruitful line of enquiry.

8 Summary and Conclusions

In this paper we have demonstrated a forgery attack against EPBC mode when
used to provide message integrity. This attack required only known plaintext
(and no chosen plaintext). We can therefore conclude that this mode is unaccept-
ably weak, and should therefore not be used. (Whilst it is probably an effective
mode for encryption only, much simpler modes are known for this purpose).

If both confidentiality and integrity protection are required, then encryption
and a MAC should be combined in an appropriate way, or a dedicated ‘authen-
ticated encryption’ mode should be used — see, for example, ISO/IEC 19772
[12].

Acknowledgements

The author would like to thank Po Yau for his generous help in performing
numerical computations, and anonymous referees for valuable comments which
have improved the paper.

References

1. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

2. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Transactions on Information and System Security 7
(2004) 206–241

3. Black, J., Urtubia, H.: Side-channel attacks on symmetric encryption schemes: The
case for authenticated encryption. In: Proceedings of the 11th USENIX Security
Symposium, San Francisco, CA, USA, August 5-9, 2002, USENIX (2002) 327–338

4. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In Boneh, D., ed.: Advances in Cryptology — CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings. Volume 2729 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (2003) 583–599

5. Paterson, K.G., Yau, A.: Padding oracle attacks on the ISO CBC mode padding
standard. In Okamoto, T., ed.: Topics in Cryptology — CT-RSA 2004, The Cryp-
tographers’ Track at the RSA Conference 2004, San Francisco, CA, USA, February
23-27, 2004, Proceedings. Volume 2964 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2004) 305–323

6. Vaudenay, S.: Security flaws induced by CBC padding — Applications to SSL,
IPSEC, WTLS In Knudsen, L., ed.: Advances in Cryptology — EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 – May 2, 2002, Proceedings.
Volume 2332 of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2002)
534–545

7. Yau, A.K.L., Paterson, K.G., Mitchell, C.J.: Padding oracle attacks on CBC-
mode encryption with secret and random IVs. In Gilbert, H., Handschuh, H., eds.:
Fast Software Encryption, 12th International Workshop, FSE 2005, Paris, France,
February 21-23, 2005, Revised Papers. Number 3557 in Lecture Notes in Computer
Science, Springer-Verlag, Berlin (2005) 299–319

8. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security 6 (2003) 365–403

9. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In Roy,
B., Meier, W., eds.: Fast Software Encryption, 11th International Workshop, FSE
2004, Delhi, India, February 5-7, 2004, Revised Papers. Volume 3017 of Lecture
Notes in Computer Science., Springer-Verlag, Berlin (2004) 389–407

10. National Institute of Standards and Technology (NIST): NIST Special Publication
800-38C, Recommendation for Block Cipher Modes of Operation: The CCM Mode
For Authentication and Confidentiality. (2004)

11. Whiting, D., Housley, R., Ferguson, N.: RFC 3610, Counter with CBC-MAC
(CCM). Internet Engineering Task Force. (2003)

12. International Organization for Standardization Genève, Switzerland: ISO/IEC
3rd CD 19772, Information technology — Security techniques — Authenticated
encryption mechanisms. (2007)

13. Dent, A.W., Mitchell, C.J.: User’s Guide to Cryptography and Standards. Artech
House (2005)

14. Zuquete, A., Guedes, P.: Efficient error-propagating block chaining. In Darnell,
M., ed.: Cryptography and Coding, 6th IMA International Conference, Cirences-
ter, UK, December 17–19, 1997, Proceedings. Number 1355 in Lecture Notes in
Computer Science, Springer-Verlag, Berlin (1997) 323–334

15. Mitchell, C.J.: Cryptanalysis of two variants of PCBC mode when used for mes-
sage integrity. In Boyd, C., Gonzalez Nieto, J.M., eds.: Information Security and
Privacy, 10th Australasian Conference, ACISP 2005, Brisbane, Australia, July 4–6
2005, Proceedings. Number 3574 in Lecture Notes in Computer Science, Springer-
Verlag, Berlin (2005) 560–571

16. International Organization for Standardization Genève, Switzerland: ISO/IEC
18033–3, Information technology — Security techniques — Encryption algorithms
— Part 3: Block ciphers. (2005)

