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One-Stage One-Sided Rearrangeable Switching
Networks

CHRIS MITCHELL anp PETER WILD

Abstract—We consider switching networks consisting of subscriber
lines and crosswires connected by switches. A connection between two
subscribers is made along one crosswire via two switches. We determine
the minimum number of switches necessary for such a switching network
to be rearrangeably nonblocking and construct a switching arrangement
which achieves this minimum for any (even) number of subscriber lines.
Two procedures for assignment of crosswires to subscriber line pairs are
described. One makes correct choice of conmection route without
backtracking provided all connections are known beforehand; the other
determines a rearrangement of existing assignments when a new connec-
tion is required. We characterize the switching networks which have the
minimum number of switches for networks with up to eight subscriber
lines and give nonisomorphic solutions for larger networks.

I. INTRODUCTION

N two recent papers, [1], [2], Newbury and Raby have

considered the use of one-stage switching arrangements in
bidirectional telephone systems. When the number of sub-
scriber lines is small such arrangements have the potential to
provide networks requiring the least number of switches. A
switching network for eight subscriber lines using the mini-
mum number of switches is described in [2]. In this kind of
network, each subscriber line is connected via switches to
some (or all) of a set of crosswires. Thus, a connection
between two subscribers is made along one crosswire via two
switches. If there are 2n subscribers then n crosswires are
required to connect them simultaneously in » pairs. We refer
to an arrangement of 27 subscriber lines, n crosswires and the
switches connecting them as a one-stage one-sided switching
network and denote it SN(n). If the 2n subscribers may be
simultaneously connected in pairs for all possible partitions of
them into n pairs then the switching network is said to be
rearrangeably nonblocking (or rearrangeable) and is denoted
RSN(n). A SN(n) is rearrangeable if for every partition of the
subscribers into 7 pairs there is a bijective assignment of the
crosswires to the pairs such that each subscriber line is
connected to the crosswire assigned to it.

An incidence structure (Hughes and Piper [3)) is a triple (P,
B, S) where P and B are disjoint finite sets of objects (called
points and blocks, respectively) and S € P x B is an
incidence relation between them. If (P, x) € S, we say P is
incident with x, P is on x or x contains P. A switching network
may be described by an incidence structure. Let the sub-
scribers be labeled with P = {P,, P,, ---, P,,} and the
crosswires with B = {x, x;, -+, x,}, and let S be the set of
pairs (P;, x;) € P X B such that subscriber P; is connected to
crosswire x; by a switch in a given SN(n). Then D = (P, B,
§) is an incidence structure which completely describes the
switching network and we identify the two. The incidence
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structure D may be represented by a 27 by 7 incidence matrix
A = (a;) where a; = 1if (P;, x;) € Sand a; = 0 otherwise.
Any partition of P into » pairs may be written as { Py, Py}
{Pf(g), Pf(4)}, ey, {P/anl)r Pf(z,,)} for some permutationfof

»2,°+,2n}. The switching network is rearrangeable if for
any such partition there is a permutation g of {1, 2, ---, n}
such that (Pf(2i— 1)s Xg(,')) and (Pf(z,'), .Xg(,)) belong toSfori = 1,
2, ---, n. Thus, the crosswire Xzq) is assigned to the pair
{P/(Zi—l)’ Pf(z,')} and subscribers Pf(z,'_ 1) and Pf(z,') are con-
nected via crosswire X, ;).

In this paper, we consider the minimum number of switches
required in an RSN(n). We show that if (P, B, S) is an
RSN(n) then |S| = n% + 2n — 1. Moreover, for every n =
1, we construct an RSN(#) with the minimum number 72 +
2n — 1 of switches. When # > 2 this number is smaller than
the number of switches in a simple triangular arrangement (see
[1]). We describe a procedure for making the assignment of to
subscriber pairs and find all RSN(n) with the minimum
number of switches for n < 4.

II. SYSTEMS OF DISTINCT REPRESENTATIVES

In this section, we use Hall’s Marriage Theorem to give
necessary and sufficient conditions that a SN(n) be rearrange-
able.

Let D = (P, B, S) be a SN(n). Let Q be any subset of P.
We write (Q) for the set of crosswires which are connected to
each of the members of Q by a switch. (Q) = {x; € B|(P;,
X;) € Sforall P, € Q}. Similarly if Y € Bthen(Y) = {P;
€ P|(P,x)) € Sforall x; € Y}. When Q = {P}isa
singleton, we write (P,) instead of ({ P;}). Similarly, we write
%)) for ({x;}). Let r; = |(P;)| denote the number of elements
in (P;) and let k; = |(x;)| denote the number of elements in
(). Any partition Q1 = {Pru), Proy}, =, Qn = {Pran-1,
Py} of Pinto n pairs determines n subsets Y, =(Qy, -,
Y, = (Qn) of B. Now D is rearrangeable if for every such
partition of P there is a system of distinct representatives from
the n sets Y, - -+, Y,; that is, there are distinct elements Vi,
***,ynof Bsuchthaty, € Y;fori =1, ---, n. Then yy, - - -,
Yn are necessarily all the elements of B and so y; = Xg (i) for
some permutation g of {1, 2, ---, n}. Hall [4] has given
necessary and sufficient conditions that subsets A, A4,, - - -,
A; of a set A have a system of distinct representatives.

Theorem 1: (Halls Marriage Theorem). Let A, « - -, Az be
subsets of a set A. Then there exist distinct elements a,, a,
***,a; € Asuchthata, € Ay, a;, € A,, -+, a, € A, if and
only if every ¢, 1 < ¢ < s, and every 7 subset

{il’ Tty ll} c {l, 2, Tt S}’
. IAil U 1‘1,‘2 U---u A,-tIZt.

Let D = (P, B, S) be a SN(n). We say D has property T(s) if
for any s disjoint two subsets Q; = {P;, P,}, --- =
{P; P, } of P we have [(Q) U ---

’ s

251 U Q)] = s.
Proposition 1: Let D = (P, B, S) be a SN(n). Then D is
rearrangeable if and only if D has property T'(s) fors = 1, 2,

5, n.
Proof: Suppose D is rearrangeable. Let Qy, - -, O, be
disjoint two subsets of P. Consider any partition of P into n
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two subsets which contain the s two subsets @, * **, Qs. As D
is rearrangeable there is an assignment of the crosswires to the
two subsets of this partition. Thus, there are distinct elements
Xjp, X, of B such that x;, € (Q) for I =1,2,°,5s.
Hence, [(Q)) U -+ U (Qy)| = s and D has property T(s).
This holds for s = 1, 2, ---, n. Conversely, suppose D has
property 7(s) for s = 1,2, -+, n. Let Qi -, Qnbea
partition of P into two subsets. The (Q1), -+ *, (Qn) are subsets
of B such that forany s(1 <= s = n), (@) U --- U Qi
= sforall {i, -+, i} € {1,2, -*~, n}. Hence, by Hall’s
Marriage Theorem there exists a system of distinct representa-
tives from the sets (Qp), ‘-, (Q,). This determines an
assignment of the crosswires to the two subsets Qy, -, O
and hence D is rearrangeable.

The augmenting matching algorithm (see, for example,
Brualdi [5], Tucker [6]) may be used to find the system of
distinct representatives when it exists. Given an RSN(7) and a
partition Q; = {Pra» Pra}> ***» @n = {Pran-ns Pran} of
P into n subsets this algorithm finds a permutation g such that
x,ay € (Q)). Furthermore, given any partial assignment of
crosswires to subscriber pairs it will determine new assign-
ments when further connections between subscribers are
required. Indeed, suppose we have s disjoint two subsets Q; =
{Pray Pro}> = *» @s = {Pras-1, Prag} of P and a partial
assignment of Xg1), ***, Xg()» respectively, to these subsets
where Xg (i) (S (Q,) fori =1, ---,s. Let Qs+1 = {Pf(2$+1),
Py5+2} be any two subset of P disjoint from QO s Q.
Then the algorithm finds a sequence f,, i, ***, is = s + 1
such that Q;, contains a crosswire, denoted X, ), not among
Xg(1)s """ Xg(s) and xg(;j) € (Qij+1) forj = 0, 1, crr, S = 1.
Puth(i,) = g@)forj =0, >+, s — land A(/) = g(/)forl
€ (ly ) S)\{io, Y is}-

Then 4 determines a partial assignment for the s + 1 two
subsets Qy, ***, Qs+1. Thus, by making a connection along
Xniip) and breaking the connection along X between Prqi;_ )
and Pf(z,'j) successively for j = 0, ---, s — 1 one may then
make a connection between Py, 1y and Prs. 2 along Xgg) SO
that the s + 1 pairs Qp, ---, Q541 may all be connected
without any interruption to the existing connections. (Of
course when s = 0, no rearrangement of connections is
required and subscribers Prpsy1y and Prosiz may be con-
nected by X, directly.)

III. MINIMUM NUMBER OF SWITCHES

We obtain a bound on the number |S| of switches in an
RSN(n) by means of two lemmas which give necessary and
sufficient conditions that a SN(#) has property T(n — 1) and
property T'(n).

Remark 1: Let D = (P, B, S) be an incidence structure
and suppose P € Pand x € B. Then P € (x) if and only if x
€ (P). This is because both these statements hold if and only
if (P, x) € S.

Lemma 1: Let D = (P, B, S) be a SN(n). Then property
T(n) holds in D if and only if k; = n + 1 forall x; € B where
ki = |(x))| is the number of elements of (x;).

Proof: Suppose k; = n + 1forallx; € B.LetQy, - -,
Q, be a partition of P into 7 two subsets. Let x; € B. Since
(x;) contains at least » + 1 elements and there are only n
subsets in the partition, at least one of the two subsets, Q; say,
is contained in (x;). But then for each x; € B we have x; €
(Q)) for some i and so B € (Q) U --- U (Q,). Hence,
property 7'(n) holds.

Conversely, suppose k; = s < n for some x;. Let (x;) =
{P,, - -, P;;} and consider any partition Q; = {Psuy, Proy}»
o, Qe = {Pf(Zn—l)9 Pf(Zn)} where f(2j) = jjforj =1, -+,
s. Thenx; & (Q)fori =1, -+, nandso [(@Q) U --- U
(Q.)| = n — 1. Thus, property 7(n) does not hold.

Lemma 2: Let D = (P, B, S) be a SN(n). Then property
T(n — 1) holds in D if and only if there is at most one x; € B
such that k; < n + 2.
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Proof: Suppose that there is at most one x; € B such that
ki<n+ 2 LetQy -, Qn be n — 1 disjoint two subsets
of P. If k; = n + 2 then (x;) contains at least n elements
belonging to the union of the 7 — 1 disjoint two subsets O,
Tt Qn— 1

Hence, Q; S (x;) forsome i(1 = i <n — 1) and so x; €
(Q)). Since k; = n + 2 foratleastn — 1 elements x; € B we
have |[(Q; U -+ U (Q,_0)| = n — 1. Thus, property T'(n —
1) holds. Conversely, suppose that there are two elements x;
and x;, of Bsuchthatk; = sy <n + landk; = s, =n + 1.

Without loss of generality we may assume that s; = s,. Let
[Gg) N ()| = s and put (x;)\ (x;;) = {Psy, * s P"s—sl}’

(xj]) N (sz):{Pasl,s+|, T P"sl}
and
(sz)/(le)={Pbp T Pb_;z_:}'

Let f be any permutation of {1, 2, ---, 2n} such that f(i)
=gqgfori=1, " -,s,andf@n + 1 — i) = bifori =1,
-+, s, — sand consider the partition @, = {Pry, Pran}> @2
= {Pray Pran-n}s *" s @n = {Prens Pransn}- Then x;, Xj,

& (Q)fori =1,2,---,n— 1.

Hence, [(Q) U -+ U (Q.-1)| = n — 2 and property T(n
— 1) does not hold.

Theorem 2: Let D = (P, B, S) be an RSN(n). Then |S| =
n? + 2n — 1.If | S| = n* + 2n — 1 then there is a unique x;
€ Bwithk, = n + landk; = n + 2 forall x; € B\ {x}.

Proof: As D is an RSN(#n), properties T(n — 1) and
T(n)holdin D. By Lemma 1, k; = n + 1 for all x; € B and
by Lemma2, 2, k; = n + 2 foratleast n — 1 crosswires x; €
B. Hence,

[S|=Y kjzn+1+(n-D@n+2)=n*+2n-1.
j=1
If equality holds then k;

crosswiresx; € Band k; = n +
X1

n + 2 for exactly n — 1
1 for the remaining crosswire

An RSN(#) with the minimum number n? + 2n — 1 of
switches is called minimal. A minimal RSN(#) has n + 1
switches on one crosswire and n + 2 switches on each of the
remaining n — 1 crosswires.

IV. CONSTRUCTION OF MINIMAL RSN(7)

We first consider the case of even n. Let n = 2m be even
and let M,(2m) denote the SN(n), (P, B, S)) where the
elements belonging to S; are as follows. For 1 = i < m,
(P2,',1, x,-) S Sl, (Pz,', Xj) e S[, and (Pj, xi) (S Sl for2m + 1
<=j=< 4am; form + 1 < i<2m, (Pz,-_l,x,-) € Sy, (Pyis Xi)
€ Sjand (P, x)) € S forl = j = 2m with the exception
that (Pdm’ me) e Sl-

Below is the incidence matrix of M;(6).

—t bt bk et bt e DO O O = =
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We claim that M, (2m) is a minimal RSN(2m) Clearly, |S, |
=C2m-D2m+2)+2m+1=4m* + 4m — 1 =n
+ 2n -~ 1. We show that M,(2m) is rearrangeable by
showing that property 7(s) holds for s = 1, 2, --,n. Letl
< s < nandlet @, = {Pry, Pry}, ***, Qs = {Pras—n»
Pf(zs)} be any s disjoint two subsets of P. We show that | (Q))

U U@ =s.
If Q = {P;, P,} withi; < i, is a two subset of P we say Q
is of type (1), (2), (3), or (4) according as
D1 =i <i<2m;(e.g., rows 1 and 3 of A above),
2)y2m + 1 <i < i < 4m; (e.g., rows 7and 9 of A

abave),

Nl=si=2m<ih=<4m — 1;(e.g., rows 1 and 7 of A
above), and

41 =<i <2mandi, = 4m; (e.g., rows 1 and 12 of A
above).

We use this notion of type throughout whenever describing
the two subsets of P in M,(2m).

Remark 2: If Q is of type 1) then (Q) 2 {Xm+1> ** s X2m}-
If Q is of type 2) then (Q) 2 {xi, - - -, x;n}. If Q is of type 3)
then (Q) = {x;, x;,} where i; = 2j, — 1 or2j,and i, = 2j,
— lor2j,. If Qis of type 4) then (Q) = {x;} where i} = 2j
— 1 or 2j.

We consider four cases.

Case 1: Among Q, - -+, Q; there is at least one two subset
of type 1) and at least one two subset of type 2). Then (Q)) U
-++ U (Qs) = B. Hence, in this case [ (@) U --- U (Q))]| =
2m = s and property T(s) holds.

Case 2: Among Q;, -+, Qs there are / = 1 two subsets,
Q1, "+, Q;, say of type 1) and the remaining s — / two
subsets are of type 3) or 4). Then, Q; U + U Qs contains 2/
+s — 1 =5+ lelements of {Py, ---, P,,,}. Hence, s + [/

=< 2m. Now (Q)) 2 {Xms1, " *» Xam} fori = 1, , I. Any
xjwith 1 < j < m belongs to at most two of (Q;, ), ** -, (Qs)
and each of (Qy 1), - -, (Qs) contains exactly one x; with 1 <
Jj = m.

Thus, [(QDU - U@Q)|=zm+(s—1)/2=(+1)
2 + (s — I)/2 = s. Hence, in this case also property T(s)
holds.

Case 3: Among Q,, * -+, Q, there are / = 1 two subsets,
Q1, ***, Qysay, of type 2) and the remaining s — / two subsets
are of type 3) or4). Then, @, U --- U Qs contains 2/ + § —
! = s + lelements of { P41, ***, Pum}. Hence, s + [ <
2m. Now (Q) 2 {x), ** -, xn} fori = 1, , . Any x; with
m + 1 < j < 2m belongs to at most two of (Q;,1), ** *, (Qy)
and with possibly one exception [when one of Q). 4, * -+, Q; is
of type (4)] each of (Q;, ), » (Qs) contains exactly one x;
withm + 1 < j < 2m.

Thus, [((Q)V - U(@Q)|zm+ (s —1—-1)2=(+
1)/2 + (s — 1 — 1)/2 = s — 1/2. Hence, in this case, also
[(@) U -+ U (Qy)] = s and property T(s) holds.

Case 4: None of Q,, - - -, Q; are of type 1) or 2). Then each
of xy, * * -, X2, belongs to at most two of (Q), - - -, (Qs). Now
(Q;) contains two elements of B if Q; is of type 3) and one

such element if Q; is of type 4). At most one of Qy, - - -, Qs is
of type 4) so that
2s-1D+1 1
(@)U - U (Q)lz———=5—.
2 2
Hence, in this case also |(Q;) U U (Qy)| = s and

property T'(s) holds.

We have shown that property 7'(s) holds in all cases. Hence,
property 7(s) holds in M,(2m) for s 1, 2, , 2m and
M,(2m) is a minimal RSN(2m).

We now show that there is substructure of M, (2m) which is
a minimal RSN(2m — 1) and hence we will have constructed a
minimal RSN(n) for all » = 1 both even and odd.

Let D = (P, B, S) be an RSN(#n). Let P;, P,€ Pandx, €
Bwithx;, € ({P,, P;}) and consider the substructure (P’,B’,
S’) where P’ P\{P,,P} B’ = BN\{x} and §* =

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 1, JANUARY 1989

{(P;,x) € S| P, €E P’,x, €E B'}. Then (P’, B", S')is a
SN(n—1) and we denote it D|{P;, P;, x;}. Since every
partition of Pinto n — 1 two subsets corresponds to a partition
of P into n two subsets one of which is { P;, P;}, D|{P;

X;} is rearrangeable if and only if for any partmon of P mto
two subsets one of which is { P;, P;} there is an assignment of
the crosswires to the two subsets which assigns x; to { P;, P;}.

Proposition 2: Let D = (P, B, S) be an R2SBN(n). Let
P;, P; € P and suppose ({P;, P;}) = {x;}. Then D|{P;, P,
Xx;} is an RSN(n — 1).

Proof: This follows immediately since, as ({ P;, P;}) =
{x;}, for any partition of P into n two subsets one of whxch is
{P;, P;} any assignment of crosswires to two subsets must
assign x; to {P;, P;}

We note that in M, (2m), ({ Pz, P4m}) = {xn}. It follows
that MQ2m — 1) = (P, B’, S’) = M;Cm)|{Pspm, Pim,
Xn} is an RSN(2m — 1). Moreover, M(2m — 1) is minimal.
For S’ is obtained from S, by removing (P, x;), m + 1 < j
=2m; (Pym, X)), 1 = j<m — l;and (P, xp),2m — 1 < §
<4m.Thus, |[S' | =4m®> + 4m — 1 — (m + m — 1 +
2m + 2) =4m? — 2 = 2m - 1)2 + 22m — 1) — 1.

V. ASSIGNMENT PROCEDURE

We have seen that the augmenting matching algorithm may
be used to make an assignment of crosswires to the two subsets
of a partition of P in an RSN(n). As successive assignments
are made this may involve some rearrangement of connec-
tions. Newbury [2] has given an assignment procedure for
M, (4) which allows correct choice of connection when the
four two subsets of a partition are known beforehand. We
describe a procedure which allows correct connection in
M,(2m) given the 2m two subsets of a partition. At each step
an assignment of a crosswire is made to an unassigned two
subset until all 272 two subsets have crosswire assigned. At no
stage is there any need for backtracking to make a different
assignment in order to complete all 2m assignments. This
procedure may be adapted to give a procedure for M(2m —
1).

We consider M,(2m) = (P, B, S). If Q is a two subset of
Pand B) € {x, **, X} and B, € {Xpn,1, """, X2} are
given subsets of B then the p value of Q is the number of
elements of (Q) in B; U B,. As described above Q will be of
type 1), 2), 3), or 4) depending on which two elements of P
belong to Q.

Let Qy, - -+, Oy be a partition of P into 2m two subsets.
We begin our assignment procedure by making a list of the
two subsets of type 3) or 4) among Q,, - - -, Q,,. Since the
number of two subsets of type 1) among Q, * - -, Q. equals
the number of two subsets of type 2), we begin with an even
number of two subsets in our list. We set By = {x;, " -, X}
and B, = {Xpm.1, -, X2m} and assign crosswires to the two
subsets in the list by the following procedure.

While list not empty do

begin

if some Q; in the list has p value equal to 1 then
assign x; to Q; where (Q)) = {x;}

else
for the first two subset Q; in the list assign x; to Q;
where x; € (Q;) and x; belongs to the larger of the sets
B, and B, or either set if B, and B, have equally many
members

remove Q; from the list and x; from the appropriate set B,

or B,

end.

We begin this procedure with all p values of two subsets in
the list equal to 2 with possibly one exception (with p value
equal to 1) and since each crosswire belongs to at most two
two subsets of type 3) or 4) among Q, - - -, O, this remains
true throughout. Thus, the procudure continues until a
crosswire is assigned to each two subset of type 3) or 4)
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among O, -+, OQ,n. Now (Q;) contains one crosswire from
{x1, -, Xm} and one from {X,41, ‘-, X2} for each two
subset Q; of type (3). Hence, except possibly on the first
occasion, when an assignment of a crosswire is made to a two
subset with p value 1, that crosswire and the crosswire
assigned on the preceding assignment come one from B, and
one from B,. Hence, as we begin with an even number of two
subsets in the list, the procedure terminates with equally many
crosswires remaining in B, as in B,. We complete the
assignment procedure by arbitrarily assigning the crosswires
remaining in B, to the two subsets of type 1) among. Q,, - -,
Q:,m and the crosswires remaining in B, to the two subsets of
type 2) among Qy, ‘**, Qsn. This works because, as we
observed above, the number of two subsets of type 1) among
Q1 *°*, Q:m equals the number of type 2).

V1. NONISOMORPHIC MINIMAL RSN(7)

Two SN(n), D, = (P, B, S)) and D, = (P, B, S;) are
isomorphic if there are permutations « of P and 8 of B such
that (P;, x;) € S; if and only if («(P)), B(x;)) € S;. Thus, D,
and D, are isomorphic when the corresponding switching
arrangements are the same up to reordering (or relabeling) of
the subscriber lines and the crosswires. We have constructed a
minimal RSN(n) for every n = 1. There may, however, for
any given n, be many nonisomorphic minimal RSN(n). We
show that there are exactly three distinct RSN(4) and describe
a minimal RSN(2m) which is not isomorphic to M, (2m) for m
= 3.

Consider M,(2m) = (P, B, S;). Putting S = S; U { Py,
Xa2m)} we see that (P, B, S) is an RSN(2m) with a great deal
of symmetry. In fact, removing any switch of the form (P;, x;)
wherem + 1 < j<2mifl =i<2mandl <j < mif2m
+ 1 < i < 4m we obtain a SN(n) isomorphic to M,(2m) =
(P, B, S,) where S; = S\ {(Psm, Xm)}. Similar arguments to
those given above for M, (2m) show that M,(2m) is a minimal
RSN(@2m). Moreover, for m = 3 M,(2m) is not isomorphic to
M;(2m) which is itself isomorphic to any RSN(n) obtained by
removing from S any switch of the form (P}, x;) where i = 2j
— 1 or 2j.

We say that a SN(n) is in standard form if ry, = < --- <
r, and kK = k, = = k,. Clearly, every SN(n) is
isomorphic to a SN(») in standard form. We show that when n
= 1, 2, or 3 any two minimal RSN(#) in standard form are
isomorphic. Hence, up to isomorphism there is just one
minimal RSN(n) forn = 1,2, 0r3. Let D = (P, B, S)bea
minimal RSN(#) in standard form. By Theorem2 k; = n + 2
fori=1,2,---,n— landk, = n + 1. Whenn = 1D has

incidence matrix
1
1

and is isomorphic to M(1). When n =
matrix

2 D has incidence

0
1
1
1

and is isomorphic to M,(2) [and M;(2)].

The following lemma shows that these are the only two
cases where r; = 1 for some P; € P.

Lemma 3: Let D = (P, B, S) be a minimal RSN(n) with n
> 3. Thenr; = 2 forall P, € P.

Proof: Let P, € P. As property T(1) holds we have
(P:, P} + ®forall P, € P\ {P;}. Hence, (P) # ®. Letx;
€ (P;). Now k; = n + 2 < 2n. Hence, there is a P; € P
such that P; & (x;). Further, as ({ P;, P;}) # ®and x, & ({ P;,
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P;}) there is an x,, € ({ P;, P;}) € (P;) with x,, # x. Thus,
{XI, Xm} c (P)andr; = 2.

Now when #n = 3, since | S| = 14 the minimal RSN(») in
standard form Dhas7; = 2forl < i< 4andr;, = 3for5 <
< 6. It is then straightforward to see that D must be
isomorphic to an RSN(3) with incidence matrix

—— D b= e
—_ - D R =
—_— - O O

and D is isomorphic to M(3).

The following proposition characterizes minimal RSN(»)
with n = 4 and r; = 2 for more than one P; € P.

Proposition 3: Let D = (P, B, S) be a minimal RSN(#n), n
= 4, in standard form. Suppose r; = r, = 2. Thenn = 4, r;
= 2 and {Pl, Pz, P3} c (X4).

Proof: As property T(1) holds in D, (P;) N (Py) # &.
Suppose (P;) = (P;) = {Xp, Xm},say. Nowk, <= n + 2 <
2n — 2. Hence, there exist P;, P; such that P;, P; € (x,).
Then Q; = {P), P}, O, = {P,, P;} are two disjoint two
subsets of P with Q;) U (Q;) € {x»}. But this contradicts the
fact that property 7(2) holds in D. Hence, (P)) N (£2) =
{x;} for some x; € B.

Let (P) = {X;, Xn} and (P2) = {X;, Xm/}. Now K, K/
< n + 2 < 2n — 2. Hence, there is a subscriber P; # P,
with P; € (x,) and a subscriber P; # P, with P; & (x.). If
P; # Pjthen Q; = { Py, P;}, Q; = { P>, P;}, are two disjoint
two subsets of P such that (Q)) U (Q:) € {x;}. Hence, since
property 7(2) holds we must have P; = P; and furthermore
B\ (xn) = {P;, P;} and B\ {x,,,} = {P,, P;}. It follows
thatk,, = k,, = n + 2 = 2n — 2. Hence, n = 4. Moreover
ri = 2and (P) = {x, Xn,,} with m’’ # m, m’. The
arguments given above also show that k,, , = n + 2 and so k;
=n + 1, thatis x; = x4. Now B\ (X, ,) = { Py, P,} so that
(P)) 2 {x1, x2, x3} for P; # Py, P,, P;. Hence, r; = 3forj +
1, 2, i and so P; = P;.

It follows from the previous lemma that a minimal RSN(4)
with r; = 2 for more than one P; € P must be isomorphic to a
SN(4) with incidence matrix

0 0 1 1
01 0 1
1 0 0 1
1 1 1 0
A=111 1 o0
1 1 1 O
1 1 1 1
1 1 1 1
Since k; = k, = k3 = n + 2and ks = n + 1inthis SN4),

by lemmas 1 and 2, properties 7(3) and 7(4) hold. Also, as
(P) N (P;) + & for all P;, P;, property T(1) holds. Let O,
and Q, be disjoint two subsets of P. Since at least one element
of Q; U Q, does not belong to { Py, P, P3}, (Q)) U (Q>)
contains at least one of x;, x;, x3. If either Q) or Q; is
contained in { Py, P;, P3;} then x, € (Q1) U (Q»), otherwise
(Q) U (Q,) contains at least two of x;, X3, x3. In either case,
[(@) U (@2)| = 2 and property 7(2) holds. Thus, the matrix
A, is the incidence matrix of a minimal RSN(4) by Proposition
1.

Suppose D = (P, B, S) is a minimal RSN(4) in standard
formwithr, = 2andr; > 2for2 < i < 8. Sincer; + --- +
rg = 23 wehaver; = 3 fori = 2, ---, 8. Thus, an incidence
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matrix for D has one zero in each of rows 2-8. There are two
possibilities according as (P}, x4) € Sor (P, x5) & S. In the
first case, D is isomorphic to a SN(4) with incidence matrix

_ = O

—_— et OO = s
I»—A»—n;—n»-aooo»—J

loa—u—-;-‘h—tn—»—tol

In the second case D is isomorphic to a SN(4) with incidence
matrix

—_— D O e e
—_ e e b O = = O
l»—-»—An—lh—-AQOOI

roc.—-.-.—»—.—.—l

An SN(4) with incidence matrix A, has k; = k, = k3 = 6 and
ks = 5. Hence, by Lemmas 1 and 2, properties 7(3) and 7(4)
hold. As (P;) N (P;) + & for all P; and P;, property T(1)
holds.

Now for any two subset Q of P, |(Q)| = 2 unless P, € Q.
Hence, for any two disjoint two subsets Q; and Q; of P |(Q)
U (Q@2)| = 2. Thus, property 7(2) also holds. Now by
Proposition 1 a SN(4) with matrix A4, is a minimal RSN4).

It is easy to check that a SN(4) with incidence matrix Aj is
isomorphic to M (4) and to M,(4) and so is a minimal RSN(4).

Theorem 3: Let D = (P, B, S) be a minimal RSN(4).
Then D is isomorphic to one of the minimal RSN(4) with
incidence matrices A,, A;, A3 given above.

Proof: Wehave | S| = 23. By Lemma 3, r; = 2 for all P;
€ P. Since |S| = r + - + rg we must have r;, = 2 for
some P;. The result follows.
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