
t

!

-1- .c.

ON DIVISIONS A~JD DECOMPOSITIONS OF 1-DESIGNS

'"
BY

CHRISTOPHER JOHN MITCHELL

Thesis submitted to the University of

London for the degree of Doctor of

Philosophy, 1979.

Westfield College,
University of London.

,
" c

:;.
";

';; ;



-2-

ABSTRACT of "On Divisions and pecompositions of i-desig~_~

~~ C. J. Mitch~1..

A Point Division of a i-(v,k,r) structure ~ is a partition
of the points of ~ into classes such that the number of blocks

through two points depencis only on the classes to which they

belong. This generalises the notion of a Group Divisible (GD)

design and a number of results are obtained for Point Divisions
of i-desi.~ns which have well-known results for GD designs as

corollaries.
Point Divisions are also closely linked to tactical

divisions; in fact a tactical division of a i-design is a tactical
decomposition whose point classes form a certain special type of

Point Division. Using this fact we obtain simple proofs of
certain results on designs admitting tactical divisions. We also

examine 2-designs whose duals admit Point Divisions, and show that

this is equivalent to considering 2-designs having intersection

number k-r+A.
Using results (.)btained for Point Divisions of i-designs, we

go on to establish new results on GD designs, in particular we

derive information about the c.uals of GD designs, and the

properties of GD designs having certain special dual properties.
We also obtain necessary and sufficient conditions for a

symmetric GD design to have a GD dual.
Finally we give a general recursive method of construction

for i-structures admitting Point Divj.sions having constant class

size. This method is used to construct both GD and 2-designs,
e.nd we use it to obtain two infinite families of strongly divisible

2-designs. One of these infinite families consists of quasi-

residual desi,~ns, and we show that they are in fact residual
designs. This establishes the existence of an infinite family of

symmetric 2-designs.
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CHAPTER 1 -PRELIMINARY DEFINITIONS AND RESU!..TS

Unless otherwise stated, all results may be found in

Dembowski, (19].

1.1 Basic Definitions

An Incidence Structure (or a structuE~) is an ordered

triple (f,~,I), ~lhere R and ~ are finite non-empty sets whose

elements are called points and blocks respectivelv; (~.7e will
-c ~

use upper case latin letters to denote points and lo~~er case

latin letters to denote blocks). I S ~ x ~, and if (P,x) E I

then the point P j.s said to be incident with the block x. It

will often be convenient ~to associate a block with the set of

points with which j.t is incident; and so we will frequently

write P E x or P I x, and say P is on x or x contains P. rve

t~ill also almost invariably use v and b to denote the number of

points and blocks respectively.

A structure S is said to be uniform if there exists some-
constant k (O<k<v) such that every block is incident r~ith precisely

k points. A t-s!Eust~re, ~ (t~O), is a unifo~m structure having

a constant A such that every set of t points is incident 1;.;rith

precisely A common blocks. T\Te ~Jill then say that ~ is a

_t- (y,~ ,A)- structure. Note that a a-structure is just a uniform

structure.

Res~lt 1~1.1 If ~ is a t-(v,k,A) structure then, for every s

satisfying O<s<t, S is an S-(~I,k,A ) structure,
---s

( V- S) (k- S)where As = A t-s / t-s .

In any t-structure we h,~ve b = AO' and if t ~ 1, we set

r = Ai' Result 1.1.1 imm~diately gives :-

IIJ
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~ollary 1.1.2 Suppose ~ is a t-(v,k,A) structure. Then

(i) If t > 1 then bk = vr:
-~

and (ii) if t ~ 2 then A2(v-1) = r(k-1).

Clearly Result 1.1.1 indicates the non-existence of

t-(V,k,A) structures for most choices of v,k and A ; since each

AS(O~s~t) must be an integer.

~A1e now define a class of structures which play a centr~l

role in this thcsis.

A des~g~ is a uniform structure satisfying :-

(i) I'Jo two distinct blocks are incident with the So'lme

set of points; and

(ii) No tt~O distinct points ,~re incident with the so'lme

set of blocks.

As stated above, we will often identify a block tvj_th the

set of points on it and, by (i), in a design the ?oint set

uniquely defines the block.

A t-design is a t-structure which is also a design. For

a l-design it is not difficult to sho~~ th(~t r = 1 if and only

if k = 1, and such a design is of little interest. So we will

often assume that r,k>l. Also note that for a 2-(v,k,A) desi.gn,

axiom (ii) of the definition of design is unnecess.~ry. For if

two distinct points are incident with the same set of blocks, we

immediately have r =A, and hence (by Corollary 1.1.2(ii)

v = k, which contradicts the definition of uniform.

A 1- (v,k )r) design is said to be !E~yi_~l if every subset of

k points j_s a block. Clearly a trivial design is at-design

for every t~k.

The Connection Number of tt'10 points of a structure is the

number of blocks incident with them both) and, dually, the

Intersection Number of two blocks is the number of points.
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incident with them both. If x,y are two blocks we will often

write I ~'yl f\Jr the intersecti~n number of x ~.nd y; (again

considering x,y as point sets).

Finally we define a notion of connectedness. In a structure

§. = (f,~,I), .:1.s~ between two elements X,Y (X,yEf:J~) is an

ordered tuple (X C ,Xi ,X 2 " ..,X ) of eleme.nts of ~.JB such that:n ~- -

X = XC' y = X (~nd X. 1IX. for every i(1<i<n). Two elements ofn 1.- 1. --

fU~ are connec~ if thepe exists a chain between them, arid a

structure S is connected if every ~,~il~ of elements of pl~ are--~- ---

connected.

1.2 Incidence Matrices and Gr~.Dhs.

An incj.dence m,~trix P. = (a..) for a structure S is a v x b-1.J -

matrix with its rows indexed by the points of ~ and its columns

indexed b" the bl..~cks of S -such that ,:3... = 1 if the point.I -' 1.J .

corresponding t~ the ith row is incident with the block I

corre Spond.ing to the i th co 1 umn, and ~... :: 0 otherwi se .I f we
." -1.J

have some partitinn !'-1'" .,fd I)f the points (or bloc](s) of,§.,

then an incidence matrix associ?ted with this partition is-

arranged so thl~t the first '~11 rows (or columns) of A correspond

to the pr:lints (blnc](s) of .E1, the next If21 ro~!s (columns) of A

correspon~ to the points (blocks) of ~2' ~.nd sn on.

If Sand U are two structures, then an isomorDhism a from
~

~ onto!2 is a 1-1 mapping from the points of £. onto the points

of U ana from the blccks of S onto the blocks of TJ, such that---
PIx if and only if P~I xa. If there Axists an isomorphism

from ~ onto g then ~ and g are isoml)rphi~ and we write ~ ~ g.

Result 1.2.1 If S, U are structures, and A,B are incidence-~-~- ---

matrices for ~ and Q respectively, then ~ ~ Q

if and only if there exist permutation matrices P,Q with A = PBQ.
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Thus if ~ is a structure, all incidence ffic.trices for ~

are equivalent, and hence have the same ran],. So we define the

~ of a structure ~ to be the rank of one (and hence all) of

its incidence matrices.

~1e now st,~te certain element,~ry facts about a structure in

terms of its incidence matrix~

Result 1.2.2 If I~ is the incidence matrix ~f a structure ~,

then :-

(i) ~ is uniform if and only if it~ = k~;

(ii) ~ is c. 1-(v,k,r) structure if and onl~l if

/I.T .T d . A k " n.tl2 = r.l an .2-- = 2; ~n-

(iii) ~ is a 2-(v,k,A) structure if and only if

iA = ki and fu\T = (r-A)I + AJ;

where J is the all +1 matrix, I is the identity matrix, and

i is the all +1 (row) vector (of ~.ppropriate sizes).

Note also that the off-diagonal entries of AAT and AT A are

the connection (~nd intersection numbers of the structure S.-
These matrices are referred to as the connection and intersection

matrise~~ respectively.

Much information may also be derived from the eigenvalues

and eigenvectors of the matrices AAT B.nd r\TA.

R~sult 1.2. 3 (Shr!kha!!deano... Bh~grNandas, [~J.. If.§. is a

1-(v,k,r) structure with incidence matrix A_,

then:-

(i) rk is an eigenvalue of AAT.

(ii) rk is a simple eigenvalue of AAT if and only if ~

is connected..

I

..~
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The p~oof of this result uses the follo~ving '3lemcntary

results about real matrices: if ~ is ?n ei,qenvector for A.~ T

with eigenvalue $*0, then ~A is an eigenvector for AT_A. with

eigenvalue $; AAT and AT A have the same non-zero eigenvalues

with the same multiplicities.

rtle also obtain:-

~emma1. 2.4 If A is an incidence mco.trix of a 1-(v,k,r)

structure ~ (with r ,k> 1), then AA T Ii"" has just

one eigenv(~lue ~sctY, if and only if ~ is a 2-(v,k,A) structure;

in this case $ = r-A.

Proof If ~ j,s .". 2-structure thfc~n M T = (r-A)I +AJ:I and so

AI\T has eigenvectorf3 ;, e (1<u<v-1) ~jith eigenvalues rk and.L -u --

+u.'1-+ +v-u-1-+
r-A; ~~here ~u = (0---0 1 -1 0 ---0). So r-A is the only

. I of "AT I .J,.elgenva ue 0_- t~ .l .

If ~ is the only eigenvalue of PATli. , then any vector

orthogonal to i must be an ei~nvect~r of &\T with eigenvalue $.
."

Hence, in particul(~~, e AAL = ~e f,~r e'Jery u (1<u<v-1). Hence
-u -11 ---

all off-diagonal entries are the same (anc. non-zero since r,k>1).

I.e. ~ is a 2-structu~e and <P = r-).. I:t

.~ema~~~ This Lemma is essentially the s~me as Corolla~y 1.2

of Kageyama and Tsuj j., [3 oJ, although it is stated here in :7'.

slightly diffe~ent form.

So the eigenvalues of a 2-structu~e -~ a~e ~k and r-A with

multiplicities 1 an,; v-1, and hence, since r>A by 1.1.2 (ii),

~ has v non-ze~o eigenvalues.

Immediately we hc.ve :-

B~sult1.2.5 (Fishe~'s Inequality) If ~ is a 2-(v,k,A)

structu~e ~7ith incidence m~trix A, then :-

Tv = rank JVL = r,~nk A = rank ~ ~ b.
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If ~ is a 2-(v,k,A) structure with v=b, then ~ is said

to be ~ symmetEis 2-structure.

Finally ~ve show a relationship between graphs and certain

structures. A graph G (here a graph means an undirected graph

without loops or multiple edges) is regular if every vertex is

adjacent to a constant number of vertices. This number is

called the yalency of G. If Pi"" ,Pv is some labelling of

the vertices of a graph G (on v verti.ces), then the adjacency

matrix T = (t..) of G corres ponnin g to this labellin g is a vxvJ.J .,

matrix with t.. = 1 if P. and P. are adjacent and t.. = 0
J.] J. J J.J

otherwise; (t J." = 0 for every i, 1<i<v). For the resultsJ. --
on graphs quote~ below, see for instance, Cameron and van Lintj

[ 17} .

Result 1.2.§ If G is a graph with adjacency matrix T, then

G is re,~ular if and only if iT = a oi, where 60

is the valency of G.

A graph G is comp~~te if every p~ir of vertices are adjacent

and G is ~ if it has no edges at all. The complem~~! C(G)

of a graph G is the graph with the same Vl:rtex set as G, such

that two ve~tices are adjacent in C(G) if and only if they are

not adjacent in G.

A re~ular graph G (G not null or complete) is said tn be

strongly regular if and only if fnr every pair of vertices P,F ;

the number of vertices Q adj acent to both P and P' is.~ constant

depending only on whether P and p' are anjacent or not. We
"\ .

shall refer to the eigenval~es of a graph G, mean1ng the

eigenvalues of one (and hence all) of its adjacency matrices.
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Result 1. 2. 7 rOo graph G is strongly reRul,3.r if and ohly if G

is regular and Tli ~ has t~vo eigenvalues j

these eigenvalues ~]ill be denoted by 81,62 throughout.

The disjoint union of c complete graphs ~n m vertices each

is a strongly regular gra.ph denoted by r(c,m). The complement

of r(c,m) is the "complete c-partite qraph".

Result 1.~. 8 A strongly regular gr~ph with eigenv,~lues 60

(the valency), 61 afi3 e 2 (61 >e2) is a r (c ,m) if

and only if 61= 80'

Result 1.2.9 If G is a strongly regular graph ~n v vertices

with eigenvalues eo (the valency), 81 and 62;

then C(G) has eiren',alues v-i-eO (the valency), -1-61 and -1-82

with the sa.me multiplicities.

Suppose ~ is a 1-(v,k,r) structure y]ith two connection

numbers Ai and A2' say. Then we may form the gr~ph G(f,Ai)'

called the ~~~ (~.]ith respect to Ai)' with vertices the

points of~, and with tvl0 vertices adjacent if ano only if they

have connection number A.. Then it is easy to see that G(P,A 1 )1 -

and G(f'~2) are complementary graphs. If A is an incidence

matrix for ~, then y7e have:-

~eT!'Jna 1.2.10 If ~ is a 1-(v,k,r) str11cture with t~.]c, connection

numbers Ai and A2 then :-
'I'

(i) AA~ = (r-A.)I + A.J + (A.-A.)T, where T is an
J J 1 J

adjacency matrix for G(f,Ai)'

(ii) G (f,A i) j_s regular with valenc~' ( v-1);\ j -r(k-1»/ (). j -A i) .

Pr2of (i) is straightforward, e.nd, since iftAT = rki (by Result I

1.2.2 (ii») we have i(Ai-Aj)T = (rk-(r-Aj)-VAj)i,

and (ii) follows. ~

[. ;
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Finally, ? simi].ar argument shows that if a i-structure

~ has two intel"section numbers Pi ,P2; then it is possible to

define the block ,~ra~h of S (~'Ti th respect to p.), G( B, P .) ,:; ,:c>---, --1 -1

and this graph is regular as above.

We also n~te that if a i-structure S has two connection

numbers then G(f,Ai) is strongly regular (i=1,2) if and only

if ~ is a Partiall Balanced Desi n with two ~ss\~ciate cle.sses

(for more details see Section 1.4).

1.3 Derive(! and Related Structures

Gi ven ~ny structure S = (P, B , I) there are m?ny wa'Ts to

construct other, relate1 structures from~. We list some of

these below.

(~.) The ~ of ~, ~lhich we nenote by ~*, is the

structure (B,P,I*) ~lhere (x,P)EI;~ if and only if (P,x)EI;--~

i. e. the roles hf points and bl'Jcks are interchanged.

Result 1.3.1 If S is a structure then :--
(i) £ is a 1-(v,k,r) structure if anc- only if ~* is

a 1-(b,r,k) structure.

(ii) £ is ~ 1-(v,k,r) design if and orlly if ~* is a

1-(b,r,k) desi~n.

Cle?,rly (~*)1( = ~, and if A is any incidence matrix for ~,
'T'

then AJ. is ,3.n incidence matrix for §.;';.

Hence, by Lemma 1.2.~, if S is a sYmm£tric 2-(v,k,A)

Istructure, then ~* is c. 2-(~,r,k-r+A) structure. But b=v and

hence r=k (by Corollary 1.1.2 (ii)) and so ~* is a 2-(v,k,A)

structure. Finally A<r = k, and so ~ and ~* are 2-nesigns anc.

using Result 1.2.5 we have:

~esult 1.3.2 If D is a 2-(v,k,A) structure then v=b if an1--

only if fl* is a 2-structure; and in this case

both 1:2 and,!?* are 2-(v,k,A) designs.

i II 

I
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(B.> The comnll;ment of 8, c.enote~ by C (8) is the structure

(f,~,fx~-I); i.e. a point is incident with a block in C(~) if

and. only if they are not incident in ~.

Clearly C(C(.-:?-» = ~, and if A is any inci.:'1.ence matrix of

S, then J-A is (~n inci(ience matrix of C(S).--
Usin,g Result 1.2. 2 ~qe immediately have:-

Result 1.3.3 If S is a structure then :--
(i) ~ is unifnrm with k points on evel~Y block, if nnd

~nly if C(~) is uniform with v-k points on every

block; I

(ii) S is e. 1-(v,k,r) structure if anl1 onlv if C(S)is a---
1-(v,v-k,b-r) structure;

(iii) ~ is a 2- (v,k ,)\) structure if and only if C(~) is a

2-(v)V-k,b-2r+A) structure (given 2~k~v-2); an<:

(iv) 2 is a 1esign if an~ only if C(~) is a design.

Note that j.f ~ is a uniform structure with k > ~ then C(S)

he.s k < ~, and so ...'J8 will sometimes assume that k ~ I for

uniform structures.

(C) Sup~ose th?t P j.s some noint of S. The Internal,. L-

C(}ntr.3.cti~n S of S is the structu.re (P-{p} ,B' ,I' ) t-lhere B'
-p is the set of bloeks of ~ which are incio.ent with ~, and I'is

defined so that (P ,x)EI' if and. only if (P ,x)EI. Similarly we

define the External Contr,~ctinn sP ~f S to be the structure--
(.E-{P} )~",I") where ~" is the set of blocks of ~ which are not

incident I:-lith P(l1."=~-:?: ) and I" j.s c,efinec as for I' .

In an anala~cus vJay ~le G.efine th~ interne.l and external

structures Sand SX where x is some block of S. 80 S consists
-x ---x
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of the poin-ts incident with x and all the blocks of S other

than x (with the "same!! inci:":ence as ~), an~ §.X has as point

set the points of Q not incident Y7ith x, and all the blocks of

~ less x (again ~'Tith incidence as in ~).

~-le may now state:

~.~~~ If ~ is a uniform structure yli th k ~ 2, then:-

Ci) If S is a t-(v,k,A) structure Ct>1), then S is
---p

a (t-1)-(v-1,k-1,A) structure.

(ii) If ~ contains no two blocks incident Y1ith the same

point set, then neither 1oes ~p'

(iii) If D i.s a t-(v,k,A) desi~n (t>3), th.en D is a

---p

(t-1)-(v-1,k-1,A) design.

Result 1.3.5 If S is a uniform structurc ~vith k < v-2, then:---
(i) If ~ is a t-(v,k,A) structure (t~1), then ~p is a

Ct-1)-<v-1,ktAt-1-A) structure.

(ii) If S contains n.~ two bl~cks incident with the se~e

point set, then neither does ~r.

Ciii) If ~ is a t-(v,k,A) Q6sign (t=2,k~ I or t ~ 3) then

p'P is a (t-1) -(v-1,k,At-1-A) design.

The structures S an~ SX ~,~ not necessarily have such-x -

pleasant proJ?ertj.es; in fact they nced nf)t be 1-structures even

if ~ is a 2-desi~n. If ~x is a desi~n it is known as a ~si1u~l-

design of~, and if a 1esign p. is isomorphic to a residual design of

a structure S, then D is sair't to be embe~1dable in S.---
In fact, for ,~ny uniform structure ~,

~x is unifnrM if an1 only if every block intersects x in

exactly the same number of points. If this occurs, an(j ~ is a

2-strI1cture, then every two blocks of ~ intersect in the same

pumber ~)f points, and so, if ,~ desi,gn ~ is embendable in a
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2-structure~, ~ must be a symmetric 2-c,esi~n (using Result 1.3.2).

We may now state:

Result1_.~ If .:Q. is 2. symmetric 2-(v,k~A) design

(k~min {I,V-2}), then RX is a 2-(v-k,k-A,A)

design for any block x of Q.

Remar~ If v > ~, Qx will still be a 2-(V-k,k-A,A) structure,

although it may contain repeated blocks (i.e. two blocks incident

with precisely the same set of points).

It is now possible to consi~er which designs may be

embe1dable in symmetric 2-designs; and t~e have :-

Resultc1.3.Z If a 2-(v,k,A) design Q is embedd,~ble in a

s~~etric 2-desiRn then k-r+A=O, or ,

equivalently, b-v = r-1.

If a 2-design satisfies b-v = r-1 it is calle,i a

,Q~~s_i-res~due2 2~siRg, (~nn indee;1 for A = 1 or 2 every quasi-

residual 2-(v,k,A) design is a residu~.l desi~n of a 2-(v+k+A,

k+A }A) design; see Hall and. Connor, [21J. This result is not

true for A ~ 3, see, for example, the r'lesign of Bhattacharya, [10].

A consi~.ere.ble amount of ~qork has been nQne on establishin,~

sufficient conditions for certain quasi-residual ~esip;ns to be

residual, see for instance, Beker ann H,~~mers, [7); Bose,

Shrikhande and Singhi, [16] anr'1. Singhi a-'1r:! Shrikhande, [47).

1.4 Group Divisible !-desig:~

A consicterable proportion of this thesis will be devote('\.

to consineration of group divisible ~esi~ns and certain related

structures. In this section we give some of the basic results on

these designs; we will assume r ,k>1 through.~ut.
,

i

I

""'ili'~.'~"""
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ill, group "',i visibl.<:; 1-desi,r';n (')r just a ~2_1esip;n) j-s a

~ l-(v,k.r) desi,gn ad.mittin~ ~ partition of the points into d

classes f1,... ,fr, (d<v) such that ~j-ven tt~() T'()ints P,Q(PEfi'

Q~j) the c()nnection number of P anr. Q is ~- constant ,~epennin~

only on whether i=j or n(")t. The connectiC'n number ()f two

points of the same r,oint class ~nd the connection number of

points of ctifferent classes ~7ill he rlenoted by A ann A'

respectively; t"ye ~ssume throughout th,~t At).' .It can he shown

th~t in a ~roup nivisible desi.p;n the~e exists an t>1 so that

I p.l=t f()r ever y i.-1.'

If Q is a GD rjesj.gn, and A is ~n incidence matrix for Q

associated with the point p?rtition of Q, then :-

4- f),~ ~.Q,~

1'- r
.Q, r" A A' _.-A'---

'" A 'r -

MT = 1 A

f), A' r, -.-A'-'.-
A '

J-
r

I .r.,, .
A' .A' .,, ,..
.t

f r
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-+- u-1 -+- -+- v-u-1-+-

So, bv ins pection , if e = (00...01 --1 0 0...0)
--u

-+- (~~-1) t-+- -+- 9, -+- -+- 9, -+- -+- ( v-w-1 ) t-+-
and ITN = (00...011 ...1 -1 -1 10 a ...0); then:-

rr
j(M--) = «V-R.)A' +(R.-1»).+r)j--

T£u(AA) = (r-).)£u (1~u~v-1; u*tR. for any t)

f (AAT) = (r+(R.-1»).-R.).')f (1<t-l<9,-1).
-~v -VI--

But it. = ki an~. ~\T = ri (Result 1.2.2.(ii», and so

2. (A ,~ T ) - rk ; H~ nc ~.' -l.. '-~ \:-:..

p.~sul.! !: 4.1 If 1? and .~\ i"tre c-s ab()ve, then:-

(i) v = oR.;

(ii) (v-£»).' +(t-1»)' :: r(k-1);

(iii) The ei~envalues of AtiT are: (r-).) ,(rk-v).') and rk

with multiplicities v-.~,R.-1 and 1 respectively; and

(iv) 1!,~Tr = rk(r-).)v-9'(rk-vA' ).~-1.

Since r,k>1, Result 1~2.3(ii) gives :-

~es~l t1. 4.2- If ~ is GD then Q is connecteo if and only j_f

),'>0.

So we ~~ill nnrmally assume )">0 for GD ~esi~ns, or otherwise

Q consists of the ~isjoint union of ct 2-(R.,k,).) desi~ns.

..AT .. t ...3 f .. tAl?;a1.n from Result 1.4.1, S1nce A!1. 1.S pOSl 1.ve seml ~e. J.nl e,

~Ne have:-

8~s~lt 1. 4. 3~")~e and Connor,[1~l_)- If 1? is GD then rk~v).' .

By nefinition of ~esign, r>A, anrl so if 2 is GD, then

rk>vA' if anct nnly if APiT is non-singul~r. This leo- Rose and

Connor (in [14]) to classify GD ~esigns as follows :-

k"
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~e~~ult_1.4~~ If Q is GD then either :-

(i) rk = VA' anr, b?:.ranJ<: A = rank A.AT = v-d+1 (j_n which

c,C:l.se P- is said to be Semi-regular GD, or~), or

(ii) rk>vA' an1 b>rank A = rank !v~ T = V (in this case D is
--

saic to he Regular GD, or R.GD).

In fact Bose and Connor's defj_nition of Gn o.esi~ns allows

two points to he incident vrl th the s'~~.e set of blncks, and hence

allows the case r=A. Such designs they call Singular GD

(SGD) desi~ns. The nefinition usen here (loes not nermit SGD

designs, an~, in any case it can be sho~m that ?n SGD ~esign

consists of a 2-design with each point repeated! times.

SRGD 1esi~ns m.3.Y be che"lracterised by a pnint class -block

intersection property as fnllo~~s :-
,,-

R,~su!t 1.4.§ (B(')~e and Connor,[1~].l If'p' is GD then ~ is

SRGD if an1 only if every block is incident

with precisely ~ pnints of each point cL~ss.

The following is also ]<:nown for SRGD r'\.esigns :-

~lt 1.4.6 (Connor, [18J) If Q is SRGD then A<A'.

We now consifer the situatinn ~f equ(~lity in Result 1.4.4.

Result 1.4.7 (Roy anti Laha![ 36]~. Saraf, r 37J)

If Q j_s SRGD then b=v-.4+1 if anr1 only if Q* is

a 2-desipn. In this case Q~'~ is a 2-- (b ,r ,k-r+A) r'\.esi~n.

Result 1.4.8 (Cnnnnr,I18J} If Q is R.GD, b=v and

(rk-vA' ,A-A') = 1, then 2* is RGD ,07ith the same

parameters as~.

RGD ~,esi~ns with b=v whose ~uals are not RGD with the same

par,~meters as Q seem rare. .Any GD Qesi~n satisfying b=v 5_8

callerj symmetri~q and neceSSe"lry Rnd sufficient conditions for a

syw~etric GD ~esi~n to have a GD dual will be obtainect belo~7.
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For an exam~,le of a symmetric SRGD design t'1hose CU,1.1 is not GD,

see Connor, [18J.

Group Divisible Designs may be reg~rded as a special class

of Partially Balanced Desi~ns ~~ith two associate classes. To

define these obj ects we first need the follot'7in~ concept.

An ~~class l\ssociation Schem~ on a set X (Ixl=v) is a

partition ~ = Ai ,f'2 ' ...,Am (Ai *~ for any i) .~f the set ~2 (X) of

all two-elem.ent subsets of X, havin~ the following pr~perty.

If {x,y}E~, then the number of zEX with {x,z}EAi ancl'{y,z}EAj .

is a c~nstant n.~ inde pendent of the choice ~f x and y. The
.1J

, sets A1 ,...,A .'".re called the classes of the ~.ssociation scheme,
m

and if {x ,v}EA.) then x and v are s~j.d to be i th associates.
~ 1 -

.. h h h f .. h (1 .. h )We 1InmedJ.atel y .ave n.. = D.. or everv 1,J) <1,J, <m .-1J ~ J 1 ---

The unique partitions of E2(X) ~~ith m=1 and. m=v(v-1)!2 ~re

assnciation schemes on X, but since they c.re uninterestin.~ we shall

usually assume that 1<m<v(v.-1)/2.

Result 1.4.9 L(,t J\ be an ill-class associe.tion scheme on x.--

Given xEX, then the number of ith associates of

X depends only on i and is independent of the choice of x. l~e

denote this nl~mbcr by n. and we have:-
.1

m
(i) n. = \" P.t; + o. h for everv j.,h(1<i,h<m);1 j;11J 1 ---

( .. ) h i j f .. h(1 <. . h< )11 nhP.. = n.p. h = n.p. h or every 1))) J.,J, m;.1J 1 ) J J. --

m
an'~ (iii) .r ni = v-1; where °ih is the Kronecker Delto..

1=1

A P~Eti~1ly ~~.lanced !2~siS!:!t-1i th massociate clas§es

(~ PBD(m) is a i-design ~ together with an m-class association

scheme ~=!i1,A2"" ,Am defined on E (the point set of~) such

.,
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that there exist constants A1,A2,...,Am (not necessarily

distinct) ~.7i th the property th(~t ~i ven {P ,Q}EAi' then the

connection number of P and Q is A..
J.

A 2'-desi~n is clearly a PBD(1). Also if G is a ~raph with

vertex set X, and Ai ={{x,y}~lx adj~cent to y in G} ;

A2 = E2(X) -Ai' then G is strongly regular if and only if

~ = {A1,A2} is a 2-class association scheme on X. If G is a

stron~ly regular ~ranh then the ass~ciation scheme obtained in

this way will be referred to as the association scheme

corresponding to G, and vice versa. Furthermcyre, it is not

difficult to see that if Q is a PBD(2) wi~.h association scheme

corresponding to (~ stron~ly regular .~raph G, then G ~ G(f,A1).

So a GD desi,~n is a PBD(2) with respect to the association

scheme corresponding to f(d,t), with A1=A, A2 =A' and

G(f,A) = f(d,1).

For a general PBD(m) we also have :-

Result 1.4.10 The parameters of a PBD(m) satisfy_.

m
r A.n. = r(k-1).. 1 J.J.3.=

We shall mainly be concerned with PBD(2)'s and so we now

~ive the following useful Lemmas :-
-:) -

Lemma 1.4.11 A i-design D with incidence matrix A and

precisely two connection numbers, is a PBD(2) if

an~ only if AATli~ has two ei~envalues.

~~l Since Q has two connection numbers, A1,A2' say, then

by Lemma 1.2.10 :

l\AT = (r-A2)I + A2J + (A1-A2)T ~1here T is an adjacency

matrix for G(f,A1). By P,esults 1.2.6 an.1 1.2.7, G(f,A1) is
.L

strongly regular if and only if Tli has two ei~envalues, an1

i is a.n ei~envalue of T.

.cccc}
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But i is always an ei,~envalue of T, since i 1.S an eir;envalue

of AAT, I and J (by Result 1.2.2 (ij.»). So by the abo',e remarks,

Q is a PBD(2) if and only if G(f,A1) is strongly regular, i.e.
.L

if and only if Tli has two eir;enva.lues, and usin~ the above

t .. M Tequa ~on connect~n~ and T the rcsul t f'Jllows. u

Lemma 1.4.12 Suppose that Q is ~ PBD(2), an~ T (the a1jacenc~'
.L

matrj.x ~_f the graph G(f,A1» is such th~t Tli has ei~envalues

e1,62(e1>82) anc iT = 80i. Then Q is GD with connection numbers

J. =A1' A' = A2 if and only if °0 = 61 = (v-1)A2-r(k-1»!(A2-A1)'

82 = -1, multiplicity (80=81) = ,j an~ multiplicity (°2) = v-d.

Proof By Re.sult 1.2.8 G(f.,A1) ~ r(d,9:,) if and only if 80=°1.

But, by the r,3marks above, G(~,A1) = r(ct,9:,) if and only if Q is

GD with A = Ai' A' =A 2.

If R is GD with A=A1' A' = A2' then, by Result 1.4.1,

AAT has eigenvalues rk,rk-vA2 ~~d r-A1 with multiplicities 1,0-1

anj v-d. By Lem~a 1.2.10 :-

,~T = (r-A2)I + A2J + (A1-A2)T ~7here T is an adjacency

matrix for G(~,A1). S.~

T = [(r-A2)I + A2J -AAT] !(A2-A1) ann T has eigenvalues:

80 =e1 = (V-1)A2-r(k-1»!(A2-A1) an[~. 62 = «r-A2)-(r-A1»!

(A 2-A 1) = -1 'iA7i th mul-tiplici.ties d ,9.nd v-rl respectively; and

the Lemma follo~1s. ~

1.5 Tactical Decomnositions and Resolutions.-

Tactical Decompositions are closely linked to certain

~eneralisati'~ns of group nivisible i-designs.

A !actical Decompo_siti).D T(~} ,~f e.n incidence structure

~ j.s a partition of the points and blocks of ~ into classes
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f1 ~ ...~fd and ~1 ~. ..~~c respectively, such that:-

(i) The number of p,~ints of fi incident with a bI.')ck of

~j depends only on i and j and is denoted by Bij;

an.j (ii) The number of blocks of B. incident with a point of
-J 0

fi is a constant Yij ctependin~ nnly nn the choice of

classes.

ClearJ_y every structure admits the t_ri vi~l tactical

decomposition whose point and block classes consist of the

singleton point and block sets. tve assume from now on that

every tactical decomposition is non-trivinl.

A Tactical Division, T(S), of a 1-structure S is a Tactice.l--
Decomposition wh'Jse point classes f1 ~. ..,fd satisfy:-

(i) Given two ,1istinct points P,Q (PEP., QEP.), the
--1.-J

connection number of P and Q o.epends only on the

ch~ices ~f i and J.and is nenoted by A.. ;, 1.J

and (ii) There exists a A such that A.. = A foJr every i
1.1.

(1<i<d).

For a 2-structure, the terms t~.cticC'.l division and tactical

decomposition are equivalent.

We may now state :-

~~lt 1.5.1 (Beker, [6)_) If T{R) j-s a tactical divisicn of a

1-design 2~ then b+d ~ v+c.

J?esul t 1.5.1 is a generalisati:')n of a result of Block, [11] .

Tactical Divisions satisfying b+d = v+c are of special interest,

and are calle(j stro!:!;B:.
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Result 1.5.2 (Beker, [6]) If T(D) is a tactical division of---~~ -

,~ i-design ~, then the following are equivalent:

(i) T(D) is strong;

(ii) The intersection number of two distinct blocks depends

only on their block classes;

and (j.ii) Every pair of distinct blocks from the same block class

intersect in k-r+A points.

A Tactical Division with just one point cla.ss is called a

Eesolut~2n, and a design e.dmitting a resolution will be ca_lle1

resolvab~e. By definition it is clear that a resolvable ,1esi~n

must be a 2-o.esign.

Result 1.5.3 (Hughes and Piper, [23]) If R(Q) is a resolution

of a 2-desi.gn ]2, then b+1 ~ v+d. R(~) is strong

(i.e. b+1 = v+d) if ,~nd only if every block class contains

m = Q blocks, and the intersection number of t~1o distinct
c 2

blocks is k-r+A or ~ ~epending only on ~vhether the blocks are

from the same or different block cl~.sses respectively.

The parameters ,)f a stron.~ly resolvable 2-design (i. e. a

2-design admittin.~ a strong resolution) may be characterised as

follows :-

~esul t 1.5.4 (Harris, I 221_)- If Q is a strongly resolvable

2-(v,k,A) design with m blocks in every block

class, then: v = tlm2/cr2, k = tlm/O' and A = (tlm-cr)/(m-1)

where tl= k2/v and 0' = Y1j for every j.

A parallelism of an incidence structure is a tactical
..

decomr,osition with one point class, satisfying Yij = 1 for

every j(1~t~c). Clearly a parallelism of a 2-design is a

special type of resolution, and in this case, when this resolution

is strong tr.e 2-design is said to be ~~ff!n§.
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As a Corollary to Results 1.5.3 and 1.5.4 we have:

Result 1.5.5. (Bose, [12]) If a 2-design D 8.dmits a

parallelism with c block classes, then

b+1 ~ v+c. Q is affine (i.e b+1 = v+c) if and only if every

block class contains m = Q blocks and the intersection
c 2

number of two distinct blocks is 0 or ~ depending only on

whether -the blocks are from the same or different block classes

respectively. In this case Q is a 2-(~m2, ~m, (~m-1)/(m-1»)

design, (cr=1).

An affine 2l~ne is then simply an Rffine design with ~=1.

The notation and definitions use~ here are by no means

standarct. MA.ny authors (e. g. Bose, [12J; Kageyama, [28] ;

Shah, [3 9J; and Shrikhande, [40] ,[ 4-1J ,[ 43]) call ~ structure

resol',able if it admits a parallelism.

The definition of strongly resolvable given above corres-

ponds to the definition of affine ~!-resolv?_ble of Shrikhande

and R,~ghavar(:lo, [44], in the case ~-1hen .£ is a 2-design. In

general a l-d(~si~n Q is "affine '-:V-res':"Jlv~ble" if and only if

2* is SRGD. L\ls~) for a 2-design, the definition of resolvability

given above is a more f!eneral notion than that of "ry-resolvability";

(an ~-resolution of a 1-desi~n is a ta.ctical decomposition with-

one point class such that Y1j= a for every j). In fact, in the

2-desi,gn case it corresponds precisely with the definition nf

(~1'~2"" '~t)-resolvable of Ka~eyama, [28].


