Key Distribution without
Individual Trusted Authentication Servers*

L. Chen, D. Gollmann and C. Mitchell
Information Security Group
Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

Abstract

Some recent research on key distribution sys-
tems has focussed on analysing trust in authentica-
tion servers, and constructing key distribution proto-
cols which operate using a number of authentication
servers, which have the property that a minority of
them may be unirustworthy. This paper proposes two
key distribution protocols with multiple authentication
servers using a cross checksum scheme. Both proto-
cols are based on the use of symmetric encryption for
verifying the origin and integrity of messages. In these
protocols it is not necessary for clients to trust an indi-
vidual authentication server. A minority of malicious
and colluding servers cannot compromise security and
can be detected. The first ‘parallel’ protocol can pre-
vent a minority of servers disrupting the service. The
second ‘cascade’ protocol has to work with other secu-
rity mechanisms in order to prevent a server breaking
the procedure by refusing to cooperate. As compared
with other proposed protocols with similar properties
these two protocols require less ezchanged messages.

1 Introduction

In the context of symmetric cryptography, if two
entities sharing no secret want to securely communi-
cate with each other, they typically do so with the
assistance of a third party. Typically this third party
is an authentication server who provides an authenti-
cation service including distributing a secure session
key to these entities as clients. Such an authentica-
tion server is sometimes referred to as a trusted third
party since every client has to trust it by sharing a
secret with it. The security of a typical key distri-
bution protocol depends on the assumption that the
authentication server is trustworthy. Unfortunately
not every authentication server is always trustworthy.
If the authentication server is malicious, or is compro-
mised, the security of communications between these
clients cannot be guaranteed.

In order to make a protocol work in an environ-
ment where clients do not trust an individual server,
it is important to find authentication schemes which

*This work is a part of DTI/EPSRC Link Personal Commu-
nications Programme project named ‘Security Studies for Third
Generation Mobile Telecommunications Systems’ and is funded
by the UK EPSRC under research grent GR/J17173.

1063-6900/95 $4.00 © 1995 IEEE

30

reduce the requirement for trusting servers. Some re-
cent research [1, 2, 3, 6, 8] has focussed on analysing
trust in authentication servers, and constructing se-
cure key distribution protocols which do not require
trusting individual authentication servers. A range of
possible approaches in which the use of a more com-
plex authentication service results in a more secure
and available authentication service have been consid-
ered.

One approach is to allow a client to choose which
server is trustworthy and which is untrustworthy from
a set of authentication servers, typically by apply-
ing a security policy or the history of performance
and reliability. Yahalom et al [8] proposed a proto-
col which allows a client or his agent to choose trust-
worthy authentication servers and avoid untrustwor-
thy ones. One difficulty with this scheme is that a
client may sometimes find it difficult to distinguish
between trustworthy and untrustworthy servezs.

Another approach, and one which forms the basis of
the schemes in this paper, uses many servers simulta-
neously to achieve authentication. Gong [2] proposed
a protocol with multiple authentication servers such
that a minority of malicious and colluding servers can-
not compromise security or disrupt service. In that
protocol two clients participate in choosing a session
key, and each relevant server is responsible for con-
verting and distributing a part of the session key.

However in some environments it is necessary to
let servers, not clients, choose a session key, for exam-
ple, in environments where clients cannot randomly
and securely generate a session key or candidate keys.
One potential problem with letting servers be involved
in choosing candidate session keys is providing clients
with the means to verify that they are provided with
good candidate keys. In this paper, a candidate ses-
sion key is ‘good’ if it is received by both clients. In or-
der to solve this problem, we discuss a cross checksum
scheme, which works under the assumption that more
than half the servers follow the protocol specifications
correctly. We let all servers participate in choosing
candidate session keys. Each server randomly and se-
curely generates a candidate key. Two clients partic-
ipate in verifying these keys by exchanging the rele-
vant check values using a one-way globally known hash
function in order to check whether every candidate
key is received by both clients correctly. These clients

then eliminate bad candidate keys and use good keys
to compute a final session key. It is not necessary for
clients to trust any individual server because no single
server can know the session key.

Based on this scheme we propose two key distribu-
tion protocols with an arbitrary number of authentica-
tion servers. In these protocols a minority of malicious
and colluding authentication servers cannot compro-
mise security and can be detected. The first ‘parallel’
protocol can prevent a minority of servers disrupting
the service. The second ‘cascade’ protocol has to work
with other security mechanisms in order to prevent a
server breaking the procedure by refusing to cooper-
ate. If more than half the servers follow the protocol
specifications correctly, the following properties will
hold for the session key:

o it will be fresh (i.e. not a replay of an old key) and
random (i.e. not predictable by any party),

¢ it will be known only to the clients and not to any
server,

o it can be checked by both clients, and

o it has not been chosen by any individual client or
server.

The two protocols with n servers we discuss in this
paper use 2n + 4 and n + 5 messages, whereas Gong’s
protocol [2] uses 4n + 3 messages.

The rest of the paper is organised as follows. The
relevant notation and assumptions made in this pa-
per are described in the next section. A typical au-
thentication protocol and how trust problems can arise
are discussed in Section 3. We then briefly illustrate
Gong’s protocol [2] in Section 4. After that we anal-
yse a cross checksum scheme in Section 5. Based on
this scheme we propose two key distribution protocols,
one of which is a parallel protocol specified in Section 6
and the other is the cascade protocol in Section 7. We
conclude in Section 8.

2 Notation and assumptions

We now review the main assumptions made in this
paper. All protocols considered here are based on sym-
metric encipherment. We assume that two clients A
and B wish to communicate securely with each other.
For this purpose they need to verify the identity of one
another and to establish a shared session key between
them, but before the authentication processing starts
they do not currently share any secret. So they make
use of a third party, an authentication server § (or a
set of servers Sy, ..., Sp).

In the protocols using a multiplicity of servers we
also assume that:

o A and B do not trust any individual server,

o A and B believe more than half the servers will
correctly follow the protocol specifications,

o A and B share secret keys K 45, and Kps, respec-
tively with S;.

31

We assume that the encipherment operation used
provides origin authentication and integrity services,
1.e. a received message encrypted using a shared secret
must have been sent by the possessor of the secret in
the form that it was received.

In the protocol descriptions, A — B : m indicates
that A sends message m to B; {m}x denotes m en-
crypted with the key K; z,y denotes the concatena-
tion of z and y; g() and h() are one-way hash func-
tions; and [m| denotes the integer part of m.

3 A typical protocol and an associated

problem

We now discuss a typical protocol which uses sym-
metric encryption techniques and lets an authentica-
tion server S choose the session key.

This protocol is similar to a protocol in Clause 6.3 of
ISO/IEC DIS 11770-2 [5). In this protocol we suppose
that A and S share a secret key K45, and B and S
share another secret key Kps.

My: A—-B: A B/Ny4

Mz: B—-ASZ A,B,NA,NB

Ms: S—B: {ANg,Kaptxgs,
{B,Ns,KuaB}k,s

My: B—A: {B,N4s, Kaplx,s,
{A)NAiN’B}KAB

Ms;: A—-B: {B;N'B,»NA}KAB

where N4, Np and N are three nonces, and K4p is
a session key for 4 anﬁ B.

A sends B a message M; containing a nonce Ng4
as a challenge; B then sends S a message M; includ-
ing nonces N4 and Npg; S chooses a session key K45
and distributes it to A and B in M3; by checking the
enclosed nonces, 4 and B verify that the reply of S
is fresh and retrieve K 4p; finally A and B complete
a handshake. After this protocol executes, A and B
have agreed upon session key K p, and A and B be-
lieve that K4p has been retrieved by each other and
is appropriate for use between them.

A possible problem with this protocol is that A and
B have to trust S in order to obtain the authentication
information and the session key. S keeps total control
over cornmunications between A and B because S does
all the ‘verification of identities’ and knows the session
key. This protocol is vulnerable to active ‘untrustwor-
thy third party’ attacks. That is, if S is malicious, he
can intercept communications between A and B, can
impersonate A to B or B to A, and can leak A’s and
B’s secrets.
with multiple

4 Gong’s protocol

servers
In order to solve this problem with the above pro-
tocol, Gong [2] proposed a different protocol, again
based on symmetric encryption, but with n servers
S1,...,55 instead of one server. Each server is respon-
sible for converting and distributing a part of the ses-
sion key. In the following protocol, the steps M;;,

M3, My; and Ms; are repeated for ¢ = 1,...,n. Steps
My; and M,; must all be completed before step Mj;
is performed; similarly steps My; and Mj; must all
completed before step M.

My: A—S;: AB

Mz;: S;i—A: Ng,

Ms: A—B: A B N4 Ns,
{A,B,Ns,,21,C(2) }kas,s" " s
Ns,,{A,B,Ns_,zn,C(z)}k s,

My;: B—S;: A,B,Ny4 Npg,

{4, B, Ns,;,z:,C(z)}k s,
{B, A, N5, %, C(y) }kss,

Msi: Si— B: {B,Na,yi,C(y)}k.s,
{A1N31zixc(z)}KBs.;

Meg: B— A: {B,NAxyl:C(y)}KA.sl:""
{BINA’y"’C(y)}KAS"’
{Nalkis N

M;: A—B: {Nplk,s

A (or B) chooses a candidate session key z (or y)
and computes z; = fyn(z,%) {(or ¥i = fi,n(y,1)) for
each server S;. Here f;, is a threshold function [4]
that produces n shadows of z (or y) in such a way that
it is easy to recover z (or y) from any t shadows, but
less than t shadows reveal no information about z (or
y). To compute f; »(z) (or fi,n(y)), 4 (or B) chooses a
random polynomial p(z) of degree t —1 (or p(y)) with
p(0) = z (or pSO) =1y). A (or B) then computes z; =
ft,n(zyi) = p(i (OI Yi = ft,n(y; 7’) = p(’L)), 1=1,..,n.
Due to the property of interpolation, given any ¢ of
the z;'s (or yi’s), B (or A) can easily determine p(z)
(or p(y)) and recover z = p(0) {or y = p(0)) [7]. With
less than ¢ shadows, no information about z (or y) can
be determined.

In this protocol, a cross checksum scheme is used to
verify the legitimacy of the shadows. Cross checksums
for z and y are defined as C(z) = {g(z1),...,9(za)}
and C(y) = {g(m),..-,9(¥n)}, respectively, where
g() is a one-way hash function. The session key is
computed by Ksp = h(z,y), where h() is a pre-
determined one-way hash function. In order to pre-
vent A or B imposing the session key, the choice of
h() is limited; for example, it cannot be an exclusive-
or operation. In this protocol, the total number of
messages 1s 4n 4+ 3.

It was said in Gong’s paper that in fact there is a
major difficulty in letting servers be involved in choos-
ing the session key, because clients do not have a se-
cure communication channel for verification purposes
before authentication completes, and thus they can-
not easily reach an agreement on what they have re-
ceived from which servers. As mentioned in Section
1, in some environments it is useful to let servers, not
clients, choose a session key. In the next section, we
propose a cross checksum scheme which is the basis
for the two new protocols given in this paper. Using

32

this cross checksum scheme, all servers can participate
in choosing candidate session keys, and two clients are
able to verify them and use all good candidate keys to
compute a session key.

5 Cross checksums of candidate keys

Cross checksum schemes were used by Gong [2] and
Klein et al [3] in key distribution protocols. This
section discusses a particular cross checksum scheme
which can be used for authenticated key establish-
ment. We ignore for the moment the issue of verifying
the ‘freshness’ of the keys, i.e. we ignore the entity
authentication issues. In the next two sections we de-
scribe authentication protocols which use this cross
checksum technique, and thus provide verified session
key establishment between A and B.

Algorithm 1 The cross checksum scheme works as
follows.

1. S; generates candidate session keys K 4; and Kp;,
and sends them encrypted under K 45; and Kps;
to A and B respectively. If K ; and Kp; are good
candidate keys, they satisfy K4; = Kp;.

2. B computes the check values g(Kp;) of the can-
didate keys Kp;, where g() is a globally known
one-way hash function, then performs the follow-

ing calculations and sends G'g(1),---,Gg(n) to
A.
g(Kpi) if B believes that
Kgi) = it has received the
g\8Bi) = candidate key
EM1 otherwise,
Gp = gI(KBl)a v '7gI(KBn)J
{GB}ky, if B believes that
G (D) = it has received the
5(1) = candidate key
EM?2 otherwise,

where EM1 and EM2 are error messages.

3. On receipt of G(1),-+,Gx(n) from B, A com-
putes the check values g(K i) of the candidate
keys Kai, then performs the following calcule-
tions and sends G'4(1),---,G"(n) to B.

9(Kai) if A believes that
both A and B have
received the same key
otherwise,

9'(Kai) =
EM1
Ga=9g"(Kar), -+, 9 (Kan),

{Ga}k.; if A believes that
both A and B have
received the same key
otherwise.

GL(1) =
EM?2

A possible set of message ezchanges is then as follows,
where the first step My; is repeated for i = 1,...,n.

]

Steps M,; must all be completed before step M,.

Mlt' : Sl' — B: {KBi}Kas..) {KA‘I'}KAS‘

My: B—A: {Kalkas, " {Kan}kas,,
G’B(l)’ " "G’B("’)

Ms: A—B: GY(1),---,GY4(n)

We now show how A and B can use the exchanged
information to agree a session key. In order for this
process to work, A and B must trust at least {n/2+1
of the servers to behave correctly, i.e. at least [n/2+1
of the pairs K 4; Kp; satisfy K4; = Kp;.

On receipt of M;; (or waiting a time-out period if
an expected message does not arrive), B firstly checks
whether the message with a correct syntax from every
server has been received, and then creates a sequence
Gp =g'(KBi), ..., 9 (KB,, Because g() is a one-way
hash function it does not disclose the secret of the cor-
responding candidate key. B now wants to show Gg
to A. However it is necessary to guarantee that any
server can read Gp but cannot modify it without be-
ing detected. One solution is for B to send A another
sequence G/ B(1), ..., G(n).

After rccelvmg Mz, A generates a similar sequence
Gfd(l) !.(n) by checking whether both A and B

ave recelvea the same key. A firstly decrypts each
" (2) using K 4;. Because more than half the servers
foﬂow the protocol specifications correctly, some K 4;
may not be the same as Kp;, but at least |n/2+1] of
the values K 4; are equal to the corresponding values
Kp;; A may not get all Gp encrypted by B, but A can
decrypt at least [n/2+1]| Gp copies; some copies may
not be the same as others, but at least {n/2+1] copies
must be same. Checkmg these copies, A eliminates the
minority of different copies and keeps the majority, so
long as the majority contains > n/2 elements. A then
computes the values of g(K4;), and compares them
with the values of g(Kp;) included in Gp. After that
A creates G4 and G/, (1),..., G4(n).

On receipt of M3, B checks it in the same way. Fi-
nally A and B retrieve all ‘good’ candidate keys which
are used to construct a session key K4sp = h(all the
good candidate keys), where k() is a pre-determined
one-way hash function.

Theorem 2 Using the above cross checksum _scheme,
A and B can retrieve all good candidate session keys,
and the number of these keys is at least |n/2 + 1],
given the following four assumptions:

1. There are m servers out of a total n servers fol-
lowing the protocol specifications correctly, m >

[n/2+1].

2. A and B both correctly follow the protocol specifi-
cations.

3. The n—m bad servers can possibly do the follow-
ing:

o not send messages to A and B or send mes-
sages with the wrong syntaz;

o send different candidate keys to A and B;

© eavesdrop on G'(1), ..., G'4(n) and G(1),...,

G'5(n); and
o modify G'y(1),. n) or Gg(1),...,Gs(n)

ﬁ(
in transit between and B

Note that the system will clearly fail if malicious en-
tities (either dishonest servers or other third parties)
interfere with communications between A and B (or
between B and the honest servers). We therefore as-
sume that A and B will request messages to be sent
again until the protocol succeeds.

Proof: Suppose that m is the number of ‘good’
servers, where m > [}:1./ 2+ 1}, and j is the number of
K 4i Kp; pairs which are received by A and B, and
satisfy K 4; = Kp;.

1. On the above assumptions and the property of
encipherment algorithms assumed in Section 2, j
must satisfy j > m > |n/2 + 1].

2. If G5(1),...,G'5(n) have not been modified by
bad servers, ' A obtains j copies of Gp encrypted
by B. A combination of the n—j malicious servers
can only consiruct at most n — j consistent val-
ues of an ‘incorrect’ Gp, because of the use of
encryption.

3. Hence A retrieves j values K4; which are also
received by B. Furthermore G4 includes j check
values and n — j error messages EM1, and G/,(1),
., @4 (n) includes j copies of G4 encrypted by A
and n — j error messages EM2.

4. For the same reasons mentioned in items 2 and
3, B obtains G4 generated by A and retrieves j
copies of Kp; which also are retrieved by A.

We arrive at the conclusion that A and B can ob-
tain at least |n/2 4 1| pairs K4; Kp; which satisfy
K4i = Kpi. o

Theorem 38 The above cross checksum scheme does
not work if m < [n/2+1].

Proof We describe a possible attack. Suppose
= L(n— 1)/2], e.g. thete are lb(n 1)2| good servers
S 1y oy S|(n—1)/2] and |n/2+1]| bad servers SL(n+1)/2Jx
S who are colluding. These n servers send n pairs

of K4i Kpi to A and B. B creates G’3(1), ..., G(n)
where
GIB(“) = {g(KBl))"'vg(KBn)}KB; i=1,.,n

The [n/2 + 1} bad servers then modify Gj(1),...,

5(n) to G'5(1), - -, G'g(n), where
G (3) i=1,..,|(n—1)/2]
’B(i)= {EMI)'")EMlag(KBI_(n+1)/2J)y'"1
9(KBn)} K.

1= |(n+1)/2],...,n

From the above message, A derives the wrong re-
sult that the first |(n — 1)/2] candidate keys are bad
and the last {n/2 + 1| candidate keys are good, and
then eliminates ‘bad keys’ and keeps ‘good keys’ in

(1), -+, G'%(n), where
EM2 i=1,..,|(n-1)/2]
Gk(‘b) = {EMl,...,EMl,g(KAL(,,H)/zJ),...,
g(KA")}KAi

i=|(n+1)/2),0n

After receiving G'4(1),--+,G’(n), B believes that A
has retrieved the same last [n/2 + 1| candidate keys.
A and B use these candidate keys to compute the final
session key, which means that the |n/2+ 1] colluding
servers can obtain the session key.

If m < |[(n — 1)/2], the above attack is still valid.

If m = n/2 when n is even, A (or B) may find
it difficult to make a decision about which candidate
keys should be kept or eliminated.

Thus the cross checksum scheme does not work if
m< [n/2+1). n]

6 A parallel protocol

In this section we present a key distribution proto-
col based on the cross checksum method of the pre-
vious section. A initiates the protocol by sending a
request to B in M;.

My: A—B: AB,Ny4

B then contacts every server S; to let him choose a
candidate session key K;. The following steps My;
and Mj; are repeated fori =1,...,n:

Mzi H
M3,’ .

B —Si: AB,N4 Np
S;—B: {4,Np,K}x,s,,

{B, N4, Ki}x,s,

After receiving answers from the n servers (or wait-
ing a time-out period if an expected message does
not arrive), B organises two sequences Gp =
g'(K1), ..., ¢'(Kn) and GR(1),..., Gig(n), as defined in
Algorithm 1, and then sends the foﬁowing message to
A.

My: B— A: {B,Na Kilk,s,

{B) Ny, K‘n}K,as"a
G’(1),...,Gg(n)

On receipt of My, A checks it and organises
two similar sequences G4 = ¢'(Ki),...,9'(Kn) and

(1), ..., G'4(n), as specified in Algorithm 1. A then
sends G',(1), ..., G's(n) to B in Ms. B checks it in the
same way. A and B thus obtain the same good candi-
date keys to construct a session key K5 = h(all the
good candidate keys). The last two steps are a hand-
shake to inform each other that the correct session key
has been retrieved.

34

Ms: A— B: Gy(1),..,G4(n),
{BsNByN’A}KAB
Ms: B—A: {AN) Nelx.s

In this protocol, if at least one good K; is random
and fresh it is guaranteed that the session key K 4p is
random and fresh. Because only A and B know all the
good candidate session keys, the session key K4p is
known only to A and B and not to any server (as long
as n > 2). Since K4p results from the verification
between A and B, it is verifiable for both A and B.
No one among the n servers and the two clients can
impose K 4p. So the session key K 45 in this protocol
satisfies the four properties mentioned in Section 1 on
the assumption that more than half the servers follow
the protocol specifications correctly.

As compared with Gong’s protocol with similar
properties, this protocol has the following advantages.

1. The number of messages in this protocol is 2n+4
which is lower than 4n + 3;

2. Because the candidate session keys are chosen by
servers, the choice of k() is less limited than in
Gong’s protocol; for instance, an exclusive-or op-
eration can be used here, which cannot be used
in Gong’s protocol; and

3. The computational complexity of this protocol
is lower because no polynomial interpolation is
used.

4. A possible disadvantage of this protocol is the
potential length of messages My and Ms. Gp
(or G4) will contain nt bits (given g outputs a
t-bit value) and hence Gb(ii) (or G'4(%)) will con-
tain at least this number of bits. Hence M4 and
M; will contain > n?t bits. However, for prac-
tical applications, a typical choice for ¢ might be
200 and n might be 20. This gives a message
length of approximately 10 kbytes, which is not
a particularly large value. Moreover, the total
size of messages here is less than in Gong’s pro-
tocol. The reason is that the size of G4 (Gpg)
is comparable with the size of C(z) (C(y)), so
the size of G'(1),...,GY%(n) (G%(1),...,G'g(n))
is comparable with {C(z)}k 5,5 s {C(2)} K 45,
{C W) kps1s - {C(¥)}Kkps.). In this protocol,
such messages have to be transmitted once, how-
ever, in Gong’s protocol, such messages are trans-
mitted three times.

7 A cascade protocol

In this section we consider a second ‘cascade’ key
distribution protocol again based on the cross check-
sum scheme of Section 5. Note that this protocol
works on the assumption that no server refuses to pro-
vide a service. The protocol is as follows:

M : A, B,N4
Mzt A,B;NA;NB

A— B:
B — S5;:

The following step is repeated for 1 < i < n:

Mi+2 . Si - Si+1 : A)B)NAyNBy

{4, NB:KI}Kles
{B: Nya, Kl}KAs,: Tty
{A1 NBiKi}KBs‘-,
{B,Na,Ki}x,s,
The last four steps are as follows:

M,,,+2 : S,,_ — B . {A,NB,Kl}Kle,
{B’ N4, I{l}Kns1 1Tt
{AaNBxKﬂ}KBsnr
{B’N!hKﬂ}KAs,.

Mnyz: B—A: {B,Ng,Ki}k,s, "
{B,Na,Kn}K s,
Gg(1),...,Gg(n)

M,44: A—B: (1), ..., Gly(n),
{B’NB’NA}KAB

Muys: B—A: {A Ny ,Nslk.s

The authentication request generated by 4 and B
is sent to n servers via a cascade chain from $; to
Sn. Every server randomly and securely chooses a
candidate session key which is sent to A and B via
the same cascade chain. Using an analysis similar to
that in the previous section we can show that 4 and B
can detect and eliminate every bad candidate session
key which is not received by A and B correctly. A and
B compute K 4p by using all the good candidate keys.
Then A and B complete a two way handshake.

As in the previous analysis, in this protocol the ses-
sion key K 4p also satisfies the four properties men-
tioned in Section 1, on the assumption that more than
half the servers follow the protocol specifications cor-
rectly. That means this protocol is as secure as the
previous protocol. A major advantage of the protocol
is that the number of messages is only n+ 5. Another
advantage is that the clients do not need to signal back
to every server. However the disadvantage of the pro-
tocol is that it is possible for a server to ‘break’ the
procedure either maliciously or by mistake. For exam-
ple, if a server simply refuses to cooperate, authenti-
cation and key distribution cannot be completed. One
solution is to use this protocol with a control mecha-
nism which can detect any server refusing to provide
service, thus ensuring that no one can break the pro-
cedure.

8 Conclusions

Key distribution protocols without the assumption
of trusting an individual authentication server are
needed in some environments where clients have no
reason to trust individual servers. A cross checksum
scheme for the verification of candidate keys is anal-
ysed in this paper. These candidate keys are generated
by multiple servers in which no individual server is

35

trusted but more than half of them are believed to be-
have correctly. Two protocols with an arbitrary num-
ber of anthentication servers using the cross checksum
scheme are proposed here. On the assumption that
more than half the servers follow the protocol speci-
fications correctly, four desirable properties about the
session key are guaranteed. The session key is (1) ran-
dom and fresh, (2) to be known only to clients and not
to any server, (3) verifiable for every client, and (4) not
to be imposed by any individual client or server. A mi-
nority of malicious and colluding servers cannot com-
promise security in either protocol, and cannot break
the procedure in the first protocol. The computational
complexity, the number of exchanged messages and
the size of total messages in the first protocol are lower
than the protocol proposed by Gong [2] with the same
highly secure and available properties. The computa-
tional complexity and message number of the second
protocol are lower than the first, with the same prop-
erty of high security.

Possible future topics for research in this area in-
clude the following.

e Can efficient protocols be designed for the case
where < n/2 of the authentication servers are
trustworthy?

e As is common in the design and analysis of dis-
tributed protocols, it would be useful to dis-
tinguish between failed authentication servers,
which fail to take part in protocols, and malicious
authentication servers, which participate in a dis-
honest way. Protocols could then be designed to
deal with various proportions of failed and dis-
honest servers.

e The derivation of lower bounds on the number of
messages in various types of protocol would give
a measure on how efficient specific protocols are.

e It would be of interest to see if more efficient proto-
cols could be designed based on the use of times-
tamps and synchronised clocks (as is normally the
case).

A cknowledgements

The authors would like to acknowledge the valuable
comments and encouragement of their colleagues in
the UK DTI/EPSRC LINK PCP 3GS3 project. The
anonymous referees are also to be thanked for a num-
ber of important corrections and clarifications.

References

[1] E.F. Brickell and D.R. Stinson. Authentication
codes with multiple arbiters. In Lecture Notes
in Computer Science 330, Advances in Cryptol-
ogy: Proc. Eurocrypt ‘88, pages 51-54. Berlin:
Springer-Verlag, 1988.

L. Gong. Increasing availability and security of
an authentication service. IEEE Journal on Se-
lected Areas in Communications, 11(5):657-662,
June 1993.

(3]

(5]

B. Klein, M. Otten, and T. Beth. Conference key
distribution protocols in distributed systems. In
Codes and Cyphers, Proceedings of the Fourth IMA
Conference on Cryptography and Coding, pages
225-241. Formara Limited. Southend-on-sea. Es-
sex, 1995.

S.C. Kothari. Generalized linear threahold scheme.
In Lecture Notes in Computer Science 196, Ad-
vances in Cryptology: Proc. Crypto 84, pages 231-
241. Springer-Verlag, 1985.

ISO/IEC JTC 1/SC 27 N972. ISO/IEC DIS 11770-
2, Information technology — Security techniques
— Key management — Part 2: Mechanisms using
symmetric techniques. November 1994.

36

(6]

(7]
(8]

T.P. Pedersen. A threshold cryptosystem without
a trusted party. In Lecture Notes in Computer Sci-
ence 547, Advances in Cryptology: Proc. Eurocrypt
’91, pages 522-526. Berlin: Springer-Verlag, 1991.

A. Shamir. How to share a secret. Communications
of the ACM, 22(11):612-613, November 1979.

R. Yahalom, B. Klein, and T. Beth. Trust-based
navigation in distributed systems. European In-
stitute for System Security, Karlsruhe University,
Report 93/4, 1993.

