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INFINITE 
DOUBLY 

FAMILIES OF QUASIPERFECT AND 
QUASIPERFECT BINARY ARRAYS 

Indexing terms: Image processing, Matrix algebra, Binary 
sequences 

A quasiperfect (doubly quasiperfect) binary array B is an 
s x t array with all entries plus or minus one, such that all 
periodic autocorrelation coefficients of [-:I (of [-: -9) are 
zero, except for shifts (U, U )  where U 0 mod s and U = 0 mod 
t .  We construct new inIinite families of quasiperfect and of 
doubly quasiperfect binary arrays. 

Introduction: Let A = (ajj), 0 I i I s - 1, 0 I j < t - 1, be an 
s x t array such that aij = 1 or - 1 for all i and j .  A is called a 
binary array of size s by t .  We define the periodic autocorrela- 
tionfunction R of A at displacement (U, U) as 

. - I  , - I  

N u ,  0)  = .c c aijai+", j + "  
r=o j = o  

where 0 I U 5 s - 1,O I U I t - 1, and we consider the sums 
i + U and j + U to be addition modulo s and t ,  respectively. A 
two-dimensional binary array A is called perfect if R(u, U) = 0 
for all (U, U) # (0, 0). We write PBA(s, t) to denote a perfect 
binary array of size s by t .  Two-dimensional perfect binary 
arrays were first considered by Calabro and Wolf' and corre- 
spond to difference sets in abelian groups.' They have applica- 
tions in coded aperture imaging3 and optical image 
alignment? For two-dimensional alignment, the pattern to be 
aligned is projected onto a periodically extended copy of the 
stored image and the value of the autocorrelation function 
used to determine when alignment has occurred. 

Quasiperfect and doubly quasiperfect binary arrays were 
introduced by Jedwab and Mitchell.' Wild6 has shown that 
these arrays correspond to relative difference sets in abelian 
groups and has given the following definitions as alternatives 
to those in Reference 5 :  

Definition: Let B be a binary array of size s x t. B is called 
quasiperfeet if the 2s x t array 

E = [ - : ]  

has R,.(u, U) = 0 for all (U, U) # (0, 0) or (s, 0). We write 
QPBA(s, t) to denote a quasiperfect binary array of size s x t .  

Definition: Let C be a binary array of size s x t. C is called 
doubly quasiperfect if the 2 x 2t array 

has R,.(u, U) = 0 for all (U. U) # (0, 0), (s, 0). (0, t )  or (s, t). We 
write DQPBA(s, t) to denote a doubly quasiperfect binary 
array of size s x t .  

In this paper we shall construct seven infinite families of 
quasiperfect binary arrays and three infinite families of double 
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quasiperfect binary arrays, only two each of which were pre- 
viously known. Optical alignment based on these arrays is 
possible if the method of periodic extension of the stored 
image is modified. For example, using a DQPBA(s, t), the 
stored image consists of a chequerboard pattern of s x t 
arrays with the black and white shading of the board corre- 
sponding to positive and negative copies of the array. This 
application is particularly useful when st # 4k2 for any integer 
k since in this case a PBA(s, t) cannot exist.' Furthermore, 
when st = 4k2, quasiperfect and doubly quasiperfect binary 
arrays may be used in the construction of perfect binary 
arrays of larger size than s x t.5.6 

Construction theorems: We shall require the following three 
theorems : 

Theorem 1 (Jedwab and M i t ~ h e l [ ) : ~  If there exists a QPBA(s, t) 
and a DQPBA(s, t) then there exists a QPBA(2s, 2t) and a 
QPBA(s, 4t). 

Proof (outline): Suppose B is a QPBA(s, t) and C is a 
DQPBA(s, t). Then the 2s x 2t array formed by interleaving 
the rows of [B Bl and [C -q, and the s x 4t array formed 
by interleaving the columns of [B 4 and [C -q, are both 
quasiperfect. 

Theorem 2 :  Ifs is odd then there exists a PBA(s, t) if and only 
if there exists a QPBA(s, t). 

Proof: Let A = (ajj)  and B = (b,) where b, = (- 
is a PBA(s, t) if and only if B is a QPBA(s, t ) .  

Theorem 3 (Wild):' If t/gcd(s, t )  is odd then there exists a 
QPBA(s, t) if and only if there exists a DQPBA(s, t ) .  

Constructing infinitefamilies of arrays: 

Corollary I :  If there exists a QPBA(s, s) then there exist the 
following infinite families of arrays: 

Then A 

QPBA(2"s. 2"s) DQPBA(23, 2"s) QPBA(2"s, 2"c2s) 

( n  2 0) 

Proof: We use induction on n. Given a QPBA(2"s. 2"s), by 
Theorem 3 there exists a DQPBA(2"s, 2"s). By Theorem 1 we 
may construct from these two arrays a QPBA(2"+'s, 2""s) 
and a QPBA(2"s, 2""s). establishing the induction. 

Corollary 2: There exist the following infinite families of 
arrays: 

QPBA(2",2") DQPBA(2",2") QPBA(2",2"+*) 

QPBA(3.2"+', 3.2"") DQPBA(3.2"+', 3.2"+'), 

QPBA(3.2", 3.2"+') (n t 0) 

Proof: There exists a QPBA(1, 1)  and a QPBA(6, 6).5 Apply 
Corollary 1. Also the existence of a PBA(3, 12)' implies the 
existence of a QPBA(3, 12) by Theorem 2 (represented by case 
n = 0 of the sixth family). 

Whereas the third and sixth families above are new, the 
other families were implicitly constructed in Reference 6. 

Corollary 3: If there exists a QPBA(2s, s) then there exist the 
following infinite families of arrays: 

QPBA(2'+'s, 2"s) DQPBA(2"+'s, 2"s) 

QPBA(2"+'s,2"+'s) QPBA(T+'S ,~"+~S)  (n 2 0) 

Proof: We use induction on n. Given a QPBA(Z"+'s, 2"s), by 
Theorem 3 there exists a DQPBA(2"+'s, 2"s). By Theorem 1 
we may construct from these two arrays a QPBA(T+'s, 
2""s) and a QPBA(2"+'s, 2"+'s), establishing the induction 
for the first three families. Transposing a DQPBA(2"+'s, 
2"+'s) we obtain a DQPBA(Z"+'s, 2""s) which, together with 
a QPBA(2"+'s, 2"+'s), gives a QPBA(2"+'s, F 4 s )  by 
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Theorem 1. This establishes the induction for the fourth 
family. 

Corollary 4 :  There exist the following infinite families of 
arrays: 

QPBA(2"+',2") DQPBA(2"+',2") 

QPBA(2n+',2"+2) QPBA(2"+',2"+4) (n 2 0) 

Proof: The array [I] is a QPBA(2, 1). The result follows by 
Corollary 3. 

None of the above families has heen previously reported. 

Further construction methods: A binary sequence (ai) of length 
s may be identified with an s x 1 binary array (aij) by drop- 
ping the second subscript of the array. We may then define a 
perfect binary sequence of length s to be a PBA(s, 1) and a 
quasiperfect binary sequence of length s to be a QPBA(s, l), 
calling the sequence nontrivial ifs z 1. 

Suppose that A = (ai) and B = (b,) are binary sequences of 
length s and t ,  respectively, and that C = (si) is the s x f 
binary array formed by cij = a ib j .  It is straightforward to 
establish the following: 

(i) If A is a quasiperfect and B is perfect then C is quasiperfect. 
(ii) If A and B are quasiperfect then Cis  doubly quasiperfect. 

No nontrivial perfect binary sequence is known except with 
length 4, and it has long been conjectured that no others exist. 
If a nontrivial quasiperfect binary sequence with length other 
than 2 could be found, then the construction methods above, 
as well as Theorems 1 and 3, could be used to construct new 
quasiperfect and doubly quasiperfect binary arrays. Unfor- 
tunately a computer search has shown that no quasiperfect 
binary sequences with length greater than 2 and less than 34 
exist. 

Summary: We have constructed seven infinite families of 
quasiperfect binary arrays whose sizes are 

2" 2" 3.2.-+1 3.2"+1 2" 2"+2 3.2" 3.2"+2 

and 2"+' x Y4 2°C' 2" 2"+' 2"+2 

(n 2 0) 

of which only the first two families were previously known. 
Every QPBA(s, t )  known to the authors has (s ,  t )  belonging to 
one of the above parameter sets. 

We have also constructed three infinite families of doubly 
quasiperfect binary arrays whose sizes are 

2" 2" 3.2"+ I 3.2"+ 1 

and 

2"+' x 2" (n 2 0) 

of which only the first two families were previously known. 
Every DQPBA(s, t )  known to the authors has (s, t )  or ( t ,  s )  
belonging to one of the above parameter sets. 
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MICROWAVE SCATTERING BY METAL 
CUBES AND THE EFFECT OF PERTURBING 
THE CUBE GEOMETRY 

Indexing terms: Microwave circuits, Microwave techniques 
and systems, W a w  scattering, Microwaves, Microwave mea- 
surement 

New measurements are made of the total scattering cross- 
sections of metal cubes having a range of sizes, for the fre- 
quency interval 8 to lZGHz The effect of small changes in 
the geometry of certain edges has been identified as influ- 
encing the scattering properties. 

The detailed calculation and measurement of the backscatter- 
ing properties of metallic cubes have been discussed recent- 
IY.'.~ Presentation of the theoretical work necessary to predict 
the backscatter cross-sections of perfectly conducting cubes 
having side sizes in the range 0.15 to 4 wavelengths, together 
with backscatter measurements, has demonstrated that this 
difficult problem can be d k b e d  analytically.',2 Cote et 
al.' have also calculated and plotted the total-loss cross- 
section (U=) of metallic cubes as a function of cube circum- 
ference, and this is plotted together with calculated results for 
conducting spheres, but there are no directly measured results. 

The aim of this letter is (a) to present measurements of uT 
for a range of sizes of aluminium cubes and (b) to investigate 
possible changes in the values of uT when the cube geometry 
is altered slightly by machining a small amount of metal off 
certain edges. 

Measurements of uT were taken between 8 and 12GHz 
when cubes were inserted as perturbing objects in a large open 
resonator (mirror diameter = 1 m; mirror radius of curvature, 
and separation = lO.5m and 4,0m, respectively; unloaded Q- 
factor -11OooO). This was operated on each of 100 funda- 
mental modes within 8 to l2GHz and a microcomputer 
recorded and processed the experimental data to give 99 mea- 
sured values of ur. The basic operation of the system and its 
general application to the measurement of ur have been 
described previo~sly.~ 

In Fig. 1, measured values of total cross-sections are pre- 
sented for a range of sizes of cubes machined accurately from 
free-cutting aluminium. Results were taken throughout the 
frequency interval of 8 to 12GHz and each cube was posi- 
tioned in two orientations, I and 11. For orientation I, one face 
of the cube was broadside to the wave, i.e. the face lay in a 
plane of constant phase of the wave with four edges parallel to 
the E-field. For orientation 11, the cube was rotated through 
45" to a position where, with one (leading) edge parallel to the 
E-field and phase fronts, it presented a symmetrical geometry 
to the wave. It is interesting to note (Fig. 1)  that for the 
smaller cubes, measured values for uT depend little on the 
orientation with greater differences (between orientations I 
and 11) being observed for the larger cube sizes. 

Selected results, taken at 0.5 GHz intervals from the data of 
Fig. 1 are replotted in Fig. 2, in the form, uT/s2 = uTN against 
4s/& s being the length of the cube edge and I the wavelength. 
Five differently sized cubes were used and, for each one, 
results cover the frequency range 8 to 12 GHz. These discrete 
results are for cubes in orientation I. A similar set of results 
taken for cubes in orientation 11, are represented (for clarity) 
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