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Abstract. This paper is primarily concerned with the CBC block cipher
mode. The impact on the usability of this mode of recently proposed
padding oracle attacks, together with other related attacks described in
this paper, is considered. For applications where unauthenticated encryp-
tion is required, the use of CBC mode is compared with its major sym-
metric rival, namely the stream cipher. It is argued that, where possible,
authenticated encryption should be used, and, where this is not possi-
ble, a stream cipher would appear to be a superior choice. This raises a
major question mark over the future use of CBC mode, except as part
of a more complex mode designed to provide authenticated encryption.

1 Introduction

The CBC (Cipher Block Chaining) ‘mode of operation’ for a block cipher has
been in wide use for many years. A mode in this sense is simply a way of using
a block cipher to encrypt a string of bits (often referred to as a ‘message’).

CBC mode, as originally specified in the 1980 US FIPS Pub. 81 [1], was first
defined as one of four modes of use for the DES block cipher [2]. Since then,
CBC mode, together with the other three modes from FIPS 81, has appeared
in a number of other standards, including ISO/IEC 10116, the international
standard for modes of operation (the second edition of which was published in
1997 [3], and a third edition of which is nearing completion [4]). For further
details of block cipher modes of operation see, for example, Chapter 5 of [5].

2 Encryption and integrity-protection

CBC mode, along with all the other modes of operation standardised in ISO/IEC
10116, is designed only to provide confidentiality protection for encrypted data.
Thus, if the integrity and/or origin of the data is also to be protected, then
use of a separate mechanism, e.g. a Message Authentication Code (MAC) or
a digital signature is required; see, for example, [5, 6] for discussions of these
cryptographic primitives and for details of relevant standards.

Over the last few years, a number of proposals for new modes of opera-
tion offering both confidentiality and integrity protection have appeared. These



modes, often referred to as ‘authenticated-encryption techniques’, include OCB
[7], EAX [8] and CCM [9, 10]. These techniques are also currently being stan-
dardised — the second working draft of what is intended to become ISO/IEC
19772 on authenticated encryption was published late in 2004 [11].

In parallel with these recent developments, a number of implementation-
based attacks against CBC mode have been discovered — see, for example,
[12–16]. In these attacks, use of a so called ‘padding oracle’ enables an attacker
to discover information about the plaintext for a CBC-encrypted message. More
specifically, we suppose that the decrypting device, after recovering the plaintext
from the ciphertext, checks that the padding format is correct. If it is not, an
error message is generated, the presence or absence of which can be detected by
the cryptanalyst. This constitutes the ‘padding oracle’, and practical examples
of the existence of such oracles has been demonstrated. The cryptanalyst uses
such an oracle by making carefully designed modifications to ciphertexts, and
then observing whether or not the modified ciphertext induces a padding failure
— this, in turn, reveals information about the plaintext.

There are two main responses to the existence of such attacks, which appear
to pose a genuine threat to the security of some secure communications systems.
(As we discuss below, not all systems are subject to such attacks; however, the
possibility of such attacks may be sufficiently significant to mean that adopting
countermeasures across the board is probably advisable).

– The first is to observe that error messages of all kinds, including padding
error messages, should be designed with care. Careful implementation of such
messages would probably have prevented the practical realisation of most, if
not all, of the so far described attacks.

– The second, most notably advocated by Black and Urtubia [12], and also
by Paterson and Yau [14], is to always provide integrity in conjunction with
encryption, and to arrange error messages appropriately. Clearly, for such an
approach to be effective, the integrity check must be performed before any
necessary padding is checked. If this line of argument is followed, then the
most logical approach is to use an authenticated-encryption technique such
as one of those referred to above.

The second of the above arguments is clearly convincing, and is one we re-
turn to below in suggesting that CBC mode should never be used without some
accompanying integrity check. However, for practical reasons we do not support
the argument that encryption should never be used without an accompanying
integrity check. The reason for this latter claim is that there appear to be appli-
cations where unauthenticated encryption is needed. These include the following.

– Applications where data errors are acceptable. If the data to be encrypted
consists of image or audio data (e.g. a digitised voice or video channel),
then a certain proportion of errors in the recovered plaintext data may be
acceptable to the recipient. This is because, after conversion back to an
analogue version, the resulting (corrupted) signal will still be usable. For
example, a modest number of errors in a digitised voice signal will often



result in a degraded but nevertheless comprehensible version. Moreover, if
the communications system in use required all such corrupted signals to be
rejected, retransmission may not be an option, e.g. for a real-time audio or
video channel (as would be used in a telephone call or video conference).
In such a case, a slightly corrupted version of the original signal is clearly
preferable to no signal at all.
Hence, if an integrity check is used in such a scenario, the result will be an
unacceptable degradation in the channel. Thus, in these circumstances (as
arise, for example, in mobile telephone wireless transmissions) use of a cryp-
tographic integrity check is not really practical. Current such applications
typically use a stream cipher because of its lack of error propagation.
Of course, use of an error-correcting code applied to the entire ciphertext
may alleviate such problems and allow use of an authenticated encryption
mode. However, if the error rates are highly variable, then such an approach
may simply be too complex to be practicable (and any scheme that imposes
latency will be unacceptable in real-time applications, such as voice).

– Very high bandwidth channels (bulk encryption). The second case is where
very large volumes of data are to be encrypted at high speed, for example,
when encrypting all of the data sent on a high bandwidth channel, such as
an optical fibre trunk. One major advantage of encrypting at a low level
of the protocol hierarchy is that all address information can be encrypted,
revealing no information about traffic flows to an interceptor.
In this case it may simply be impractical to include an integrity check, typ-
ically because generating and verifying such values, and dealing with any
necessary retransmissions, at very high data rates may be infeasibly com-
plex. It is arguably more appropriate to provide error protection at higher
levels of the protocol hierarchy.

As a result of these and other applications of unauthenticated encryption, we
claim that mandating authenticated encryption is not always possible. As a result
it is necessary to decide which types of encryption are most appropriate when
integrity checks are not performed, and this is the main theme of this paper.

Finally note that trivial distinguishing attacks exist on CBC in a chosen
ciphertext setting. The main contribution of this paper, and the earlier work
on padding oracle attacks, is to demonstrate that one can also perform message
recovery attacks, which are, of course, stronger than distinguishing attacks.

3 CBC mode — definition, properties, and a fundamental
observation

We next describe how CBC mode works, and outline important properties.

3.1 Definition of CBC mode

Use of CBC mode encryption requires that the plaintext to be encrypted is first
padded so that its length is a multiple of n bits, where n is the block length



of the block cipher in use. The padded plaintext is then divided into a series
of n-bit blocks: P1, P2, . . . , Pq, say. An n-bit starting variable (also sometimes
called an initialisation vector or IV) is also required.

If the chosen starting variable is denoted by S, then encryption involves
computing a sequence of ciphertext blocks C1, C2, . . . , Cq, as follows:

C1 = eK(P1 ⊕ S), Ci = eK(Pi ⊕ Ci−1), (i > 1)

where eK(X) denotes the block cipher encryption of n-bit block X using the
secret key K, and ⊕ denotes the bit-wise exclusive-or of blocks.

3.2 Properties of CBC mode

In CBC mode, if the same message is enciphered twice then the same ciphertext
will result, unless the starting variable is changed. Moreover, if two messages
agree for the first t blocks, for some t, then the first t blocks of ciphertext will be
the same (again unless a different starting variable is used). Hence the starting
variable S should be different for every message.

A ‘proof of security’ of CBC mode was published by Bellare et al. in 1997
[17]. This proof requires the starting variable S to be random and not selectable
by an attacker; in fact there are also advantages with choosing S to be a secret
(known only to the legitimate sender and receiver). This is supported by recent
work of Rogaway [18], who obtains superior security proofs for this technique
when the starting variable is a one-time secret.

Managing starting variables is clearly a non-trivial issue for the user. One
way of achieving the use of a different value of S for every encrypted message is
simply to generate a random value for S, and to send this with the encrypted
message. However this does not meet the requirement that starting variables
should ideally be secret. Providing a different secret starting variable for every
message can be achieved in a variety of ways, including sending a counter with the
message and using an encrypted version of this counter as the starting variable,
or generating a random value for every message and encrypting it before sending
it to the recipient with the encrypted message.

Use of CBC mode results in a property known as error propagation. That
is, a single bit error in the ciphertext will result in the loss of an entire block
of plaintext. Moreover, the corresponding single bit in the next plaintext block
will also be in error. To see why this holds, consider the decryption step used to
yield Pi (for any i), namely: Pi = dK(Ci)⊕ Ci−1, where d denotes block cipher
decryption. First observe that Pi is a function of just two ciphertext blocks: Ci

and Ci−1. Also, if Ci contains one or more bit errors, then Pi will be completely
garbled because of the randomising effects of the block cipher. Finally, if Ci−1

contains one bit error, then this will affect the recovered value of Pi in precisely
the same bit position.



3.3 A key observation

We next point out a simple yet important property of CBC mode that gives rise
to both padding oracle attacks and more general message-content based attacks
on this mode of operation.

Suppose P1, P2, . . . , Pq is a (padded) plaintext message which has been CBC-
encrypted to obtain the ciphertext C1, C2 . . . , Cq, using the block cipher secret
key K and the starting variable S. Suppose also that a cryptanalyst submits a
ciphertext X1, X2, . . . , Xs−1, Cj , Xs+1, . . . , Xt for decryption, where 1 < s ≤ t
and j > 1, and that the decrypted result is P ′1, P

′
2, . . . , P

′
t .

Then P ′s = dK(Cj) ⊕Xs−1 (regardless of which starting variable is used in
the decryption, since s > 1). Moreover, by definition, Pj = dK(Cj)⊕Cj−1 (since
j > 1). Hence we have the following simple equation:

P ′s ⊕ Pj = Xs−1 ⊕ Cj−1. (1)

This equation is the basis of all the padding oracle attacks referred to above.
It is also the reason why we question here the use of CBC mode without any
accompanying data integrity check. More specifically, equation (1) is the basis
of two main types of attack designed to learn information about the plaintext
corresponding to an encrypted message. These are as follows.

1. The first class of attack is designed to learn information about a single
block of plaintext. Using the above notation, the cryptanalyst sets Xs−1 =
Cj−1 ⊕ Q where Q is a particular bit pattern (e.g. containing just a single
‘1’ bit in a chosen position); the other values Xi can be chosen arbitrarily.
Then, from (1), we immediately have:

P ′s ⊕ Pj = Q. (2)

That is, the attacker can select the exact difference between Pj and the
plaintext block P ′s obtained by the decrypter. If the attacker also has a
means of learning whether or not the recovered plaintext block P ′s generates
some type of formatting error, then this approach will enable the attacker
to learn precisely targetted information about the plaintext block Pj .

2. The second class of attack involves learning information about a pair of con-
secutive plaintext blocks for an enciphered message C∗1 , C∗2 , . . . , C∗t (which
may or may not be be the same as C1, C2, . . . , Cq, although it must have been
encrypted using the same block cipher key K). Suppose that the P ∗1 , P ∗2 , . . . , P ∗t
is the plaintext corresponding to ciphertext C∗1 , C∗2 , . . . , C∗t . Using the pre-
viously established notation, the cryptanalyst sets Xi = C∗i (i 6= s) and
submits the resulting ciphertext to the decrypter.
Note that we are here concerned with the entire plaintext message, and so
we need to consider which starting variable will be used by the decrypter to
recover the plaintext. For the purposes of discussing this case we assume that
the starting variable is always sent with the ciphertext, perhaps in encrypted
form. As a result the attacker has some control over the starting variable; in



particular the attacker can ensure that the starting variable originally used
to encrypt the ciphertext C∗1 , C∗2 , . . . , C∗t is used on each occasion.
Then, applying (1), we immediately have:

P ′i = P ∗i , (i 6= s; i 6= s + 1) (3)
P ′s ⊕ Pj = C∗s−1 ⊕ Cj−1, and (4)

P ′s+1 ⊕ P ∗s+1 = C∗s ⊕ Cj . (5)

In this case the attacker will therefore know that the plaintext message
P ∗1 , P ∗2 , . . . , P ∗t and the message P ′1, P

′
2, . . . , P

′
t recovered by the decrypter

will be identical in all blocks except for numbers s and s+1, where we have:

P ′s ⊕ P ∗s = P ∗s ⊕ Pj ⊕ C∗s−1 ⊕ Cj−1, and (6)
P ′s+1 ⊕ P ∗s+1 = C∗s ⊕ Cj . (7)

If the attacker has a means of learning whether or not the recovered plaintext
will generate some type of formatting error, then this approach will poten-
tially enable the attacker to learn information about P ∗s ⊕Pj . This will arise
if the difference between two correctly formatted messages always possesses
a certain property. We give an example of such an attack below.

4 Error oracle attacks

The idea behind a padding oracle attack was outlined in Section 2. In such an
attack it is assumed that the attacker has one or more valid ciphertexts, and can
also inject modified ciphertexts into the communications channel. Moreover, the
decrypter will, immediately after decryption, check that the padding employed in
the recovered plaintext is in the correct format or not. If it is not, the decrypter
is assumed to generate an error message which can be detected by the attacker
— whether or not an error message is generated provides the ‘padding oracle’,
which can be used to learn information about a message.

We now consider what we call an error oracle attack. In this scenario an
attacker, as for a padding oracle attack, submits an encrypted message to a de-
crypter. The decrypter expects all plaintext messages to contain certain struc-
ture, and we suppose that the nature of this structure is known to the attacker.
We further suppose that, in the absence of such structure, the decrypter exhibits
behaviour different to that it exhibits if the structure is present, and that this be-
haviour is detectable by the attacker. Examples of possible detectable behaviours
include the sending of an error message or the failure to carry out an action,
e.g. sending a response. The attacker then submits carefully tailored ciphertext
messages to the decrypter, and thereby learns information about the plaintext
from the behaviour of the decrypter. Padding oracles are simply a special case
of these error oracles. Note that an error oracle is very similar to what Bellare,
Kohno and Namprempre [19] refer to as a reaction attack. More generally, these
are all examples of what have become known as side channel attacks.



Whilst the possibility of such attacks has been practically demonstrated, such
oracles will not always exist. Indeed, such oracle attacks will probably only be
possible in certain special circumstances. It is thus possible to argue that se-
lection of cryptographic techniques should only take account of such attacks in
circumstances where they are likely to arise. The problem with this is that, when
designing a cryptographic protocol, it is not easy to predict when implementa-
tions might be subject to error oracle attacks. Indeed, the error oracle may exist
in a higher level protocol, designed and implemented completely independently
of the cryptographic functionality. We thus suggest that it is good practice al-
ways to design cryptographic schemes such that error oracles are never a threat,
and we make this assumption throughout the remainder of this paper.

We next give three examples of how error attacks might be realised in prac-
tice. In each case we suppose that an attacker has intercepted a CBC-encrypted
ciphertext C1, C2, . . . , Cq (the target ciphertext) for which as much informa-
tion as possible is to be obtained about the corresponding (padded) plaintext
P1, P2, . . . , Pq (the target plaintext).

Before proceeding note that in the first example we need the attacker to
be able to force the decrypter to re-use the starting variable originally used to
encrypt the message. However, the other two attacks work regardless of which
starting variable the decrypter uses.

4.1 Example 1: A linear error detection attack

Suppose that a higher-level protocol is designed to error-protect all the messages
it sends. Suppose further that the technique used for this error-protection is a 16-
bit CRC (Cyclic Redundancy Check). We thus suppose that the target plaintext
P1, P2, . . . , Pq incorporates a 16-bit CRC. This is, of course, bad practice, but it
might be mandated by a higher level protocol designed completely independently
of the protocol responsible for data encryption. Suppose also that the attacker
can find out, for any chosen ciphertext, whether or not the error detection process
fails after decryption (this is our error oracle).

Next suppose that the attacker constructs a query to the error oracle by
replacing ciphertext block Cs with Cj for some s 6= j (s > 1, j > 1) in the
ciphertext string C1, C2, . . . , Cq (the attacker also arranges for the decrypter to
use the same starting variable as was originally used to produce C1, C2, . . . , Cq).
If the ‘plaintext’ recovered by the decrypter is labelled P ′1, P

′
2, . . . , P

′
q, then, from

equations (6) and (7), we immediately have:

P ′i ⊕ Pi = 0, (1 ≤ i < s and s + 1 < i ≤ q),
P ′s ⊕ Ps = Ps ⊕ Pj ⊕ Cs−1 ⊕ Cj−1, and

P ′s+1 ⊕ Ps+1 = Cs ⊕ Cj .

Given that the original message contains a CRC check, the corrupted plain-
text will contain a valid CRC if and only if the ex-or of the valid message with
the corrupted message has a valid CRC (by linearity). Moreover, from the above



equations the attacker knows precisely the form of this exclusive-or, with the
only unknown being the value of Ps ⊕ Pj . The probability that the corrupted
message will pass the CRC is only 2−16, but in this event the attacker will es-
sentially know 16 bits of information about Ps ⊕ Pj , since we will know that a
degree 16 polynomial divides a polynomial with coefficients involving Ps ⊕ Pj

and some known values.
Hence after an expected number of around 215 CRC error oracle queries we

will have learnt at least 16 bits of information about the message. A message
containing 28 = 256 n-bit blocks will have nearly 216 candidate ordered pairs
(s, j), i.e. there is a good chance that at least one of the ‘corrupted’ messages
will yield a correct CRC. Given that a sufficient number of different error oracle
queries can be constructed, this technique can be used to discover up to 16(q−2)
bits of information regarding the plaintext P1, P2, . . . , Pq.

This general approach can be extended in several ways. First, note that
the ciphertext C1, C2, . . . , Cq could be modified by replacing more than block,
giving more possible variants to be submitted to the error oracle. Second, the
replacement ciphertext block could be taken from a different encrypted message
(as long as it has been encrypted using the same key). Third, the same approach
will work if the message contains any other type of error protection based on a
linear code. If, for example, an 8-bit CRC was used instead of a 16-bit CRC, then
discovering 8 bits of information about the plaintext would require an expected
number of only around 128 queries.

4.2 Example 2: A message structure attack

For our second example we suppose that the target plaintext P1, P2, . . . , Pq con-
tains a fixed byte in a known position. Suppose that the fixed byte is the kth
byte in block Ps for some s > 1. There are many protocols that set certain
bytes to zero (or some other fixed pattern) as ‘future proofing’, e.g. to enable
the recipient of a message to determine which version of a protocol is being used.
Suppose also that if this particular byte of a decrypted message is not set to the
expected value then the decrypter will exhibit a particular detectable behaviour.

This scenario enables the attacker to learn the value of the kth byte of all but
the first block of the plaintext using a series of error oracle queries, the expected
number of which will be around 128 per block, as follows. For each j (1 < j ≤ q;
j 6= s), the attacker constructs a series of ‘ciphertexts’ with modifications to just
two blocks Cs−1 and Cs, where the modified ciphertext has the form:

C1, C2, . . . , Cs−2, Cj−1 ⊕Qt, Cj , Cs+1, Cs+2, . . . , Cq

for t = 0, 1, . . . , 255. The n-bit block Qt has as its kth byte the 1-byte binary
representation of t, and zeros elsewhere. The attacker submits these ciphertexts
to the error oracle in turn, until one is found which does not cause an error,
i.e. the recovered plaintext P ′1, P

′
2, . . . , P

′
q for the manipulated ciphertext has the

property that the kth byte of P ′s is equal to the correct fixed byte. If this occurs,
say, for Qu, then, from equation (2), the attacker immediately knows that

Pj = P ′s ⊕Qu.



That is, given that the kth byte of P ′s is known to equal the fixed byte, the
attacker has discovered the value of the jth byte of Pj . This approach can be
used to find the kth byte of every block of the original plaintext (except for P1).

Similar results hold for parts of bytes or multiple bytes.

4.3 Example 3: Content-based padding oracle attacks

The third attack we consider is a type of padding attack which will only work if
the attacker knows something about the message structure (and this structure
has appropriate properties). This differs from a ‘standard’ padding oracle attack
which does not require any assumptions to be made regarding the plaintext.
However, such a scenario is not particularly unlikely — it also enables us to
attack padding methods which are essentially immune to regular padding oracle
attacks.

First suppose that the CBC-encrypted data is a fixed length message, and
that the attacker knows the message length, which we suppose is equal to (q −
1)n + r (where q and r satisfy q ≥ 1 and 1 ≤ r < n). Suppose, moreover,
that padding method 1 from ISO/IEC 9797-1 [20] is in use; that is, suppose
that padding merely involves adding zeros to the end of the message until the
message length is a multiple of n bits1. Hence the attacker knows that the last
n− d bits of Pq are all zeros.

This scenario enables the attacker to learn the value of the last n − d bits
of all but the first block of the plaintext, using an expected number of around
2n−d−1 error oracle queries per block. For each j (1 < j ≤ q; j 6= 1), the attacker
constructs a series of ‘ciphertexts’ with modifications to the final two blocks
Cq−1 and Cq, where the modified ciphertext has the form:

C1, C2, . . . , Cq−2, Cj−1 ⊕Qt, Cj

for t = 0, 1, . . . , 2n−d−1. The n-bit block Qt has as its final n−d bits the binary
representation of t, and zeros elsewhere. The attacker submits these ciphertexts
to the error oracle in turn, until one is found which does not cause an error,
i.e. the recovered plaintext P ′1, P

′
2, . . . , P

′
q for the manipulated ciphertext has the

property that the final n − d bits of P ′q are all zeros. If this occurs for Qu say,
then, from equation (2), the attacker immediately knows that

Pj = P ′q ⊕Qu.

That is, given that the final n − d bits of P ′q are known to be all zeros, the
attacker has discovered the value of the final n − d bits of Pj . This approach
can be used to find the final n − d bits of every block of the original plaintext
(except for P1).

Note that such an attack would apply equally well to messages padded using
padding method 2 of ISO/IEC 9797-1 [20], i.e. the method that involves adding
a single one to the end of the message followed by the minimum number of zeros
necessary to ensure that the padded message length is a multiple of n.
1 Note that this padding method is only usable in circumstances where the message

length is fixed.



5 Error oracle attacks on stream ciphers

So far we have focussed on CBC mode. However, one of the main objectives
is to consider which method of symmetric encryption is most suited for use in
circumstances where authenticated encryption is not appropriate. We therefore
need to consider the vulnerability of stream ciphers to error oracle attacks, since
stream ciphers are the main alternative to use of CBC mode. Note that by stream
ciphers we mean to include use of a block cipher in CTR and OFB modes.

First, observe that stream ciphers typically do not require the use of padding,
and hence padding oracle attacks are not an issue. Black and Urtubia [12] point
out that, on occasion, stream ciphers do use padding, although it is not clear
how often this occurs; moreover, a best practice recommendation to never pad
plaintext prior to use of a stream cipher could eliminate any such issues.

Second, we claim that error oracle attacks analogous to those based on equa-
tions (6) and (7) do not apply for stream ciphers, since, when using a stream
cipher, different parts of a single ciphertext message are encrypted using differ-
ent keystream sequences; hence it is not possible to learn anything about the
plaintext by exoring two different portions of ciphertext. The same is true when
combining two different ciphertexts since, even if the ciphertext strings are taken
from the same point in the encrypted messages, different keystream sequences
will be used (as long as starting variables are employed to ensure that different
messages are encrypted using different keystream sequences).

Third, observe, however, that error oracle attacks analogous to those based on
equation (2) do apply to stream ciphers. This arises because a single bit change
in stream cipher ciphertext gives rise to a single bit change in the same position
in the recovered plaintext. We consider a simple, but not necessarily unrealistic,
example. Suppose that an attacker knows that two consecutive plaintext bits will
always be equal to one of three possibilities, namely: 00, 01 and 10. Suppose,
moreover, that the combination 11 will cause a formatting error detectable by an
attacker. If the ciphertext bit corresponding to the second of these ‘formatting’
bits is changed, and the resulting ciphertext is submitted to the error oracle,
then if there is no error then the attacker knows that the first plaintext bit of
the two is a zero, and if there is an error then the attacker knows that the first
plaintext bit of the two is a one.

In summary, although stream ciphers are certainly not immune to error oracle
attacks, the risk is somewhat less serious than for CBC mode, since less attack
variants apply in this case. Also note that, although a recently proposed attack on
the GSM stream cipher uses the fact that the plaintext that is stream ciphered is
redundant [21], the main problem arises because of the relatively weak keystream
generator in use, not through padding oracle attacks.

6 CBC mode versus stream ciphers

We now consider whether a stream cipher or CBC mode encryption is more
suitable for use in cases where authenticated encryption is not appropriate. We
start by considering the impact of error oracle attacks.



The recent focus by a number of authors on padding oracle attacks has led
to the impression that problems can be addressed by either managing padding
error messages more carefully or (preferably) by choosing a padding method
which cannot be exploited. An obvious candidate for such a technique is padding
method 2 from ISO/IEC 9797-1 [20], i.e. the method that involves adding a
single one followed by the minimum necessary number of zeros. However we
should point out that Black and Urtubia [12] do point out some residual issues
with this technique, although they would appear to be much less serious than the
issues for other padding methods. Black and Urtubia also propose other padding
methods for which padding oracle attacks cannot succeed.

However, the content-based padding oracle attack described in Section 4.3
suggests that no padding method is ‘safe’ when an attacker knows information
about the structure of the message and has access to an error oracle. Moreover,
simply requiring that systems should be designed not to give error oracles is not
realistic. This is because the error oracle may be part of a higher-level protocol,
designed completely independently of the protocol layer implementing encryp-
tion. That is, the presence of such error oracles may be something out of the
hands of the designer and implementer of the encryption system.

We next observe that, as discussed in Section 5, CBC mode encryption is at a
significantly greater risk from error oracle attacks than stream cipher encryption.
This is because use of a stream cipher typically involves no padding, and only
some error oracle attacks work.

This suggests the following preliminary conclusions, namely that: (a) authen-
ticated encryption should be used wherever possible, and (b) if unauthenticated
encryption is necessary, then stream ciphers appear to offer certain advantages
over CBC mode with reference to side channel attacks. We next looks at how
these preliminary findings need to be modified in the context of the two ex-
ample cases where unauthenticated encryption is appropriate (as discussed in
Section 2).

– Applications where data errors are acceptable. In such an application it is very
important that the encryption technique does not significantly increase the
error rate. That is, if the channel has the property that the error probability
for a received ciphertext bit is p, then the probability of an error in a plaintext
bit after decryption should not be significantly greater than p. This property
holds for a stream cipher, but does not hold for CBC mode, where the error
probability will be increased from p to around (n/2+1)p (for small p). Hence,
in this type of application, as exemplified by the choice of a stream cipher for
GSM and UMTS encryption, a stream cipher has very significant advantages
over CBC mode.

– Very high bandwidth channels (bulk encryption). Here it is important that
the cipher be capable of running at the highest possible speed (for a given
complexity of hardware). Typically, stream ciphers, such as SNOW 2.0 [22]
or MUGI [23], can be implemented to run significantly faster than CBC-
mode block cipher encryption. Hence again stream ciphers offer significant
practical advantages.



7 Conclusions: The end of CBC mode?

As we have mentioned above, the existing discussions of padding oracle attacks
give the impression that the error oracle problem can be solved by designing
padding methods appropriately and ensuring that padding error messages are
carefully designed. Whilst there is no doubt that, if CBC mode it to be used,
then it should be used with a carefully selected padding method2, this by no
means solves all the issues associated with error oracles.

However, we would suggest that the problem is more general than this. As
we have demonstrated, if messages to be encrypted contain certain types of
known structure, then error oracle attacks may be possible regardless of the
padding method used. Moreover, the designer of the encryption protocol cannot
always predict the nature of the messages that are to be protected using the
protocol, and hence preventing such attacks by stopping structured messages is
essentially impossible. As we have already pointed out, this problem is known
to arise elsewhere, as exemplified by certain attacks on GSM encryption [21].

Whilst all these problems would be avoided if the encryption protocol pro-
vided both confidentiality and integrity checking, we have shown that this is not
always appropriate. Thus the designer of an symmetric encryption system for
which it is not appropriate to provide integrity protection is typically faced with
a choice between CBC mode encryption and use of a stream cipher. We suggest
that a stream cipher is always to be preferred for two main reasons: first, stream
ciphers are less prone to error oracle attacks (although not completely immune),
and second, they appear to be a much better fit to those particular applications
where it is not appropriate to provide integrity checking. These considerations
apply despite the fact that stream ciphers are ‘IV sensitive’, i.e. re-use of an IV
for a stream cipher is very dangerous.

Hence, as a result, for any system employing symmetric encryption, the choice
would appear to be between a combination of symmetric encryption of some kind
and an integrity check (such as a MAC) or a stream cipher (including use of a
block cipher in CTR or OFB modes). However, as argued by a number of authors
(see, for example, Bellare, Kohno and Namprempre [19]) it is important to com-
bine encryption and authentication with care to avoid unintended weaknesses.
This suggests that it is probably always desirable to use a specifically designed
authenticated-encryption mode (some of which also have efficiency advantages),
rather than an ad hoc combination of encryption and a MAC.

Thus our conclusion is that there would appear to be two main choices for
the user of a symmetric encryption system: an authenticated-encryption system
(see, e.g. [7–10, 24]) or a stream cipher. (Of course, there do exist other possibil-
ities, including the use of all-or-nothing transforms, introduced by Rivest [25],
and modes based on tweakable block ciphers [26] included in draft standards
produced by the IEEE Security in Storage Working Group — see siswg.org).

2 This observation has influenced the UK ballot comments on ISO/IEC FCD 10116
[4], in which it is suggested that the revised standard recommends the use of Padding
Method 2 from ISO/IEC 9797-1 [20].



This prompts the suggestion in the title of this paper that, except for legacy
applications, naive CBC encryption should never be used, regardless of which
padding method is employed.
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