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Introduction 

 

Exponentiation of large integers (modulo a large integer) is 

the basis of several well known cryptographic algorithms such 

as RSA, [1].  The calculations involved are complex, and can 

be time - consuming especially when performed in software.  As a 

result algorithms which speed up software implementations of 

modular exponentiation are of considerable practical 

significance; see, for example, Selby and Mitchell, [2].  

 

The generally accepted method for performing modular 

exponentiation is the 'squ are and multiply' technique; see, 

for example, Beker and Piper, [3], or Knuth, [4].  In brief, 

if one is required to compute  

me (mod N)  

and e has binary representation  

es- 1es- 2....e0 

where e s- 1 is the most significant bit, then the 'left to 

right' version of the algorithm works as follows:  

x := 1;  

for i := s- 1 to 0 do {  

  x := x2 (mod N);  

  if ( e i = 1 ) x = x * m (mod N) }  

The result will be contained in x.  

 

It is worth observing at this point that the number of modular 

multiplications by m involved in per forming the algorithm is 
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determined by the number of 1s in the binary representation of 

e.  The purpose of this paper is to show how the use of an 

alternative representation of e, in combination with a slight 

variant of the above algorithm, can considerabl y reduce the 

number of multiplications involved.  

 

 

MSD representations 

 

Suppose that, in a binary representation of a number, entries 

of - 1 are allowed (in addition to 0 and +1).  Then any number 

has many such ( modified signed-digit, or MSD) representation s; 

for other applications of such representations, including the 

construction of ripple - free adders, see, for example, Drake et 

al.,[5].  For example, the number 23 has unique binary 

representation  

10111  

but has various MSD representations such as:  

++00- ,  +0 - 00-   and  + - +- ++ 

where + represents +1 and -  represents - 1.  

 

Now suppose that e has an MSD representation  

f( s)  f( s- 1) ....  f(0)  

where f( s) is the most significant digit.  Then a modified 

'left to right' version of the square and multiply algorithm 

work s as follows:  
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x := 1; 

for i := s to 0 do { 

  x := x2 (mod N); 

  x = x * mf(i) (mod N)  } 

Checking the validity of the modified algorithm is 

straightforward.  It should now be clear that the number of 

modular multiplications in the revised algorithm depends on 

the number of non-zero entries in the MSD representation of e 

which we are using (which we call the weight of this 

representation of e).  This can be significantly smaller then 

the binary weight of e offering considerable performance 

advantages, given that the pre-computation of m-1 can be 

performed efficiently.  Computing m-1 uses the Euclidean 

algorithm which, fortunately, can be made to run very quickly. 

 

The remainder of this paper is concerned with describing a 

method for finding a minimum weight MSD representation of a 

number.  This method we call the Weight Minimisation Algorithm 

(WMA) and works as follows.  Suppose e has an s-bit MSD 

representation stored in variables 

e[s-1], e[s-2], ..., e[0]. 

Note that the algorithm possibly requires the use of an 

additional variable e[s], initially set to 0: 

1. If consecutive pairs of non-zero elements remain, let i 

be the least integer for which e[i] and e[i+1] are non-

zero.  Otherwise terminate. 
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2. If e[i] � e[i+1] then set e[i] := e[i+1] and set 

e[i+1] := 0 and go to step 1. 

3. Otherwise let j be the least integer for which 

e[j] � e[i] and e[j-1] = e[j-2] = ... = e[i].  If 

e[j] = 0 then set e[j] := e[i], else set e[j] := 0.  Set 

e[i] := -e[i] and e[k] := 0 (i < k < j).  Go to step 1. 

 

Clearly each step of the algorithm produces an equivalent MSD 

representation of the number e; moreover the algorithm 

terminates because the value of i determined in step 1 

strictly increases after obeying either step 2 or step 3.  It 

is also important to observe that each step of the WMA either 

leaves the weight unchanged or reduces it, i.e. the 

representation output from the WMA has weight less than or 

equal to the weight of the input representation. 

 

 

Sparse MSD representations 

 

An MSD representation is said to be sparse if no two adjacent 

entries are non-zero. 

 

Lemma 1:  The MSD representation produced by using the WMA 

will always be sparse. 

 

Proof:  This is immediate by examination of the WMA. 
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Lemma 2:  If the positive integer e has a sparse (s+1)-bit MSD 

representation (with leading entry non-zero), then 

2s-ds � e � 2s+ds 

where 

ds = 2s-2 + 2s-4 + ... 

 

Proof:  Since e is positive, then the leading term in any MSD 

representation must be +1.  The largest sparse representation 

for a given number of bits will always have the form 

+0+0+0... 

and the smallest such representation will have the form 

+0-0-0... 

and the Lemma follows. 

 

Lemma 3:  Every integer has a unique sparse MSD 

representation. 

 

Proof:  Suppose e has two sparse representations (f(i)) and 

(g(i)) of s+1 and t+1 bits respectively (in each case with 

leading entry non-zero).  Suppose, without loss of generality 

that f(s) = 1 (and hence e is positive).  We now show that 

t = s and g(s) = 1. 

 

Now since (f(i)) is sparse, by Lemma 2 e satisfies 

2s-ds � e � 2s+ds 

Clearly g(t) = 1 since e is positive.  By the same argument as 

above: 
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2t-dt � e � 2t+dt. 

 

Now observe that 

ds + ds+1 = 2s-1 

and hence 

2s + ds < 2s+1 - ds+1 

and so s = t. 

 

The Lemma now follows by induction (modify (f(i)) and (g(i)) 

by changing the leading term in both to zero). 

 

Lemmas 1 and 3 now give the desired result: 

 

Theorem:  The representation generated by the WMA has the 

minimum possible weight. 

 

Proof:  Suppose this is not true, i.e. suppose e has an MSD 

representation (g(i)) which has weight less than the unique 

(by Lemma 3) sparse representation.  By Lemma 1, applying the 

WMA will generate a sparse representation with weight less 

than or equal to the weight of (g(i)).  This immediately gives 

a contradiction by Lemma 3. 

 

 

Summary and acknowledgement 

 

From the above discussion it should be clear that the Weight 

Minimisation Algorithm generates an MSD representation of 
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minimum weight.  This in turn enables the number of modular 

multiplications to be minimised when performing a modular 

exponentiation.  This offers the possibility of significantly 

improving the performance of software implementations of RSA. 

 

We would like to acknowledge the contribution of Alex Selby, 

who originally suggested the idea of using an MSD 

representation in modular exponentiation. 
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