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CHAPTER 4 -SOMECONSTRUCT!ONSO~ ~rVISIBLE DESIGNS-

In this Chapter we give two construction methods for

strongly divisible 1- and 2-designs. They are both of a

recursive nature, and may be used to construct many more

structures and designs than those indicated.

In Section 4.1 a basic construction process for

1..structures admitting P Divisions is given, and we indicate

under what conditions more specialised classes of structures

and designs can be obtained from this method. In the second

section we also eonsider a construction method, this one due

originally to Sillitto, [46]. We again indicate when more

specialised classes of structures can be derived.

Sections 4.3 and 4.4 give examples of the uses of the

construction methods outlined in the first two sections.

In Section 4.3 we first construct an infinite family of

symmetric GD designs using the process of 4.2, and then use

them, in conjunction with affine designs of appropriate 0

to obtain GD designs admitting strong tc_ctical divisions

using the method of 4.1. Under certain conditions these

i-designs are 2-designs.

In the fourth section we obtain a family of symmetric

GD designs from affine geometries, and then we use these

designs in the method of 4.1 (together with affine designs

of appropriate parameters) to construct another family of

i-designs admitting strong tactical divisions. Again these

1-designs are 2-designs if the affine designs are affine

:p,;

.:,

'i;;
"."..~"-"",",. ~- ~.'",.._" ~



-82-

planes, and in fact the 2-designs are Quasi-residual. ~~e

then show that these Quasi-residual designs are embeddable,

and hence establish the existence of an infinite family of

symmetric 2-designs.

Finally in Section 4.5 ~~e indicate how the construction

method of 4.1 may be modified to obtain the affine designs of

Kimberley, [31].

In our examples of the use of the construction of Section

4.1 ~]e have mainly restricted ourselves to cases in ~1hich the

structure obtained is a 2-desi~n. Clearly this construction

process can yield many more i-designs admitting P Divisions.
... bl 2 (4 2 2For example we could use the strongly d1v1S1 e -m s ,

ms(2ms-1),(m.+1)s(ms-1») designs of Theorem 4.3.3 in conjunction

with affine planes of order m2 to obtain further GD designs

admitting strong tactical divisions.

The results of Sections 4.1, 4.2, 4.3 and 4.5 come from

collaboration t~ith H.J. Beker, and a slightly less ~eneral

account may be found in [8J. Note that in [8] the construction
t method of 4.1 is described in terms of matrices; this approach

is equivalent to that used in 4.1.

.,
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4.1 A Construction Method
;

In this section we first give a general, recursi ve ~.ethod

of construction for 1-structures, and then indicate under what

conditions more specialised classes of structures and designs

can be obtained from this construction method.

Suppose that .t; is C'-. 1-(v,k,r) structure with b blocks

admitting a parallelism with m blocks in each block class;

(hence v=mk and b=mr). L<".t §. be a 1-(v' ,k' ,r') structure y7ith

b' blocks such that v =md for some integer d.

Let ~1'... '~d be d isomorphic copies of~, and denote the

points of A. by X.. (1<j<v). Label the parallel classes of-J. J.' ---
..I

AJ..: A.",...,A. and the blocks of A. 9 : y. ~1 ' ...,y .n. Since--J.\oL -J.r -J. J. -.J.x,m-,

A1 ,...,A d are isorrorphic cop ies of A., suppose X..E y ." if and
J.) J.~ S

1 . f X e: f .., (1 .., )on y J. .., ..::y., n or ever y J..J. <J., J. <d .-J. J J. }:.s .--

Let Q1,...,Qb' be a labelling of the blocks of;?. Suppose

~1'...'~ is some partitioning of the points of ~ into d classes

of m points each, and then denote the points of ~i by Pi1'... ,Pim.

tATe noy] define a ne\-l incidence structure Q with point set

{X. .t 1<i<d,1<j<v}, and ~vith block set {Zn = U y. n !1<t.7<b' ,J. J 1\,W P. E J.x, s --
J.S qw

1<2<r}.

c "'c""
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Theorem ~.1.1 Q is a 1-(m.kd,kk' ,rr') structure.

~roof By definition Q has vd:I!lkd points, and every block of

Q is the union of k' blocks of f:.1,Q U.J::.22 u. ..~_J~ for some fixed

Q. Hence, as these blocks are all disjoint, every block is

incident wj.th k~ points of Q.

Pick an integer ~ (1!J~r), and then consider any point

X.. of A.. This point occurs in exactly one block, Y1.n S ' say,1J -1 "

of b.i£ .If ~ ~,,7 is a block of ]2, then Z§l w=P. ~ YiP s'

1S qw

and so X. .EZn if and only if X. .Ey.o Uy." ~J.. .I.JY.n t.Jhere
:1. ) x; ~,1 1] 1... S 1 1, S 2 1". S t

S1 ,s 2 ,...,S t are such that P. ,...,P. are the points of 81.1S1 1St -

incident with q. Hence X..Ezn if and onl~' if P. is incident
.w 1J x. \'1 .1S

~~ith q .Every Point of S is incident t~ith precisely r' blocksw --

q , and so there exist precisely r' blocks Zn of D such that
t-1 ~ trl -

X..E~ .
1J ,.W

There are r choices for ~ and so every point of Q is

incident with rr' blocks of 1'.. u

Throughout this section t~e will use ~,~ and Q to denote the

structures considered above. ~~e not~ consider under what

conditions Q is a design. Let ~A be the largest intersection

number of A.
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Lemma 4.1.2 2 is a design if :

(i) k>~A(m-1) and no two points of ~ are incident with

the same set of blocks; and

(ii) S is a design and no block of S contains all the--
points from a given class of the partition ~1"" '~d of the

points of~.

~f Consider any t~AlO blocks ZQ w)z9' W of,2. Suppose they

are incident with precisely the same set of points. By

definition we have Y'n UY'Q IJ.. ,uY.:n = Y.:n' , UY.:n' , U...
J.'<. s1 :IJ. s2 -1Jf. St .JJ'- s1 '.lX. s2

U Y.:n' s' ' (t-l7here P. , ...,P. are the points of S. incident..Lx; i! J.S 1 J.St ---1

with Q and P., ,... 'P' s' are the points of S. incident with
-l1 1S1 1 t' -1

qfJ) for every i (1~i~d). NOt..T 1~t,t' ~m-1 (by (ii) of the Lemma)

and so, since k>~ A(m-1), Y 0 UY.:n lJ.. .Uy.n can only contain
~ lj, S1 .lJl. S2 1" St

all k points of YjJl' s' if 9. =Q'. Hence {S1"" ,St} = {s;,... ,S't' } ,
1

i.e. q and q J are incident t~ith the same set of points of S..~.,7 ~ ' -1

This is true for every i (1~i~d), and so, since ~ is a, desi~n,

\1l=W'. Hence zp = Zn' , and no t~.~o blocks of D are incident.~.j J; W -

~7i th the same point set.

SuryDOSe X.. and X., ., are t~170 points of D incident ~vith the", 1J 1 J --

same set of blocks of D. Let X.. be incident with the blocks
-1J

Y'
1 ,y. 2 ,. ..,y. of A. and X., ., be incident 1:'7ith the blocks

1 Sl 1 s2 J.rsr -1 1 JI 

IL.
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y., 1 , , Y ., 2 ' , ..., y., , of A., .Now X.. and X., ., areJ. s1 J. s2 J. rsr -J. 1J J. J

incident ~~ith the block Zn of D if and only if P. Eq and
~w -1S.Q w

p., , Eq. So P. and P." are j.ncl.d.ent with the same set
J. s ~ w J.sQ J. S ~

of blocks of.B., and hence, since ~ is a design, i:i' and s2:s'.9-

for every~. So X.. and x.., are incident ~~ith the same set
J.] J.]

of blocks of :\., and so, by (i) above, j:j'. Hence no t~~o
-1

points of Q can be incident with the same set of blocks of Q. n

Remarks l'Tote that (i) of the above Lemma implies that A-
is a design. Also, if ~ is an affine 2-design, then (by

Result 1.5.5) its parameters may be ~rr'itten 2-(llm2,~m,(~m-1)/(m-1)),

and thus, since ~=PA' (i) above is automatically satisfied.

Theorem 4.1.3 Suppose that A is a 2-(v,k,A) structure and S---

admits a point division ~1'...'~ ~1ith I~il =m for every i (1~i~d)

and connection num~ers A'.. .Then D, constructed using this1) -

partition of the poj.nts of ~, admits a P Division ~1'... ,~,

where P. contains the points of A., (and hence' PJ..I :v=rnk), and D-J. -J. --

has connection numbers.

rA'. .+A (r' -At. .)0.. , (1<i ,j<d).J.J J.1 1J --

Proof SuDpose X.. and X.,.r are t~70 distinct points of D.'- 1.J 1 J -

There are tt'70 cases to consider; ~..7e first suppose i=i' .

~i is a 2-(v,k,A) structure with r parallel classes, and

so in Precisel y A of these classes x.. and X.., occur together
1J J.]
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on a blocJc. Pick such a parallel class, ~iP say, and suppose

Y1.' nS is tr,e block of A. n incident ~Ni th both X.. and X.., .K -1."- 1.) 1.J

Consider any block Zn of D. Then X.., X..,Ezo if and]I; W -1.J 1J ~ ~7

only if X.. ,X.., Ey.p IJ.. .UY.n , t..rhere P. ,... ,P. are the
1.J 1.J J.~" S1 J.X St !cs1 !cSt

points of S. incident ~rith q. This occurs if and onl y if
-1. w

~{s 1 '... ,S t }' i.e. if and onlv if P. is incident vlTith q .J 1.S '0]

But every point of ~ is incident \.]ith precisely r blocks qw'

and so there are exactly r' blocks Z n. with X.. ,X. ., E~ for~W J.J 1~J ~W

every 9 satisfying the above condition.

NO~T consider the other ~A ~a.rallel classes of A., in which
L -1

X.. and X.., occur in different blocks. Let A.:o he such a
J.J 1J -J.l'..

Parallel class of A., and sup pose y'.o and Y.:n , are the blocks
-J. ..Lx S .l.Jf. 6

of A. which contain X.. and X.., ' res pectivel y .Su ppose Z'n is-J. J.J J.J ~ x; W

a block of J), and then X..,X..,~zo if and only if-1.J 1.J ~ v] -

X..,X..,ey'n Uy.!o L'...UY.n where P. ,...,P. are the
lJ 1.J 1)l 61 .1.J'. S 2 ].X St J'S1 1St

points of S. incident with q. This occurs if and only if
"-1. w

s,s'E{s1'..' ,St}' i.e. if and only if Pis and Pis' are i

incident vIi th q ' and there are precisel " A'.. blocks of S-~-1 -J J.J. -

,incident "nth any t~'10 points of 9.i' So there are A ii blocks

Zn incident ",ith x.. and X.., where Q is of the above type.
): ~'7 1.J 1.JII 

.
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Summing over all possible 9 we see that X.. and X.., are
1J 1)

incident with Drecisel~, Ar' +(r-A)A'.. blocks of D.,..J 11 -

!-10toJ suppose i*i' .Pick some ~, (1<2 <r), and then X..
--1J

and Xi'j' are incident v1ith precisely one block of ~i£ and

A"n, respectively. Label these blocks Y'n and y"o ,._J. ;w; J.]~ S 1 P. S

Suppose zQ is a block of D, then X.. ,X., ., Ez~w if and o!1.ly if'~.J -:LJ 1. J

X. .Ey;.9. U.. .Uy.tI and X.,., E'~., t) , lJ.. .Uy;., 9' where
J.J 1. S1 1~St J.] J. x.s1 J. St'

P. ,. ..,P. are the points of S. incid.ent with q andJ.S 1 J.St .-J. ~.y

P., S ' ,... ,P." are the points of S., incident \"i th q. ThisJ. 1 3. St' -J. w

occurs if and only if sE{s1"",St} and s'E{s1"""S~I;}' j_.e.

if and only if both P. and P., , are incident ~7ith Q. Since
-1S J. S -~"

~1"" '~d forms a P Division of~, there are precisely Aii' such

blocks q , and hence, summin~ over all 9. (1<9 <r), ~'le see that-1:iJ --

there are rA'.. blocks of D incj.dent ~-1ith both X.. and x., J.,. r:t
J.J. -1J 1

From no~l on ~ve will assume that ~,~ and Q are as in

Theorem 4.1.3.

Le1:'.ma 4. 1. 4

(i) ~1"" '~d is a CLP Division of ~ if and only if

f1,. ..,fd is a CLP Division of Q.L..:
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(ii) Every block of 1 contaj-ns eq.ually many points of

£i if and only if every block of 2 contains equally

many points of P...-1

(iii) ~1'... '~d is a group division of ~ or ~ is a

2-structure if and only if E1,...,~ is a group

division of D or J) is a 2-structure.--

(iv) ~1'...'~d is a semi-regular group division of £ if

and only if ~1'... '~d is a semi-regular group

d ...oF D1V1S1on 0... ..

(v) ~ is a 2-structure if and only if ~1'... '~d is a

group division of §. satisfying rA~+A(r'-Ai)=rA~

" " f '. (1 .. d ..a..)where A1=A.., A2=A.. or everv 1,J <1,J< ,1TJ .11 1J ---

~£! (i) ~1'...'~ is a CLP Division if and only if

there exist a A' with A'. .=A' for every i (1<i<d), i.e. if and11 --

., " ( ) , f ... f d 1only 1f Ar +(r-A)Aii=Ar + r-A A or every 1, 1.e. 1 an on y

if f1,...,Ed is a CLP Division.

(ii) If z9.w is a block of Q, then '.zP.w~i' = IYi9s1U.. .tlyi9:st'

(~~here P. ,...,P. are the blocks of ~i incident with qw)
1.s1 l.St

= k I q ns.,; and (ii) follo~~s.
W -1I.._J
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(iii) §1'...'~d is a group division or ~ is e,2-structure

. f ~ I .f +... .". , , , ,1 an~l on y ~ ~~ere ex1st ).1').2 W1th )...=).1' )...=).
2 for every

-11 -1) .

.. ( .*. ) ..oF '.1: " " " ,1,) 1 J , 1.e. ~- and onl" 1.L rl\..+).(r-)...)15..=r). ? +)..(r-). 1 )<5.." 1J 11 1J ~ 1J

for every i,j (i*j), i.e. if and only if ~1'...'~ is a group

division or D is a 2-structure.

-!
(iv) IJIUnediate for (ii),(iii) above and Result 1.4.6.

(v) Immediate from (iij.) above. 12

Remarks From (ii) ~,Te can derive the result that ~1'... ,~

is a SRP Division of ~ if and only if ~1~... '~d is a

SRP Division of Q. But since ~1'... '~d he.s constant class size,

this says no more than (iv), (using Theorem 2.3.5).

From (iii) we may also deduce that if D is a 2-desi~n then
-c

~1'... '~d is a ~roup division, and, using the above notation

, , ,
1\1<).2.

L~roma_~.1.L~ Suppose 2 admits a tactical division T(~) with

point cla.sses ~1'... '~d and c .block classes.

Then ~ c.dmj_ts a tactical division T(Q) ~rlth point classes

f1,...,fd and rc block classes. Also, T(g) is strong if and

only if r(~-c)=d(mk-1).1
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f!££f By 4.1.4{i), E1'...'~d is a CLP Division. Let

f1,... '~c be a labelling of the block classes of T{~), and

denote the number of blocks of C. incident with a Doint of S.,
-J -'-J.

and the number of points of ~i incident t-!5.th a block of ~j by

Y J..J.and 6 J..J.respectively. Further, supDose IC. ! ~ m., (1<j<c).
..-J J --

ReJ.abel the blocks of S : q. (1< j<c ,1<a<rn. ), so that-.Ja -' ---J

£j = {qjaI1~a~mj} and then relabel the blocks of Q :

z.. J.= P U Y.n, (1<~ <r,1<j<c ,1<a<m.). Finally set~x a .Ea. J.x. S J -
J.s J'J a

Bn. = {Z " J. 1 1<a<m.} for every 9.,j {1<~.<r,1<j<c}, and we have
~J x,a --J a partition of the blocks of l? into rc classes. t-1e not-1 show

that T(Q), defined as having point classes ~1'... ,Ed and block

classes B1j forI!lS a tactical decompositj.on of ~.

Pick some point class P. and a block class BII.. Then if
-J. -x,J

X. EP., there exists a unique block, Y.n say, of A.n t.]hich is
J.t.\1 -J. J.,1(. S -J.7

incident with X.. So X. is incident t.Ji th a block z.'). ERn J.if J.W J.To1 x. J a -.

and only if P. Eq. (by similar arguments to those used above).J.S Ja

But P. is incident ~,'i th y.. blocks of the form q. a (1 <a<m. ), andJ.S J.) J --J

so any Point of P. is incident with precisely y.. blocks of Bn..
--J. J.J -x-l

l'!o"r let :z... be a block of Bn.. By definition
J{;la -x,]

Zn-. = P eu y. n~' and so the number of points of E. incident
~,Ja .-q. :\'x,u J.J.8 JaI

i 1I. I
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wi th Z(I. = Iy ." U... lJy. n I, (~r1here P. , ..., P .are the points
x, J a J. '~S1 J.)(. St J.s1 J.St

of S. incident with q. ), = kt = k 6...
-J. Ja J.J

So T(l?) is a tactical divisj.on, t,rhich is strong if and only

if "b+d::v+c!', i. e. if and only if b'r+d=mkd+rc. IX

~ve may now state:

Theorem 4.1.6 If ~,~ anG Q are as in Lemma 4.1.5 then any

two of the follot~ing imply the third:

(i) b. is affine;

(i.i) T(~) is strong;

(iii) T(D) is stron~.-"

~!::22f Suppose (i) holds, i.e. suppose.:Q is a 2-(Jlm2,~m,

(Jlm-1) / (ro.-1») design. T(~) is strong if and only if h' +d=md+c,

i.e. if and only if rb'-rc=rd(rn-1)=(Jlm2-1)d=mkd-d, i.e. if and

only if T(D) j,R strong, (by LeMma 4.1.5). Hence (i) and (ii), -

hold if and only if (i) and (iii) hold.

Suppose (ii) holds, i.e. suppose b' +d=md.+c. Then T(2) is
istrong if and only if d(mk-1)=r(~-c)=rd(m-1») i.e. if and only I

if (i) holds, (using Result 1.5.5). Hence (ii) and (iii) hold

if and only if (i) and (ii) hold. ,~

I

i

.~-_.""""...,"."'=
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~iJe now turn our attention to the intersection numbers of

~. If ~,~ and ~ are as in Lemma 4. j.. 5 then (hy Result 1.5.2)

if ~ is a design and T(~) is strong the intersection number of

a block of class C. and a block of class C. depends onlv on i-]. -J J

and j, and in this case we denote it by p'.., (1<i ,j<c).J.J --

Further P']..= p' =k' -r' +A'1 for everv i (1<j <c), where A'1= A'..J .' --].].

for every i (1~i~d),

No~¥ consid.er D. Relabel the block classes of T(D):--
Y1 " .., Y \-1here y, =Bn. if i= (,{! -1) c+j .NOt-T suppose that D--rc -]. -.,., J -

is a design and T(~) is strong. Again by P.esul t 1.5.2, we

denote the intersection number of a block of class !i and a

hlock of class Y. bv p.. (1<i,j<rc), and we also have P=P].' J.'
-J -].J --

(1<i<rc),

Th~orem 4.1.7 S11I>poSe ~,~ and ~ are as in Lemma 4.1.5, and

also suppose ~ and ~ are designs, If ~ is

an affine design and T(~) is strong, then T(Q) is strong, and

the intersection numbers of Q satisfy:

".. = kp' 1<i.,j<rc; 1<U)~l<C; u=i~j=w (modc).
'"'1.J Ut.l ".. =

(0' +(r' -A' )/!!" t) k 1<i,j<rc: i=j=t (modc); 1~t~c;
t':lJ .--i*j

,p = kp .

c,
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Proof Suppose Y. and Y., are two block classes of T(D),
--1. -1. -

where i = (R-1)c+j and i' = (r' -1)c+j'.

If Q =9.' and Zn .EY., Z'n.' , EY., , then:~ J a -1 ~ J a -1. '

I z... rlz..., ,1= I !J Y .:n;) V .
Y .n ' 1x J a ~ J a ' .J.J(. s .1)". S

p. Eq. P. , Eq., ,1.S Ja J.S -J a

d
= ll(Y.:n U...IJY.:n ) ('1 (Y.:n""U...IJY.:n , )1

i = 1 .1.1'. S 1 .J.J(. S t .l)':. a 1 -1.1'. S t'

(where P. ,... ,P. are the points of 8. incident \~ith q. , and
1S1 1St -1 Ja

P. , ,...,P., are the points of 8. incident I:.rlth q., ,).
1S1 J.St' .-1. J a

d
= k.r 1 {s 1 ' ..., s J n {s;,... , S~} I

1=1

= kp'.., (1).JJ -

If .2 *.12' and 4.n .EY., Zo' ., , EY., , then:~ J a -J. ..J a -1.

d
Iz.,. ('\Zn'" , I = ll(Y.:n V... Y'n ) n (y.n' ,U"~'->Y;fJ' , )1

.Ja ,,: J a i=1 JJ~, S1 J.x,St 1.)". s1 -St'

(where P. ,... ,P. and P. , ,... ,P., are the points of 81.'J J.S 1.St 1.S1 1Stl .-

i ncident t-:rith q .and q ., , resnectivel y ).Ja J a c.

0 -
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d t t'

= r I I IY.~ l!y., , I
i=1 u=1 vy=1 1. Su il S\"y

d
= I tt' 1J

i=1

d
\' , ,= ~ L 8.. B..,

i=1 J.] J.]

= ',lm(Pjj' +~jj' (k' -Pjj' )/mj) <by Lemma 2.4. 2(vi»

= k(P' J..' +0. ,,(k' -p.., )/m. ) (2).J JJ JJ] -'

Combining (1) and <1) the theorem follows. a

Remark By Theorem 4.1.7, if ~ has i intersection numbers,

then ~ has at most i+s, v'~ere s is the number of distinct values

of m. (1<;<c).J ---

4. 2 A Constructj.on 1'1ethod of Sil15- tto---

In this section ~1e examine a method of construction due to

Sillitto, r 46J, and sho~~ that it may be usect to construct

desi~ns admitting strong tactical decompositions. Suppose ~

and I are a 1-(v,k,r) structure and a 1-(v,k,r) structure with

incidence matrices A and ~, respectively. ~hen let

C=!~ 8 B + (J-A) 3 (J-B) ~There 3 denotes Kronecker product.

Since A and ~ are 0,1 matrices, C is a 0,1 matrix, and so C is

an incidence matrix of a structure~. t',7e then imrned.iately

have:

I

c '" ,
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Theorem 4.2.2 ~ is a l-(vv,kk+(v-k)(v-k),rr+(b-r)(b-r»)

.-
structure ~':rJ.th bb blocks.

Throughout this section we assume that ~,I and ~ are as

defined above. Another immediate result is =

kemma4.2.2 If v*2k or v*2k, then ~ is a desi~n if and

only if ~ and! are designs.

Remark If S is a desi~n then E and F are al~7a~ls designs,J

but the reverse is not true if v=2k and v=2k. Suppose §.,K

are both the trivial 2a'(4,2,1) design v.1ith

1 0 1 0 1 0

A. = B = 1 0 0 1 0 1 .

0 1 1 0 0 1

0 1 0 1 1 0

Then the first and ej,gth colum.T}s of C = A 13 B + (J-A) 8 (J-B)

are identical, i.e. 2. is not a design.

In fact the Lemma fails if and only j_f r or I satisfy

v=2k and v=2k, and there exists a pair of points (or blocks)

in both I and r havin~ connection (or intersection) nu~ber zero.

~r,Te can now consider partitions of the points (or blocks) of

I vlhich give rise to partitions of the points (or blocks) of~.

Suppose ~l'.'.'~d is a partition of the points of I. By the

nature of the construction for S, for any i (i<i<v) the---
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the (i-1)v+1,(i-1)v+2,... ,iv rows of C are indexed by the

rO~7S of B, and hence b" the points of r. So ~1'...'~

induces a partition of these rows into d classes, and

repeating this process for every i we obtain a partition of

the rOv7S of C (and hence of the points of~) into vd classes.

Label the classes fro~, rows (i-1)v+1,(i-1)v+2,...,iv

Ccorresponding to f1'...'~d) ~Ci-1)d+1,~Ci-1)n+2""'2id'

and then ~1" ..'3vd partitions the points of~. Tr,Te call

this partition the partition inducedcby ~1,...,fd. ~t.]e make

similar definitions for partitions of blocks of I and hence

~, and so if TCI) is a tactical decomposj_tion of I, then t\Te

will refer to the partition T(~) of the points and blocks of

S as the induced Darti tion of S. ~rote that r~e \vill al\vays-.-
denote any induced partition of the points of ~ by 21"'. '~vd

and any induced partition of the blocks of ~ by g1'..' ,Qbc.

Theorem4.2._~ Suppose I admits a P Division I1,...,Id with

connection numbers A.., (1<i,j<d), and E is
J.J a 2-(v,k,I) structure with b = 4(r-r). Then the partition

~1""'£vd of the points of ~ induced by I1""'~ is a

P Division, and in this case a point of class S and a point
-u

of class ~'T (where u = (f-1)v+i and ~..7 = (g-1)v+j ) have

connection number :-

2 (r..2I) (b-r)+ Ib + rSfp-(r-r) (b-4(r-Aij») .
."

ii.__'~"~
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Proof Using "the fac"t "tha"t g is a 2.. (v,k,X") s"truc"ture,

compu"ta"tion vields : CCT = I- 3[ (b-r) (b-2r)J +DBflT] +" v v

(J- -I-)3{[ 2 (r-A)r+(b-2r+A) (b-2r)]J +rb-4(r-X)BBT]}.v v v

Hence ~,]e see "tha"t 81 '... ,S- d is a P Division if and--v

only if b = 4(r-X). Assuming "this and manipula"ting "the above

expression, "the Theorem follo~~s. ~

Rem~£~ If Q is an arbi"trary 2-(v,k,A) struc"ture we will

say "that ~ sa"tisfies Condition * if b = 4(r-A).

Given "that ~ and I sa"tisfy the condi"tion of Theorem 4.2.3

tole have the following immedia"te corollaries:

Corollary 4.2.~

(i) If I1'... ,Id is a CLP Division, then so is ~1'.. '~vd.

(ii) If I1,...,Id is a Group Division ~..rith connec"tion

numbers A, A', "then ~1'..".§.vd is a Group Division if

and. only if b = 4-(r-A'), and in this case the

connection number of a point of class £u and a point of

class S is 2(r-2X)(b-r)+Ib+~ (r-X) (b..4(r-A»).-w U~"7

Corollar24.2.5 If I is a 2-(v,k,A) structure and ~~e

consider the P Division of K r~ith one class,

consistin,~ of all the poj.nts of !, "then the induced P Division

.~"
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~l'...'~v of ~ is a group division, and the connection

number of a Point of class S and a ~oj.nt of class S =
.-u" -w

2C"r-2X) (b-r) +Xb + ~ul;,:r(r-X) (n-4-(r-).)) .

Qorollar:'.1 4.2.6 (c. f. r 4- 2}, Th~o!em.1 and r. 46])-

If I is a 2-(v,k,).) structure then ~ is a 2-structure if

and only if I satisfies Condition *. In this case ~ is a

2-(vv,kK+(v-k)(v-k),2(r-2A)(b-r)+Ab) structure, and ~

satisfies Condition *.

f!££f By Corollary 4.2. 5 ~~e need only check that ~ satisfies

Condition *. ~ has bb blocks and rr+(h-r)(b-r) blocks

incident with every point, and so "4 (r-).) 'I =

4 (rr+(b-r) (h-r)-2(r-2A) (b-r)-Ab) = b(4b-12r+12f), using

/ the fact th.-,.t b = 4(r-~). Hence !'b-4-(r-).)"= bb-b(4b-12r+12"f)= 0.12

Remark Corollary 4.2.6 gives a recursj.ve method for the

construction of 2-structures satisfying Condition *.

~Text ~Ne consider structures K admitting tactical

decompositions.

Lemma 4.2.7 If F admits a tactical decomposition T(I)--
~vith d point classes and c block classes, then

the induced partition T(~) of the points and blocks of ~ is a

lccc ccl ,Ico.cccCc Cc c 'cco.cc
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tactical decomposition of ~ ,~ith vd point classes and bc

block clr3.sses.

~E££f T(~) clearly has the requisite number of point and

block classes, and is a tactical decomposition by definition of

C, since the submatrix of C corresponding to rows

(i-i)v+1,(i-1)V+2,...,iv and columns (j-1)b+1,(j-1)b+2,...,jb

(1~i~v,l~j~b), is either B or J-B. n

Using the above results we nO~'7 have:

Theorem 4.2.8 If T(F) is a tactical division of F with d

point classes and c block classes, and ~ is

a 2-(v,k,r) structure satisfying Condition *, then the induced

decomposition T(~) is a tactica1. division of~. In this case

any t~10 of the follo~1ing imply the third. :

(i) f is symmetric;

(ii) T(I> j.s strong;

(iii) T(~) is strong.

If f is symmetric, T(I> is strong and r has intersection

numbers p.. (1<i,j<c), then T(S> j.s strong, and if the block
1.) classes of T(~) are Q1"'. ,Qbc the intersection number of a

block of class U and a block.-of class U (~~here u=(f-l)b+i,
-u -tv

t'1= (g-l )b+j) = 2 (r-2X> (v-k > +Xv+~ fg Cr-X) (v-4 (k-Pij )) .
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f~ T(~) is a tactical decomposition by I..ernma 4.2.7,

and is thus a tactical division of ~ by Corollary 4.2.4(i).

T(S) has vd point classes and bc block classes, and so T(S)--
~s strong ~f and only ~f b(b-c) = v(v-d), and the second part

of the theorem foJ.lows. Finally, the intersection numbers

of T(.§.) are as given, applying Theorem 4.2.3 to ~*. ~

Remarks If F is a design, then by Result 1.5.1, b-c > v-d
--

and so, usin~ Result 1.2.5, (i) and (ii) above hold if and

only if (iii) holds. The result on the intersection numbers

of ~ generaJ.ises Theorem 5.1 of Kageyama, [27] .tIe may find

the connection numbers of ~ by using Theorem 4.2.3.

Given that ~,I satisfy the conditions of Theorem 4.2.8,

we have:

g~rollary 4.2.9- Suppose I is a 2-structure and let T(I)

be the tactical division of I ~Jith just one

point class and one bloc}~ class. Then the induced division

T(2) is a tactical division with v point classes and b block

classes, and the point classes of T(~) form a group division

of S. Furthermore T(S) is strong if and only if both E and F

are symmetric.

Proof T(S) is a tactical division by Theorem 4.2.8; the
--
point classes form a ~roup division by Corollary 4.2.5, and

by Result 1.2.5 the Corollary follows, since T(~) is strong if

and only if b(b-1) = v(v-1). "
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Finally we give some results of Shrikhande and Sillitto

on the parameters of 2-structures satisfying Condition *.

~e.s~lt ~.2.10 (Sillitto,rl~6.J) ~ is a 2-structure

satisfying Condition * if and only if ~ is a

2-(u2,u(Ui1)/2,(Ui2)N/2) structure for some integers u,N.

Ees~lt 4.2.11 (Shrikhand~,[42l) ~ is a symmetric 2-design

satisfyj.ng Condition * if and only if ~ is a

2-(4s2,s(2si1),S(Sf1») design for some integer s.

Remark In these trvO results, the structures v1i th the

parameters corresponding to the + signs represent th.e complements

of the structures \Nith parameters corresponding to the -signs.

If ~ is a 2-(482,s(2s-1),S(S"-1») design, then ~,1e say that

~ is a S(S), and we denote the complementary designs by S(S)C.

Result 4.2.12 ([ 42] ,f 46] )

~ (i) If a S(m) and a S(n) exist ~ then a S(2mn) exists.

(ii) If e and e+2 are both odd prime powers, then a

S(e+1)/2) exists.

(iii) 8(1) exists.

E~~arks (i) follows from Corollary 4.2.6 by observing that

if E is a S(m) and F is a S(n) then S is a S(2mn)c, and note that---
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S(1) is the trivial :'2-(4,1,0)'1 design for which I4 is an

inc5.dence matrix. lYsing (i) ,(ii) ,(iii) above ';ore may deduce

that S(m) exists for 1~m~10 (m*7). In fact many constructions

exist for S(m) ~esigns, and the smallest value of m for which

the author knoT;ls of no S(m) designs is ~. : 11.

It is also clear from the above that a S(m) exists for

infinitely many values of ffi.

4.3 ~Family of Strongly DivisibleDes_iK~~

In this section we utilize the construction methods of 4.1

and 4.2, to 8btain an infinite family of group divisible

i-designs and 2-designs admitting strong tactical divisions.

Le~a 4.3.1 If f is a S(S)C and I is a symmetric 2-(m,h,A)

design, then ~ constructed as in Section 4.2

above is a symmetric GD 1-(4ms2,ms(2s-1)+2hs,ms(2s-1)+2hs)

design. ~ admits a strong tactical division T(~) with 4s2 point

and block classes of m points and blocks each (the peint classes

of T(~) being the classes of the group division), and with

connection numbers A'.. and intersection numbers p'.., where
J.] J.]

A'.. = p'.. = ms(s-1)+2hs+o.. s2 (m-4(h-A» ) ; 1<i,j<m.J.] J.] J.] --

~£! By Corollary 4.2.9, if we let T(I) be the tactical

division of r with just one point class and one block class, then

the induced division is a tactical division with v = b = 4s2

icc,"'"
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point and block classes of m points and blocks each. The

parameters of £ can be obtained by applying Theorems 4.2.1,

4.2.3 and 4.2.8. Finally Q is a design by Lemma 4.2.2. n

~e~~rk We take f = S(s)c and not S(s) in the Lemma above

so that the designs obtained have k<v/2.

Theorem 4.3.2 Let ~ be a 2-(~m2,~m,(~m-1)/(m-1») affine

design, and let £ be the GD design constructed

in Lemma 4.3.1 above. Then Q constructed as in Section 4.1, is

( 2 2 2a GD 1- 4~m s ,~m(ms(2s-1)+2hs), (~m -1)(ms(2s-1)+2hs)/(m-1»)

design admitting a strong tactical division with 4s2 point classes

and 4(~m2-1)s2/(m-1) block classes, of ~m2 points and m blocks

each, respectively. The connection number of a point of the ith

class and a point of the jth class =

2 2 2 2
(~m -1)(ms(s-1)+2hs)/(m-1)+o..(4s (~m-1)(h-A)/(m-1)+s (~m -1)

J.]

(:m-4(h-A») /(m-1»' .

Q is a 2-design if and only if ~ = 1 and I is a 2-(4A+3,2A+1,A)

Hadamard design or its complement.

~~ R is a GD design with appropriate parameters from

Theorems 4.1.1 and 4.1.3 and Lemmas 4.1.2 and 4.1.4(iii). Q

admits a strong tactical division by Lemma 4.1.5 and Theorem 4.1.6.

By the above, R is a 2-design if and only if

2 2 2 ( )4(~m-1)s (h-A)/(m-1)+(~m -1)s m-4(h-A) /(m-1) = O.

,., "...il"""ilil"""~""".
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Rearranging and cancelling through by ms2/(m-1) we obtain:

4(h-A)\l(m-1)-(\lm2"1) = 0, i.e. \l(4(h-A)(m-1)-m2)+1 = O.

But m,h,A,\l are positive integers and so this can occur if
d .2 an only 1.f \l = 1 and 4(h-A) (m-1) = (m -,1), i.e. \l = 1 and

h-A = (m+1)/4. That is ~ is a symmetric Hadamard design (or its

complemenT) and ~ is an affine plane. n

~or~m4.3.3 Suppose m:: 3 (mod 4) is a prime power and s is

such that a S(s) exists. Then there exists

a strongly divisible 2-(4m2s2,ms(2ms-1),(m+1)s(ms-1») design~,

with 4s2 point classes and 4(m+1)s2 block classes of m2 points and

m blocks each, respectively. ~ has intersection numbers:

2ms(ms-s-1), ms(ms-1), ms(ms-1) + s .

f~f Since m :: 3 (mod 4) is a prime power, an affine plane ~

of order m exists, i.e. ~ is a 2-(m2,m,1) design. Also by

Paley, [34J, there exists a Hadamard 2-(m,(m-1)/2,(m-3)/4)

design, F. Let E be a S(s)c, then S constructed from E and F

using Lemma 4.3.1, is a GD 1-(4ms2,s(2ms-1),s(2ms-1») design with

connection and intersection numbers A'." = p'... = s(ms-1) -s20...
1.J 1.J 1.)

Using Theorem 4.3.2, ~ constructed using ~ and ~ is the required

design, and, by Theorem 4.1.7, the intersection numbers. of ~ have

the above values. U

Remarks Given any strongly divisible i-design with the parameters

of the ~ of Theorem 4.3.3 above, we can construct a strongly

II

,
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divisible 2-design; i.e. it is not necessary for the construction

above that £ belongs to the class of designs constructed in

Lemma 4.3.1.

For instance John and Turner, [24] ~ have constructed GD

1-(16,7,7) and 1-(20,9,9) designs with parameters identical to

those of the S of Theorem 4.3.3 when s = 1 and m = 4 or 5

respectively. These designs may be used in conjunction with

affine planes of orders 4 and 5 to obtain strongly divisible

2-(64,28,15) and 2-(100,45,24) designs.

Since there exist infinitely many primes =3 (mod 4), and

infinitely many S(s) designs exist (see Section 4.2), Theorem

4.3.3 gives an infinite family of strongly divisible 2-designs.

4_.4 An In:fini te Familyo,!: Symmetric ~-designs

Using the construction method of Section 4.1 we now construct

a family of stron~ly divisible i-designs and 2-designs, and then

show that the 2-designs are the residual designs of an infinite

family of symmetric 2-designs. This construction may be regarded

as a generalisation of the construction of [4], Chapter 4,

Section 1, and [9].

It has recently been brought to the attention of the author

that, using a different construction method, a family of symmetric

designs with the same parameters has been obtained by Rajkundlia,

[35] .II 

,
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Suppose q>2 is a prime power, and let h>l be any integer.

Then put ~'= Ah-1(h,q), the design consisting of the points

and hyperplanes of h-dimensicnal affine geometry over GF(q);

(see, for instance, [19]). Choose some point P of ~,and let

S:(A')P.--

1emma4.~.1 ~ is a symmetric GD 1-(qh_1,qh-1,qh-1) design,

and S admits a stron~ tactical division T(S)-' -

with d point and block classes, d = (qh-1)/(q-1), of q-1 points

and blocks each. S has connection and intersection numbers
,

A.. and p'" where A"'=P',.=(1-~,,)qh-2, (l<i,j<d). No block of1.J 1.J 1.J 1.J 1.J --

~ contains all the points of a point class of~.

fE££! From Dembowski, [19J, we see that~'

2-{qh,qh-1,Cqh-1_1)/(q-1») design. By Result 1.3.5(iii),
S (A ' ) p , , 1 ( h 1 h-1 h-1 ) d . D f '

h-= -1.S a symmetr1.c -q -,q ,q eS1.gn. e 1.ne t e

line of ~'throu~h two points X and Y to be the intersection of

all blocks through X and Y. It is well-known (see, for instance,

[19]) that every line of ~'contains q points. Hence there are

d lines, Q1"" '£d' say, of ~' containing P; also~' has d

parallel classes ~~,...,~~ of q blocks each.

Now put S, = 2,~{P} and C, = A', -{x.} for every i (l<i<d),
-1. 1. -1. -1. 1. --

where x. is the block of A', which contains p, Sl ' ...,S d and 1. -1. --

f1"."£d partition the points and blocks of ~ into d classesl 

"",...o,,- ,-
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of q-1 points and blocks each, and we call this partition T(~).

We now show T(~) is a tactical decomposition.

'::~
:~:;
'1i~Choose a point class S. and a block class C.. If QES., ~f,t

-1. -J-J.

then since A'. is a parallel class of A;, Q is incident with a
-J -

unique block y, say, of A'.. By definition of a line either
-J

2.nx J.= {p} or Q .Cx.. Hence either Q .nx. = {p}, and so
J. J. ) J. )

ytXj' i.e. Q is incident with precisely one block of .£j' oX'

21..Cx J.and y=x., i.e. Q is incident with no blocks of C..
J -J

If zEC. and ~ .f'""1x. = {p} (i.e. Q. rx.), then Q .nztcl>
-J 1. J 1. J 1.

(since eveX'y line meets eveX'y non paX'allel block, and Q.~z
1.

since Q. ¥x. and x.llz), and so Q.nz = {R}, for some RtP.
1. J ) 1.

If Q.Cx., then Q.llx.,x.llz and also Q.cx.,x.tz. So Q.nz =cI>,
J. J 1. J ) 1. J J J.

and hence T(S) is a tactical decomnosition.-..

Pick any two blocks of S, yEC. and zEC., say. Then if
--J. -J

i=j, y,zEC.~'., i.e. y,z are two paX'allel blocks and so ynz =cI>.
-J. -1.

If i*j, then y,z are two non-parallel blocks of ~', and so they

intersect in qh-2 points of ~'; y, z are blocks of ~ and so

Ptt:: ..h-2. f STY,z, 1..e. y,z J.ntersect J.n q poJ.nts 0 -.

So T(~) forms a tactical division of ~":, and ~ has

intersection numbers p'.. = (1-t5..)qh-2, (1<i,j<d). Hence, by1.J 1.J .--

Theorem 3.3.1 T(~) is also a tactical division of~, and ~ has

:I~



-109-

connection numbers A'. .=p'.., (1<i,j<d).1.) 1.) --

Finally, by above, every block of ~ contains 0 or 1 points
I from every point class of T(~), and, since q>2, no block of ~ ~

c

contains all of the q-1 points from a point class of T(~).

Remar~ To construct ~ with the above properties we needed

only that ~'was an Affine 2-(~m2,~m,(~m-1)/(m-1») design with

constant line size m, and so we could replace A1(2,q) by an

arbitrary affine plane of order q.

Theorem 4.4.2 If there exists an affine 2-(~(q-1)2,~(q-1),

(~(q-1)-1)/(q-2») desi.gn ~, and q>2 is a prime power, then for

every h~2 there exists a GD

1-(~(q-1)(qh_1),~qh-1(q-1),qh-1(~(q-1)2_1)/(q-2») design Q

admitting a strong tactical division T(Q) with d point classes

each of ~(q-1)2 points and c block classes (c=(~(q-1)2_1)(qh_1)/

(q-1)(q-2») each of q-1 blocks. The classes of T(Q) may be

labelled so that the connection and intersection numbers are

A.. = ( ~(q-1)2_1 ) qh-2/(q-2)+o.. qh-2(~-1)(q-1)/(q-2), (1<i,j<d),1.J 1.J --

p= p.. = 0 (1<i<c), and p.. where p..=~qh-2(q-1), i$j (modd) ;
1.J. --1.J 1.J

h-1 .-. ( d d) f .. 1 ... :1: . p.. = ~
q , 1.=J mo , or every 1.,J, <1.,J<C,1. J.J.J --

.~££f Since q >2 is a prime power let ~ be as in Lemma 4.4.1

above. Then construct Q using ~ and ~ as in Section 4.1, and
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Theorems 4.1.1,4.1.3,4.1.6,4.1.7 and Lemmas 4.1.2, 4.1.5 yield

the result. t!

Corollary 4.4.3 If there exists an affine plane of order q-1,

and q>2 is a prime power, then for every h~2 there exists a

2-(q-1)(qh_1),qh-1(q-1),qh-1) design~, admitting a strong

tactical decomposition T(Q) with d point classes each of (q-1)2

points and c block classes each of q-1 blocks; (c=q(qh-1)/(q-1»).

..h-2 ( ) h-1 Q has 1ntersect1on numbers: 0, q q-1 and q .

f~ ~ of Theorem 4.4.2 is a 2-design if and only if 0 =

qh-2(~-1)(q-1)/(q-2), i.e. if and only if ~ is an affine plane,

(since q>2). t!

We now show how to embed the 2-designs of Corollary 4.4.3

into symmetric 2-designs. We first require:

~esul t 4.4.4 (Beker and Haemers, [7], Corolla.ry 6. 3 )-

A Quasi-residual 2-(k-1)(k-A)/A,k-A,A) design

D with three intersection numbers: O,A(k-A)/k and k/m is

embeddable in a symmetric 2-(v,k,A) design if and only if there

exists a strongly resolvable 2-(k,A,(A-1)/m) design Q.

We now have:

Theorem 4.4.5 If there exists an affine plane of order q-1, and
-

q>2 is a prime power, then for every h~2 there

..h+1 h h-1 ) d .
ex1sts a symmetr1c 2-(q -q+1,q,q _es1gn.I 

-_C/c,,"j.J
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~! By Result 4.4.4 the Quasi-Residual Designs of Corollary

4.4.3 are embeddable in symmetric 2-designs of appropriate

parameters if and only if there exists strongly resolvable

( h h-1 h-1 ) -
2- q,q ,(q -1)/(q-1) designs~. But such designs always

exist, namely Q = ~h-1(h,q), and the ~heorem follows. n

Remark Hence, since h may be chosen arbitrarily, we have

shown that whenever q and q-1 are prime powers, there exists an

infinite family of symmetric 2-designs with the above parameters.

~.~ On a Generalisation of a Construction of Kimberley

It is clear that the construction method of Section 4.1

can be modified and generalised, and below we give an example of

how a modified form of the construction can be used to obtain

the affine designs of Kimberley, [31].

Suppose ~ is a 2-(v,k,A) structure admitting a parallelism

with m blocks in each class, (and hence v=mk,b=mr). Let ~ be

a 1-(v',k',r~structure admitting a P Division ~1"" '~d with

Is.\ = m for every i, (and hence v':: md). Suppose also that
J.

k' ...-m.

Construct D from A and S as in Section 4.1. From Theorems---
" 4,. 1 .1 and 4. 1 .3 we have:
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Le~~4.5.1 ~ is a 1-(mkd,mk,rr~ structure admitting a

P Division f1,...,fd and ~ has connection numbers

rA'.. + A(r'-X'..)o.., (1<i,j<d).1.J 1.1. 1.J --

Now construct D from D as follows. Let D have the same---
point set as ~ and have as blocks the blocks of~, (with the

same incidence as in ~), together with d further blocks x1,...,xd

where x. is incident with the mk points of P.. We immediately
1. -1.

have (using Lemma 4.5.1) :

Theorem 4.5.2 Q is a 1-(mkd,mk,rr'+1) structure admitting a

P Division f1,...,fd' and Q has connection

numbers

rA'.. + o.. (A(r'-A'..) + 1) , 1<i,j<d.J.J J.J 1.1. --

We also have:

Lemma 4.5.3 D is a design if the conditions of Lemma 4.1.2 are---
satisfied.

Proof Clearly no two points of D are incident with the same-
set of blocks of Q since ~ is a design, and hence we need only

observe that since no blocks of ~ contains all the points of a

point class of~, no block of Q contains all the points of ~i

for any i, and so Q is a design. ~

","liOJ'~HiI~IIi"~~~
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Lemma 4.~ ~ is a 2-structure if and only if ~1'...'~d

is a group division of ~ satisfying

,\',\ ( ',\"" 1 -,\" h ,\' ,\', '.'rA1+A r-A1/+ -rA2 were A1 = Aii and "2 =Aij for

every i,j, (1~i,j~d,i*j).

fE££f Immediate from Theorem 4.5.2. ~

-..Le~a 4.5.5 Suppose Q ~s a 2-structure and ~ adm~ts a

tactical division T(~) with point classes

~1'...'~d and block classes f1,...,fc such that the number of

blocks of C. incident with a point of 8. depends only on the
-J -~

block class C. (i.e. using the notation of Lemma 4.1.5, for
-J

every j (l<j<c) there exists a y. such that y.. =y. for every
.--J 1J J

i (l~i~d). Then ~ admits a resolution R(Q) ~~ith rc+1 block

classes.

Proof Use T(8) to obtain a tactical decomposition T(D) of--
Q as in Lemma 4.1.5, and, as in the proof of Lemma 4.1.5 any

point of Q is incident with precisely Yj blocks of ~~j
I
I

(1<~<r,1<j<c). Now let R(D) have block classes the block

classes of T(Q) together with one extra block class consisting

of the added blocks. R(Q) is clearly a resolution of Q with

rc+l block classes anc. the Lemma follows. nI,~",..",,-
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Remark If T(S) is strong and S is a design, then by Theorems--
2.2.1 and 2.4.4 the condition y.. = y. in the Lemma above is

1.J J

equivalent to assuming that the. block classes of T(S) form a, -

SRP Division of ~1:. But if T(~) is strong, then, by Result

1.5.2, the intersection number of any pair of blocks from the

same block class of T(~) is a constant ("k-r+).") and so, by

Theorem 2.3.5, the condition y.. = y. is equivalent to
1.J J

assuming that the block classes of T(~) form a semiregular

group division of ~1:, and hence is equivalent to assuming that

both ~ and ~1: are SRGD; (using Theorem 2.4.5).

We now suppose that ~,~ and Q are as in Lemma 4.5.5, and

we have:

Lemma 4.5.6 R(Q) is strong if and only if br+d = mkd+rc.

~.s:! R(Q) is strong if and only if "b+1 = v+c", i.e. if

and only if (brTd)+1 = mkd+(rc+1). u

Theor~m 4.5.7 Any two of the following imply the third:

(i) I-\. is affine;

(ii) T(~) is strong;

(iii) R(~) is strong.

~E£2f The proof is ic,entical to the proof of Theorem 4.1.6. ~
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We now obtain the construction method of Kimberley, (31],

using the above process.

Theorem 4.5.8 If there exists an affine 2-'(wm2,~m,C~m-1)!Cm-1))

design and an affine plane of order m, then there exists an

affine 2- (~m3 ,~m2, C~m2..1) !Cm-1)) design.

fE92! Let ~ be the affine 2-(~m2,~m,C~m-1)!Cm-1)) design,

and £' 'be the affine plane of order m. Suppose the parallel

classes of~' 'are ~1'...'~m+1 and then let ~ be the incidence
.

structure whose points are the points of ~', 'and whose blocks

are the blocks of U1 '...' U wi th incidence as in s'. Clee*rly--m -

~ is a 1-Cm2,m,m) design. Define TC£) to have point classes

the point sets of the blocks of Qm+1 and block classes ~.1,..,Qm'

Then TC£) has m point and block classes of m points and

blocks each. Every point of ~ is incident with precisely one

bloCk of amy given block class and any two points of ~ are on

0 or 1 common blocks depending only on whether they are from the

same or different point classes respectively. Dually every

block of ~ is incident with precisely one point of any given point

class.

Hence ~ is a symmetric SRGD design (by Result 1.4.5)

admitting a strong tactical division with point classes the classes

of the group division. By above, every block of ~ contains

precisely 1 point fr,~m every point class of T(~), and so no

block of ~ contains all of the m points of a point class of~.
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Hence constructing D from A and S as above, D is a

2-(~m3,~m2,(~m2-1)/(m-1») design admitting a strong resolution

R(~), (using Theorems 4.5.2, 4.5.7 and Lemmas 4.5.3, 4.5.4 and

4.5.5). By Result 1.5.3 Q has intersection numbers a and m

and so R(Q) is a parallelism. Thus ~ is affin~ by Result 1.5.5. c

~i"c'
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