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CHAPTER 4 - SOME CONSTRUCTIONS OF DIVISIBLE DESIGNS

In this Chapter we give two construction methods for
strongly divisible 1~ and 2-designs. They are both of a
recursive nature, and may be used to construct many more

structures and designs than those indicated.

In Section 4.1 a basic construction process for
1-structures admitting P Divisions is given, and we indicate
under what conditions more specialised classes of structures
and designs can be obtained from this method. In the second
section we also eonsider a construction method, this one due
originally to Sillitto, [u6]. We again indicate when more

specialised classes of structures can be derived.

Sections 4.3 and 4.4 give examples cf the uses of the
construction methods outlined in the first two sections.
In Section 4.3 we first construct an infinite family of
symmetric GD designs using the process of 4.2, and then use
them, in conjunction with affine designs of appropriate orders,
to obtain GD designs admitting strong tactical divisions
using the method of L.1. Under certain conditions these

1-designs are 2-designs.

In the fourth section we obtain a family of symmetric
GD designs from affine gecmetries, and then we use these
designs in the method of 4.1 (together with affine designs
of appropriate parameters) to construct another family of
1-designs admitting strong tactical divisions. Again these

1-designs are 2-designs if the affine designs are affine
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planes, and in fact the 2-designs are Quasi-residual. We
then show that these Quasi-residual designs are embeddable,
and hence establish the existence of an infinite family of

symmetric 2-designs.

Finally in Section 4.5 we indicate how the construction
method of 4.1 may be modified to obtain the affine designs of

Kimberley, [ 311.

In our examples of the use of the construction of Section
4.1 we have mainly restricted ourselves to cases in which the
structure obtained is a 2-design. Clearly this construction
process can vield many more 1-designs admitting P Divisions.
For example we could use the strongly divisible 2-(um232,
ms(2ms=-1),(m+1)s(ms-1)) designs of Theorem 4.3.3 in conjunction

with affine planes of order m? to obtain further GD designs

admitting strong tactical divisions.

The results of Sections 4.1, 4.2, 4.3 and 4.5 come from
collaboration with H.J. Beker, and a slightly less general
account may be found in [8]. Note that in [8] the construction
method of 4.1 is described in terms of matrices: this approach

is equivalent to that used in H4.1.
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4.1 A Construction Method

In this section we first give a general, recursive method
of construction for 1~structures, and then indicate under what
conditions more specialised classes of structures and designs

can be obtained from this construction method.

Suppose that A is a 1-(v,k,r) structure with b blocks
admitting a parallelism with m blocks in each block class;
(hence v=mk and b=mr). Let S be a 1-(v' ,X' ,»') structure with

b blocks such that v =md for some integer d.

Let A

-1""’éd be d isomorphic copies of A, and denote the

points of A; by X;. (1<j<v).  Label the parallel classes of

éi + A Since

—il""’éir and the blocks of A.,

" Yig3c Yigme

Ai""’éd are isomcrphic copies of A, suppose Xijeyiﬂs if and

. - . o ) !
only if Xi’jﬁyi'ﬁs for every 1,1 (1<i,i <d).

Let ql""’qb, be a labelling of the blocks of S.  Suppose

Sqyse-025, is some partitioning of the points of S into d classes

of m points each, and then denote the points of §i by Pi1""’Pim

We now define a new incidence structure D with point set

{Xij} 1<i<d,1<¢j<v}, and with block set {z, = %Eq yigs'1§W§b"
is *w

1<2<r}.
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Theorem 4.1.1 D is a 1-(mkd,kX' ,rr' ) structure.
Proof By definition D has vd=mkd points, and every block of

D is the union of ¥ blocks of AjgUhpoU. . LA, for some fixed
9. Hence, as these blocks are all disjoint, every block is

incident with kK' points of D.

Pick an integer # (1<f<r), and then consider any point

Xi' of A;. This point occurs in exactly one block, y

3 » Say,

i?s

Tis T 'w

- i ] ; Ote s . lJ-.."‘} ] ‘ 3
and so Xijgzﬁw 1f and only if le yigsiuyiﬂsz yiﬂst where

. R i .
Si’s2""’st are such that Plsl’ ’ is, are the points of §1

incident with q,- Hence Xijezﬂw if and only if P. is incident

with q,- Every point of $ is incident with precisely r blocks
Q> and so there exist precisely r blocks 20 of D such that

‘e .
X33 %
There are r choices for ? and so every point of D is

incident with rr' blocks of D. =

Throughout this section we will use S,A and D to denote the
structures considered above. We now consider under what

conditions D is a design. Let u, be the largest intersection

number of A.
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Lemma #.1.2 D is a design if :

(1) k>uA(m-1) and no two points of A are incident with

the same set of blocks: and

(ii) 8 is a design and no block of S contains all the

points from a given class of the partition §1”"’§d of the
points of 8.

Proof Consider any two blocks Zg w20 of D. Suppose they
are incident with precisely the same set of points. By

. . . = l) - v o
definition we have y., Siu Yig SQU e Uys 5 Vip’ 81' Vi 52' U

Uysg éf s (where Pisi""’Pist are the points of §i incident

with 9, and Pi§

""’Piéf are the points of §i incident with
1

q, ) for every i (igicd).  Now 1<t,t <m-1 (by (ii) of the Lemma)

and so, since kou A(m--i), Y40 Sluyi}?s ti. . .inv s can only contain
A 10 'S, 'S,

all k points of yiQ'sa if 2=0'. Hence {sgs...08.} = {s&,...,s%o},

i.e. q, and q, are incident with the same set of points of §i'

This is true for every i (1<i<d), and so, since S is a design,

w=w' . Hence Zo., = Zgty and no two blocks of D are incident

with the same point set.

Sunpose Xij and Xi:j:are two points of D incident with the

same set of blocks of D.  Let X, be incident with the blocks

y s Y

c 2 Vs . PN inci 71 k
125, ,ylrsr of A, and Xl']'be incident with the blocks

ils1
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yi' 183 -,\yi' 23; 3o e ,yil rs; Of éi' . NOW Xij and Xil j' are

incident with the block 29, °f D if and only if P., €q_ and
4

E - * .
Pitslg Qe So PisQ and Pi's'p are incident with the same set

of blocks of §, and hence, since S is a design, i=i' and sQ=s'Q

for every %2. So Xij and Xij' are incident with the same set

of blocks of A;, and so, by (i) above, j=3'.,  Hence no two

points of D can be incident with the same set of blocks of D. X

Remarks Note that (i) of the above Lemma implies that A
is a design. Also, if A is an affine 2-design, then (by
Result 1.5.5) its parameters may be written 2-(um2,um,(um~1)/(m~1)),

and thus, since UZUp (1) above is automatically satisfied.

Theorem 4.1.3 Suppose that A is a 2-(v,k,)) structure and §

admits a point division S;,...,5; with |S.] =m for every 1 (1<izd)

and connection numbers A Then D, constructed using this

j.

e ™

partition of the points of S, admits a P Division 21""’Ed’
where P. contains the points of A;, (and hence [B;l=v=mk), and D
has connection numbers.

m'ij +X (' -l'ii)éij » (1<i,j<d).
Proof Suppose Xij and Xi’j' are two distinct points of D.

. . o !
There are two cases to consider; we first suppose 1=1 .

éi is a 2-(v,k,A) structure with r parallel classes, and

so in precisely X of these classes Xi and Xij' occur together

e
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on a block. Pick such a parallel class, éiQ say, and suppose

Ve

19 is the block of éiﬂ incident with both Xij and Xij"

Consider any block Zg s of D. Then Xij’ Xij'ezﬂw if and

i . » o -« & e e {JI L .U '. 3
only if le ’le' %_Qsl Y; 0 St, where Pisi"" ’Pist are the

points of §i incident with Qe This occurs if and only if
sE{sl,...,st}, i.e, if and only if Pis is incident with qQ,:
But every point of S is incident with precisely Y¥ blocks Qs

and so there are exactly ¥ blocks Zg o with Xij ’Xij' €gy , Tor

every 2 satisfying the above condition.

Now consider the other m») parallel classes of A., in which
X.. and X..s occur'in Aifferent blocks. Let A., be such a
i3 i3 =12

parallel class of éi’ and suppose ¥ and Yip & are the blocks

s

of Ai which contain Xij and Xi-c, respectively. Suppose:z.Qw is

3

a block of D, and then X..:,X,.1 €z

15°%43 2 w if and only 1if

14 !
X ,X- »'Eyig Sl‘-’yigszlf-- .inﬁs Where PJ-S g e e ,Pis are the

374 t 1 £

points of §i inecident with Q- This occurs if and only if
'c » L] .

S,5 ~{51,...,st}, i.e. if and only if Pis and Pis’ are

incident with S and there are precisely X}i blocks of S

incident with any two points of 8- So there are X}i blocks

29 incident with Xij and Xij' where ¢ is of the above type.

o
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Summing over all possible ? we see that Xij and Xij' are

incident with precisely Ar’+(r—h)k&i blocks of

Now suppose i*¥i’'.  Pick some 2, (1<f<r), and then X4 3
and xi'i' are incident with precisely one block of AiQ and

éi'ﬂ’ respectively. Label these blocks Vit and vy.»

Supppse 29, 15 a block of D, then Xij’xi'j'gzﬁvif and only if

* - U. ” © . d LAl 3 - J. *> 0 J - >
Xi]eyl?« s, Ule S-t and Xl']' € VAR srik ‘ L yl' 9 S:t' where

P, ,...,P,

is, is, are the points of S; incident with q,, and

Pi'sa""’Pi's;._are the points of Sy incident with Qype This

occurs if and only if gE{sl,...,st} and S'G{siﬁ...,s%t}, i.e.

if and only if both Pis and Pipspare incident with Q- Since
§1""’§d forms a P Division of S, there are precisely Xii’ such

blocks Qs and hence, summing over all 2 (1<f<r), we see that

n

there ave rAEi blocks of D incident with both X.. and X.r . .

ij i3

From now on we will assume that S,A and D are as in

Theorem U.1.3.

Lema 4.1.4

(1) 84,-..584 is a CLP Division of S if and only if

gl,...,gd is a CLP Division of D.
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(i1) Every block of S contains equally many points of

§i if and only if every block of D contains equally

many points of Ei'

(iii) §1""’§d is a group division of S or S is a

2-structure if and only if gl,...,gd is a group

division of D or D is a 2-structure.

(iv) S45...,84 is a semi-regular group division of § if
and only if 21""’gd is a semi-regular group

division of D.

L3

(v) D is a 2-structure if and only if Sqs++-384 1is a
!

group division of S satisfying rxa+x(r’~ki)=rl2

where A&=A&i, A%=A§i for every i,j (1<i,§<d,i#j).

Proof (1) §1""’§d is a CLP Division if and only if
there exist a A' with Agi=l' for every i (1<i<d), i.e. if and
only if Ar'+(r—l)l&i=lr'+(r~k)l' for every i, i.e. if and only

if P ’gd is a CLP Division.

1,..'
(ii) If 29 is a block of D, then !zgwﬂgil = lyipsiU...L&
(where Pisl""’PiSt are the blocks of §i incident with qw)

= klq,S;]5 and (ii) follows.

1

05,
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’

(iii) 81""’§d is a group division or S is a 2-structure

==y

10y with Al.=a), a

if and only if there exist A .z . .
iiTh 0 iy

s s 42 e, if . ' U Cozp)’ Ry ..
i,j (i#j), i.e. if and only if rklj+l(r 111)61J rA2+A(r Xi)GlJ

for every i,j (i*j), i.e. if and only if Pys--esPy is a

he)

TOUup

division or D is a 2-structure.

(iv) Immediate for (ii),(iii) above and Result 1.4.6.

(v) Immediate from (iii) above. "
Remarks From (ii) we can derive the result that §1,...,S

is a SRP Division of S if and only if Py,...,P; is a
SRP Division of D.  But since S;,...,S, has constant class size,

this says no more than (iv), (using Theorem 2.3.5).

From (iii) we may also deduce that if D is a 2-design then

§1""’§d is a group division, and, using the above notation

[4 [4
A1<12.

Lemma 4.1.5 Suppose S admits a tactical division T(S) with

point classes Sqs-++554 and ¢ block classes.

Then D admits a tactical division T(D) with point classes

Ei”"’gd and rc block classes. Also, T(D) is strong if and

only if r(B-c)=d(mk-1).

ovika siikk s
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Proof By 4.1.4(1i), Pys:++5Py 1s a CLP Division. Let
£4s+++,C, be a labelling of the block classes of T(S), and
denote the number of blocks of Ej incident with a point of S;»
and the number of points of §; incident with a block of Ej by

Yis and Bij respectively. Further, suppose lgj' = My, (1<j<e).

Relabel the blocks of S : 9354 (15jgc,1ia5mj), so that

gj = {qja]iiaimi} and then relabel the blocks of D :
2954 = Pisgqjayigs’ (15?§p,1§350,1§a5mj). Finally set

Eﬂj = {szaliiaimj} for every 2,3 (1<f<r,1<j<c}, and we have

a partition of the blocks of D into rc classes. We now show

that T(D), defined as having point classes B&""’Rd and block

classes Ezj forms a tactical decomposition of D.

Pick some point class P; and a block class Bys- Then if

Xiﬁsgi’ there exists a unique block, Yig s 5aYs of éiﬂ which is

d -« ; - . . < . - - - - 1 . e . .
incident with X1w So XlW is 1lncident with a block zija EQJ if

and only if Piseqja (by similar arguments to those used above).

But PiS is incident with Yis

3 blocks of the form U4 (1§a§mj), and

so any point of Ei is incident with precisely Yij blocks of Eli'

Now let a?ja be a block of Elj' By definition

. - J .
Z9ja - €q. Yits’®

and so the number of points of Bi incident
is Hja

o
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i > = 1 d ’- ® .{ s
with Zi?,ja lylzle Jyz.!?.s

| » (where Pig »eeesPy are the points
e

1 154
of §i incident with qja)’ = kt = k Bij.

So T(D) is a tactical division, which is ctrong if and only

if "b+dZv+c", i.e. if and only if bb+d=mkd+re. H

We may now state

Theorem 4.1.6 If S,A and D are as in Lemma 4.1.5 then any

two Qf the following imply the third

(i) A is affine;
(ii) T(S) is strong;

(1ii) T(D) is strong.

Proof Suppose (i) holds, i.e. suppose Dis a 2-(um2,um,
(um=-1)/{(m-1)) design. T(S) is strong if and only if b' +d=md+c,
i.e. if and only if rb'-rc=rd(m-1)=(um2—1)d=mkd-d, i.e. if and
only if T(D) is strong, (by Lerma 4.1.5).‘ Hence (i) and (ii)

hold if and only if (i) and (iii) hold.

Suppose (ii) holds, i.e. suppose b’ +d=md+c. Then T(D) is
strong if and only if d(mk-1)=r(b-c)=rd(m-1), i.e. if and only
if (i) holds, (using Result 1.5.5). Hence (ii) and (iii) hold

if and only if (i) and (ii) hold. ™
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We now turn our attention to the intersection numbers of
D. If S,A and D are as in Lermma 4.1.5 then (by Result 1.5.2)
if S is a design and T(S) is strong the intersection number of

a block of class gi and a block of class gj depends only on i
and j, and in this case we denote it by pgj, (1<i,j<c).

Further ph.

J]=p'=k'-r'+xg for every i (1<j<c), where Aa= A

?
11l

for every i (1<i<d).

Now consider D. Relabel the block classes of T(D):

31""’1rc where Zi=§&j if i=(f-1)c+]. Now suppose that D

iz a design and T(D) is strong. Again by Result 1.5.2, we

denote the intersection number of a block of class Zi and a
block of class Xﬁ by pij (1<i,j<re), and we also have PP

(1<i<rc).

Theorem 4.1.7 Suppose S;A and D are as in Lemma 4.1.5, and

also suppose S and D are designs. If A is

——

an affine design and T(S) is strong, then T(D) is strong, and

the intersection numbers of D satisfy

Pyy * kpilw 1<i,j<re; 1<u,w<e; u=iFrisw (mode)d.
Pss = (p'+(rg_1')/mt)k 1<i,j<rc: i=j=t (mode); 1<t<cs
17 1*]

p = ko'
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Proof Suppose Y; and Y., are two block classes of T(D),
where i = (£-1)c+j and 1! = (@' -1)c+j' .

If Q:Q' and Z . EY., ZQ j' a' F..Zi' L) then

eja —i
I = 4 :
'Z!Zja"zﬁj'a'! ! LGJ Vios ,\P g yiﬁ’.s"
Pss qja 1g' —qjv a'

d
= [ (V0 o Vet v, N (Vi o Yoo Uy,
izl(l’qsi :Uzst) (:dls'._‘L 19.s't.){

(where Pisl’”' ’Pist are the points of §i incident with qja’ and
Pis'l"’ . ’Pis't: are the points of _S_i incident with qj. a')‘

d .
p ) ’
kigll{sl,...,st} AR CIPRRP 28y}

- 1 4
- kpjj' (l)o

(Y] a’ Ezi' 9 then :

?

L2z 502700 3 2 | |

(v si‘*’“' inSt] n (Vifz's'iu"'."’yio's:c.“

incident with q.

ja and A3 o respectively).
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Va Ny,
1 ugl wzl| 1Q5uwylg's; '

"
[ 0%

i

1l
=

#o~10
m\
™

um(ph v +8..0 (X' =p..» )/m. (by Lemma 2.4%.2(vi))
13 13 13 ]

k 'cu + . ," v 0 -
(pjj. 854(K =053 )/mj) (2),

Combining (1) and (2) the theorem follows. =&

Remark By Theorem 4.1.7, if S has i intersection numbers,
then D has at most i+s, where s is the number of distinet values

of m, (1<i<e).

4.2 A Construction Method of Sillitto

In this section we examine a method of construction due to
Sillitto, 46}, and show that it may be used to construct
designs admitting strong tactical decompositions. Suppose E
and F are a 1-(v,%,?) structure and a 1-(v,k,r) structure with
incidence matrices A and B, respectively. Then let
C=A & B + (J-A) & (J~B) where 8 denotes Kronecker product.
Since A and B are 0,1 matrices, C is a 0,1 matrix, and so C is

an incidence matrix of a structure 8. We then immediately

have
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Theorem 4,2.1 S is a 1-{vV,kk+(v-k) (¥-K) ,rr+(b-r) (5-1))

structure with bb blocks.

Throughout this section we assume that E,F and S are as

defined above. Another immediate result is

Lemma 4.2.2 If v#2k or v¥2k, then S is a design if and

only if E and I are designs.

Remark If S is a design then E and F are always designs,
but the reverse is not true if v=2k and v=2k. Suppose E,F

are both the trivial 2-(4,2,1) design with
1 0 1 0O

=D O
o KB B o

1
8
0

[

o 1
1 0
0 1
Then the first and eigth columns of C = A 8 B + (J-A) 8 (J-B)

are identical, i.e. $ is not a design.

In fact the Lemma fails if and only if F or F satisfy
v=2k and v=2k, and there exists a pair of points (or blocks)

in both E and F having connection (or intersection) number zero.

We can now consider partitions of the points (or blocks) of
F which give rise to partitions of the points (or blocks) of S.
Suppose 21”"’Ed is a partition of the points of F. By the

nature of the construction for S, for any i (i<i<V) the
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the (i-1)v+1,(i-1)v+2,...,iv rows of € are indexed bv the

rows of B, and hence by the points of F. So El,...,P

induces a partition of these rows into 4 classes, and
repeating this process for every i we obtain a partition of
the rows of € (and hence of the points of S) into vd classes.
Label the classes from rows (i-1)v+1,(i-1)v+2,...,1iv
(corresponding to 21""’gd) §(i—1)d+1,§(i-1)d+2""’gid’

and then §1""’§Vﬁ partitions the points of 8. We call

this partition the partition induced by 21,...,2d. We make

similar‘definitions for partitions of hlocks of F and hence
S, and so if T(F) is a tactical decomnosition of F, then we
will refer to the partition T(S) of the points and blocks of
8 as the induced partition of S. Note that we will always

denote any induced partition of the points of S hy §1""’§§d

and any induced partition of the blocks of S by Ul,...,ggc.

Theorem 4.2.3 Suppose F admits a P Division £1""’£d with

connection numbers Aij’ (1<i,j<d), and E is
a 2-(v,k,X) structure with b = #(r-X). Then the partition
845435854 of the points of S induced by Fy,...,Ey is a
P Division, and in this case a point of class §u and a point

of class §u (where u = (f-1)v+i and w = (g=-1)v+3j ) have

connection number :-

2¢r=2X)(b=r)+ Ab + 5fo(§-—7\')(b-u(r->\ij)).
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Proof Using the fact that E is a 2-(v,%,X) structure,

T

computation vields : CC* = I 6{(5—?)(b~2r)JV+BBBT} +

(35 ~IHBLE 2(F-T) e+ (B-2F+%) (b=21)1 7+ 5-4(F-1)BB"] }.

Hence we see that Sq4s-++3854 is a P Division if and

only if b = u(¥-X), Assuming this and manipulating the above

expression, the Theorem follows. !
Remark If D is an arbitrary 2-(v,k,A) structure we will

say that D satisfies Condition * if b = u(pr-)).

Given that E and F satisfy the condition of Theorem 4.2.3

we have the following immediate corollaries

Corollary 4.2.4

(1) If Fy,...,F; is a CLP Division, then so is S45-+554-

(ii) 1If Ei""’gd is a Group Division with connection
numbers A, , then Sys+++554 is a Group Division if

and only if b = 4(r-A"), and in this case the

connection number of a point of class S, and a point of

class 5, is 2(r-2X)(b-r)+Xb+s (v-X) (b-t(r-1)].

Corollary 4.2.5 If Fis a 2-(v,k,\) structure and we

consider the P Division of F with one class,

consisting of all the points of F, then the induced P Division
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§1""’§V of S is a group division, and the connection

number of a point of class §u and a point of class §w 2

2(3-2X) (b-r) #Xb + § (F-X) (b=t (r-2)).

Corollarv 4.2.6 (c.f. {42}, Theorem 1 and [ 461)

If F is a 2-(v,k,A) structure then S is a 2-structure if
and only if F satisfies Condition *. In this case § is a

2-(VV,kE+(v~k)(V-F),2(?ﬂ2f)(b-r)+Xb) structure, and S

satisfies Condition *.

Proof By Corollary 4.2.5 we need only check that S satisfies
Condition *. S has Bb blocks and rr+(h-r)(b-r) blocks

incident with every point, and so "4 (r-A)" =

4 (Tr+ (B=F) (b=r)-2(3-2%) (b-r)-%b) = b(4H-12r+12X), using

the fact that B = 4(r-1). Hence "b=U(r-))"=z bb-b(4b-127v+12\)= 0.7

Remark Corollary 4.2.6 gives a recursive method for the

construction of 2~structures satisfying Condition *.

Next we consider structures F admitting tactical

decompositions.

Lemma 4.2.7 If T admits a tactical decomposition T(E)

with d point classes and c block classes, then

the induced partition T(S) of the points and blocks of S is a
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tactical decomposition of S with Vd point classes and be

block classes.

Proof T(S) clearly has the requisite number of point and
block classes, and is a tactical decomposition by definition of
C, since the submatrix of C corresponding to rows
(i-1)v+1,(i=1)v+2,...,iv and columns (§-1)b+1,(j-1)b+2,...,3b

(1<i<v,1<j<h), is either B or J-B. =

Using the above results we now have

Theorem 4.2.8 If T(E) is a tactical division of F with d

point classes and ¢ block classes, and E is
a 2-(v,k,X) structure satisfying Condition #*, then the induced
decomposition T(S) is a tactical division of S. In this case

any two of the following imply the third

(i) E is symmetric;
(ii) T(F) is strong;

(iii) T(S) is strong.

If E is symmetric, T(F) is strong and F has intersection

numbers pij (1<i,j<c), then T(S) is strong, and if the block
classes of T(3) are Uy,...,Ug, the intersection number of a
block of class U, and a block.of class U, (where u=(f-1)b+i,

wz(g-1)b+j) = 2{T-2%) (v-k)+Xv+6 (FQX)(v—u(k-pij)).

fg
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Proof T(S) is a tactical decomposition by Lemma 4.2.7,
and is thus a tactical division of § by Corollary 4.,2.401).
T(S) has vd point classes and e block classes, and so T(3)
is strong if and only if B(b-c) = v(v-d), and the second part
of the theorem follows. Finally, the intersection numbers

of T(S) are as given, applying Theorem %.2.3 to S*. =

Remarks If F is a desigrn, then by Result 1.5.1, b-c > v-d
and so, using Result 1.2.5, (i) and (ii) above hold if and

only if (iii) holds. The result on the intersection numbers
of S generalises Theorem 5.1 of Kageyama, {271 . We may find

the connection numbers of S by using Theorem 4.2.3.

Given that E,F satisfy the conditions of Theorem 4.2.8,

we have @

Corollary 4.2.9 Suppose I is a 2-structure and let T(E)

be the tactical division of F with just one

point class and one block class. Then the induced division
T(S) is a tactical division with ¥V point classes and b block
classes, and the point classes of T(S) form a group division
of S. Furthermore T(S) is strong if and only if both E and F

are symmetric.

Proof T(S) is a tactical division by Theorem 4.2.8; the
point classes form a grouv division by Corollary 4.2.5, and
by Result 1.2.5 the Corollary follows, since T(S) is strong if

and only if B(b-1) = v(v-1). *H

b B
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Finallv we give some results of Shrikhande and Sillitto

on the parameters of 2~structures satisfying Condition *.

Result 4.2.10 (Sillitto, [ 46}) S ie a 2-structure

satisfying Condition * if and only if S is a

2-(u2,u(ut1)/2,(ut2)Nl2) structure for some integers u,N.

Result 4.2.11 (Shrikhande, [L42}) S is a symmetric 2-design

satisfying Condition * if and only if S is a

2-(452,3(2511),s(si1)) design for some integer s.
Remark In these two results, the structures with the
parameters corresponding to the + signs represent the complements

of the structures with parameters corresponding to the - signs.

If 8§ is a 2-(u82,s(28-1),s(s~1)) design, then we say that

S is a S(s), and we denote the complementary designs by S(s)°.

Result 4.2.12 (T u2} ,fusl)

(i) If a S(m) and a S(n) exist , then a S(2mn) exists.

(ii) 1If e and e+2 are both odd prime powers, then a

S((e+1)/2) exists.

(iii) S(1) exists.

Remarks (1) follows from Corollary 4.2.6 by observing that

if E is a S{m) and F is a S(n) then § is a S(2mm)®, and note that

B ).,,lu,Mm.mmmmm@mﬁ
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S(1) is the trivial "2-(4,1,0)" design for which Iu is an

incidence matrix. Using (1),(ii),(iii) above we may deduce
that S(m) exists for 1<m<10 (m¥7). In fact many constructions
exist for S(m) designs, and the smallest value of m for which

the author knows of no S(m) designs is m = 11.

It is also clear from the above that a S(m) exists for

infinitely many values of m.

4.3 A Family of Strongly Divisible Designs

In this section we utilize the construction methods of 4.1
and 4.2, to ebtain an infinite family of group divisible

' 1-designs and 2-designs admitting strong tactical divisions.

Lemma 4.3.1 If E is a S(s)® and F is a symmetric 2-(m,h,})

design, then S constructed as in Section 4.2
above is a symmetric GD 1-(UmSQ,ms(28—1)+2hs,ms(25~1)+2hs]
design. S admits a strong tactical division T(S) with 4s? point
and block classes of m points and blocks each (the peint classes
of T(S) being the classes of the group division), and with

. o . r .
connection numbers A&j and intersection numkters pij’ where

oo o 2 then)) . 3
Nys o= ey T ms(s=1)+2hs+8 5 © (m~u(h-2)); 1<i,i<m.

Proof By Corollary 4.2.9, if we let T(F) be the tactical
division of F with just one point class and one block class, then

3 . » - - 13 - . -— wd 2
the induced division is a tactical division with v = b = Us
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point and block classes of m points and blocks each. The

parameters of § can be obtained by applying Theorems 4.2.1,

4,2.3 and 4.2.8,. Finally 8 is a design by Lemma 4.2.2. H
Remark We take E = S(s)® and not S(s) in the Lemma above

go that the designs obtained have k<v/2.

Theorem 4.3.2 Let A be a 2-(um2,pm,(pm-1)/(m-1)) affine

design, and let S be the GD design constructed
in Lemma 4.3.1 above. Then D constructed as in Section 4.1, is
a GD 1—(uumzsz,um(ms(2s~1)+2hs), (umz-l)(ms(2s-1)+2hs)/(m—i))
design admitting a strong tactical division with 482 point classes
and 4(um2°1)sz/(m-1) block classes, of umz points and m blocks
th

each, respectively. The connection number of a point of the i

class and a point of the jth class =

(umZ2-1)(ms(s-1)+2hs) /(m=1) 48 5( s (um=1) (h=2)/ (m=1) +8 2 (um>=1)

(m-4(h-2)) /(m-1}) .

D is a 2-design if and only if y = 1 and F is a 2-(4)x+3,2x+1,1)

Hadamard design or its complement.

Proof D is a 6D design with appropriate parameters from

Theorems 4.1.1 and 4.1.3 and Lemmas 4.1.2 and 4.1.4(iii). D
admits a strong tactical division by Lemma 4.1.5 and Theorem 4.1.6.

By the above, D is a 2-design if and only if

4 (um=1)52(h-2)/(m-1)+(um?~1)s2 (m-4(h=1)} /(m-1) = O.

{— 1) s e e e sk g
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Rearranging and cancelling through by mszl(m—i) we obtain:

4 (h=-Mulm-1)-(pm?~1) = 0, i.e. u(4Ch=-2)(m-1)-m?)+1 = 0.

But m,h,A,u are positive integers and so this can occur if
and only if y = 1 and 4(h~A)(m~-1) = (mzml), i.e. y = 1 and
h=-A = (m+1)/4. That is M is a symmetric Hadamard design (or its

complement) and A is an affine plane. H

Theorem 4.3.3 Suppose m= 3 (mod 4) is a prime power and s is

such that a S(s) exists. Then there exists

a strongly divisible 2-(4m282,ms(2ms~1),(m+1)s(ms—1)) design D,

with 452 point classes and u(m+1)s2 block classes of m2 points and
m blocks each, respectively. D has intersection numbers:

ms(ms-s~1), ms(ms-1), ms(ms-1) + 52.

Proof Since m = 3 (mod 4) is a prime power, an affine plane A
of order m exists, i.e. Ais a 2—(m2,m,1) design. Also by

Paley, [ 34}, there exists a Hadamard 2-(m,(m-1)/2,(m—3)/h)
design, F. Let E be a S(s)®, then S constructed from E and F

using Lemma 4.3.1, is a GD 1-(4msz,s(2ms~1),s(2ms-1)) design with

L4 !

connection and intersection numbers Aij = - = s{ms-1) - széi..

P13 j
Using Theorem 4.3.2, D constructed using § and A is the required

design, and, by Theorem 4.1.7, the intersection numbers of D have

the above values. R
Remarks Given any strongly divisible 1-design with the parameters

of the S of Theorem 4.3.3 above, we can construct a strongly
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divisible 2-design; i.e. it is not necessary for the construction
above that § belongs to the class of designs constructed in

Lemma 4.3.1.

For instance John and Turner, [ 24], have constructed GD
1-(16,7,7) and 1-(20,9,9) designs with parameters identical to
those of the S of Theorem 4.3:3 when s = 1 and m = 4 or §
respectively. These designs may be used in conjunction with
affine planes of orders 4 and 5 to obtain strongly divisible

2-(64,28,15) and 2-(100,45,24) designs.
Since there exist infinitely many primes =3 (mod 4), and
infinitely many S(s) designs exist (see Section 4.2), Theorem

4.3.3 gives an infinite family of strengly divisible 2-designs.

4.4 An Infinite Family of Symmetric 2-designs

Using the construction method of Section 4.1 we now construct
a family of strongly divisible 1-designs and 2-designs, and then
show that the 2-designs are the residual designs of an infinite
family of symmetric 2-designs. This construction may be regarded
as a generalisation of the construction of [4], Chapter 4,

Section 1, and [9}.

It has recently been brought to the attention of the author
that, using a different construction method, a family of symmetric
designs with the same parameters has been obtained by Rajkundlia,

[35].

-
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Suppose g>2 is a prime power, and let h>1 be any integer.

Then put A" = Ap_4(h,q), the design consisting of the points
and hyperplanes of h-dimensicnal affine geometry over GF(q);
(see, for instance, [19]). Choose some pcint P of A, and let
s = (a)F,

Lemma 4.4.1 S is a symmetric GD 1-(qh—1,qh-1,qh-1) design,

and § admits a strong tactical division T(S)
with d point and block classes, d = (qh-1)/(q-1), of g-1 points
and blocks each. S has connection and intersection numbers

14
’ h-2

’ vt _ea . s
Aij and pij where Aij-pij-(l Gij)q s (1<i,3<d). No block of

S contains all the points of a point class of S.

Prcof From Dembowski, [19], we see that &' ‘'is an affine
2~ {qh h-1 (qh-l—i)/(q-l)) design. By Result 1.3.5(iii),

h- 1 h 1y design. Define the

S = (é’)P is a symmetric 1- (q -1,q
line of A’ through two points X and Y to be the intersection of
all blocks through X and Y. It is well-known (see, for instance,
[19] ) that every line of é’contains q points. Hence there are

d lines, 2,,...,%,, say, of A’ containing P; also A has d

parallel classes é&,...,A of q blocks each.

-0 _ - A - . . .
Now put S; = Qi {P} and C; = A {xl} for every i (1<i<d),

where x. is the block of é& which contains P. S4,...,S, and

C

Cys+++sC4 Partition the points and blocks of § into d classes

—n i ii»h]ﬁ-’slhi;i,;‘.ﬁ,.‘h R ‘ihﬂmﬁmmﬁ* i rﬁlx\,lt:i.liiimﬁ‘gc-,l dlﬁwmﬁl.mﬂmmﬂmmimirﬂih T TR TN P 8 T
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of g-1 points and blocks each, and we call this partition T(S).

We now show T(S) is a tactical decomposition.

Choose a point class §i and a block class Ej’ If Q€§i,
then since éa is a parallel class of éﬁ Q is incident with a

unique block y, say, of ég. By definition of a line either

£.Nx, = . .. 1 . . =
%5 {P} or Qlej Hence either QlﬁxJ {P}, and so

y¥x.

5 i.e. Q is incident with precisely one block of Ej’ or

Qiij and yEXgs i.e. Q is incident with no blocks of gj’

€ . { . = .. e X o . o
If 2€C; and Qi“»xj {P} (i.e erxj), then £.0z#¢

(since every line meets every non parallel block, and QiJFz
since Qi‘rxj and xjﬂz), and so Qiﬂz = {R}, for some R%P,
If Qiij, then Qi"xj,xj"z and also Qiij,xj#z. So .Mz =¢,

and hence T(S) is a tactical decomposition.

Pick any two blocks of S, yegi and zegj, say. Then if

i=j, y,zegicég, i.e. y,z are two parallel blocks and so yNz £¢.

If i*#j, then y,z are two non=parallel blocks of éﬂ and so they
intersect in qh"2 points of éﬁ ysz are blocks of S and so

P&€y,z, i.e. y,z intersect in qh-2 points of S.

So T(S) forms a tactical division of S*, and S has

h-2

intersection numbers p&j = (1-6ij)q , (1<i,j<d). Hence, by

Theorem 3.3.1 T(S) is also a tactical division of S, and S has

%. P TR e |
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connection numbers A&.:pﬂ

570550 (1<i,3j<d).

Finally, by above, every block of S contains 0 or 1 points
from every point class of T(S), and, since g>2, no block of S

contains all of the g-1 points from a point class of T(S).

Remark To construct S with the above properties we needed
only that A'was an Affine 2-(um2,um,(um—1)/(m—1)) design with

constant line size m, and so we could replace A1(2,q) by an

arbitrary affine plane of order q.

Theorem L4.4.2 If there exists an affine 2-(u(q-1)2,u(q—1),
(u€q-1)-1)/(q-2)) design A, and g>2 is a prime power, then for

every h>2 there exists a @gp

1—(u(q—i)(qh-i),uqh-i(q-i),qh-i[u(q-l)z—l)/(q-2)) design D

admitting a strong tactical division T(D) with 4 point classes
each of u(q-1)2 points and ¢ block classes (c=(u(q—1)2—1)(qh-1)/
(g-1)(q-2)) each of g-1 blocks. The classes of T(D) may be

labelled so that the connection and intersection numbers are
Ay = (a1 %-1)q" 2 /(=22 4850 QPR (-1 (-1 /(q-2), (151,32d),

p= ps: = 0 (1<i<e), and Py where pi.zuqhuz(q-l), i#j (mod d)

ii 3 3
- h-l [Rys . . . . -*-
Pyg = Wa T, iF] (mod d) , for every i,j, 1<i,j<c,i#j.
Proof Since q>2 is a prime power let S be as in Lemma 4.4.1

above. Then construct D using S and A as in Section 4.1, and

ikl b buils adeed Ty L T WYY ey
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Theorems 4.1.1, 4.1.3, 4.1.6, 4.1.7 and Lemmas 4.1.2, 4.1.5 yield

the result. 1

Corollary 4.4.3 If there exists an affine plane of order gq-1,

and g>2 is a prime power, then for every h>2 there exists a
2-((q-1)(qh-1),qhal(q~1),qh_1) design D, admitting a strong
tactical decomposition T(D) with d point classes each of (q-i)2
pcints and ¢ block classes each of g-1 blocks; (c:q(qh-l)/(q-i)).

D has intersection numbers : O, qh-z(q-i) and qh-l.

Proof D of Theorem 4.4.2 is a 2-desisn if and only if 0 =

qh"2(u—1)(q—1)/(q—2), i.e. if and only if A is an affine plane,

(since q>2). n

We now show how to embed the 2-designs of Corollary 4.4.3

into symmetric 2-designs. We first require

Result 4.4.4% (Beker and Haemers, [ 7}, Corollary 6.3)

A Quasi-vesidual 2-((k=1)(k-2)/X,k-1,1) design
D with three intersection numbers : 0,A(k-2)/k and k/m is
embeddable in a symmetric 2-(v,k,\) design if and only if there

exists a strongly resclvable Qn(k,l,(k-i)/m) design D.

We now have

Theorem 4.4.5 TIf there exists an affine plane of order q-1, and

q>2 is a prime power, then for every h>2 there

h+1 h

exists a symmetric 2-(q ~-q+l,q ,qh'i) design.

o




~-111~
Proof By Result 4.4.4 the Quasi-Residual Designs of Corollary
4.4,3 are embeddable in symmetric 2-designs of appropriate
parameters if and only if there exists strongly resolvable
2-(qh,qh-l,(qh-i-i)/(q-i)) designs D.  But such designs always

exist, namely D = Ay_,(h,q), and the theorem follows. &
Remark Hence, since h may be chosen arbitrarily, we have
shown that whenever q and g-1 are prime powers, there exists an

infinite family of symmetric 2-designs with the above parameters.

4.5 On a Generalisation of a Construction of Kimberley

I+ is clear that the construction method of Section 4.1
can be modified and generalised, and below we give an example of
how a modified form of the construction can be used to obtain

the affine designs of Kimberley, [31].

Suppose A is a 2-(v,k,}) structure admitting a parallelism
with m blocks in each class, (and hence v=mk,b=mr). Let S be
a 1-(v,X,r) structure admitting a P Division S;,...,84 with

{Sil = m for every i, (and hence vz md). Suppose also that

?
k' 2 m.

Construct D from A and S as in Section 4.1. From Theorems

b.,1.14. and 4.1.3 we have :
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Lemma 4.5.4 D is a 1-(mkd,mk,rr) structure admitting a

P Division 21""’£d and D has connection numbers

? ! o7 o .
Now construct E from Q as follows. Let E have the same
point set as D and have as blocks the blocks of D, (with the

same incidence as in D), together with 4 further blocks XqseeesXy

where x. is incident with the mk points of P.. We immediately

have (using Lemma 4.5.1)

Theorem 4.5.2 D is a 1-(mkd,mk,rr+1) structure admitting a

P Division Py,...sP4s and D has connection
numbers
’ ] [ . .
rkij + 6ij(k(r—kii) + 1), 1<i,j<d.

We also have

Lemma 4.5.3 D is a design if the conditions of Lemma 4.1.2 are
satisfied.
Proof Clearly no two points of D are incident with the same

set of blocks of D since D is a design, and hence we need only
observe that since no blocks of S contains all the peints of a

point class of S, no block of D contains all the peints of P,

=
a

for any i, and so D is a design.

—

TR T TR
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Lemma 4.5.4 D is 2 2-structure if and only if 8;,...,8,

is a group division of S satisfying

? L.’ .:I. I.zl. ’.='.
rk1+l(r A1)+1 rAz where Ai Aii and 12 Aij for
every i,j, (1<i,j<d,i%¥j).
Proof Immediate from Thecrem 4.5.2. ﬂ
Lemma 4.5,5 Suppose D is a 2-structure and § admits a

tactical division T(S) with point classes
§1"”’§d and block classes 91""’Ec such that the number of
blocks of gj incident with a point of S. depends only on the

block class gj (i.e. using the notation of Lemma 4.1.5, for

every j (1<j<c) there exists a Yj such that Yij =yj for every

i (1<i<d) . Then D admits a resolution R(D) with re+l block

classes.

Proof Use T(S) to obtain a tactical decomposition T(D) of
D as in Lemma 4.1.5, and, as in the proof of Lemma 4.1.5 any

point of D is ineident with precisely Ys blocks of Bys

(1<2<r,1<j<e).  Now let R(D) have block classes the block
classes of T(D) together with one extra block class consisting
of the added blocks. R(D) is clearly a resolution of D with

rc+1 block classes and the Lemma follows. xt
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Remark If T(S) is strong and S is a design, then by Theorems
2.2.1 and 2.4.4 the condition Yij = Yj in the Lemma above is
equivalent to assuming that the. block classes of T(S) form a
SRP Division of S*. But if T(S) is strong, then, by Result
1.5.2, the intersection number of any pair of blocks from the

same block class of T(S) is a constant ("k-r+A") and so, by

Theorem 2.3.5, the condition Yij = Yj is equivalent to

assuming that the block classes of T(S) form a semiregular
group division of S$*, and hence is equivalent tc assuming that

both S and S8* are SRGD; (using Theorem 2.4.5).

We now suppose that A,S and E are as in Lemma 4.5.5, and

we have :
Lemma 4.5.6 R(D) is strong if and only if br+d = mkd+rec.
Proof R(D) is strong if and only if "b+1 = v+e", i.e. if

and only if (bbr+d)+1 = mkd+(rc+1). u

Theorem 4.5.7 Any two of the following imply the third :

(i) A is affine;
(ii) T(38) is strong;

(iii) R(D) is strong.

Proof The proof is identical to the proof of Theorem 4.1.6.

!
— YTt T T )

2]
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We now obtain the construction method of Kimberley, [ 31],

using the above process.

Theorem 4.5.8 If there exists an affine Z—Iumz,um,(umol)/(m-l))

design and an affine plane of order m, then there exists an

affine 2-(umg,umz,(umzml)/(m—l)) design.

Prcof Let A be the affine 2-(um2,um,(um—1)/(m—1)) design,
and §"be the affine plane of order m. Suppose the parallel
classes of §f‘are 91"“’Hm+1 and then let S be the incidence

structure whose points are the points of §S'and whose blocks

are the blocks of gi,...,gm with incidence as in §ﬂ‘ Clearly

S is a 1~(m2,m,m) design. Define T(S) to have point classes

the point sets of the blocks of U .4 and block classes Ujs..sU .

Then T(S) has m point and block classes of m points and
blocks each. Every point of S is incidenf with precisely cne
btlock of any given block class and any two points of § are on
0 or 1 common blocks depending only on whether they are from the
same or different point classes respectively. Dually every
block of S is incident with precisely one point of any given point

class.

Hence S is a symmetric SRGD design (by Result 1.4.5)
admitting a strong tactical division with point classes the classes
of the group division. By above, every block of S contains
precisely 1 point from every point class of T(S), and SO no

block of S contains all of the m points of a point class of S.
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Hence constructing D from A and S as above, D is a
2-(ums,umz,(umz-l)/(m-i)) design admitting a strong resolution
R(D), (using Theorems 4.5.2, 4.5.7 and Lemmas 4.5.3, 4.5.4 and
4,5.5), By Result 1.5.3 D has intersection numbers 0 and m

and so R(D) is a parallelism. Thus D is affine by Result 1.5.5. H
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