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Abstract. This article addresses two main topics. Firstly, we review the
operation of trusted computing technology, which now appears likely
to be implemented in future mobile devices (including mobile phones,
PDAs, etc.). Secondly, we consider the possible applications of this tech-
nology in mobile devices, and how these applications can be supported
using trusted computing technology. We focus in particular on three mo-
bile applications, namely OMA DRM, SIMLock, and software download.

1 Introduction

Trusted Computing (TC) technology, which is already present in many recently
manufactured PCs, has the potential to revolutionise many aspects of the secure
management of IT, particularly in a corporate environment. In recent years,
attention has been directed at how this technology might be deployed more
broadly, including in a mobile and ubiquitous computing environment.

In this article we aim to do two main things. Firstly, we review the opera-
tion of trusted computing technology; we not only describe the main functional
components of this technology, but also summarise the main motivations for its
introduction. Secondly, we consider possible applications of this technology in
mobile devices, since it appears likely that the technology will be implemented
in a wide range of future such devices (including mobile phones, PDAs, etc.). In
particular we consider how three possible applications, i.e. Open Mobile Alliance
Digital Rights Management (OMA DRM), SIMLock, and software download, can
be supported using trusted computing technology.

The remainder of the article is divided into two parts, as follows. The first
main part commences in section 2, where we describe what trusted computing
is intended to achieve and why it has been developed. This is followed in sec-
tion 3 by a brief history of the development of trusted computing technology.
Section 4 summarises the main technical concepts underlying trusted comput-
ing. This leads naturally to an overview of the trusted platform subsystem in
section 5, followed in section 6 by a more detailed description of trusted com-
puting functionality. The second main part of the article, which is concerned
with the application of trusted computing technology to mobile devices, starts
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with a review of the trusted mobile platform in section 7. This is followed by
an analysis of three mobile use cases of trusted computing, namely OMA DRM
v2, SIMLock and software download, given in sections 8, 9 and 10, respectively.
The paper concludes in section 11.

2 Computer Security and Trusted Computing

2.1 Trust

The word trust means many different things to different people and in different
contexts. Like the word security, it has become so over-used that it is almost
meaningless unless a definition is provided. This is certainly the case for the term
‘trusted computing’, and so one thing that we try to do here is define what trust
means in this particular context. This theme is returned to in many subsequent
parts of this article.

So what does trust mean for our purposes? Well, perhaps the simplest def-
inition would be that trusted computing refers to a computer system for which
an entity has some level of assurance that (part or all) of the computer system is
behaving as expected (or, to quote [1], a platform is trusted if it ‘behaves in an
expected manner for an intended purpose’). The entity may be various things,
including the human user of the PC or a program running on a remote machine.
The degree of coverage of this assurance, i.e. whether it covers all aspects of the
system or just some part, and the nature of the entity to which assurance is
provided, vary depending on the system and the environment within which it is
used. Of course, just because the behaviour of a system is as expected, does not
necessarily imply that a trusted platform is a secure platform. For example, if
an entity can determine that a platform is infected with a virus, whose effects
are known, the platform can be trusted by that entity to behave in an expected
but malicious manner [2].

It has also been said that ‘trusted platforms were so-called because they
provide a technological implementation and interpretation of the factors that
permit us, in everyday life, to trust others’ [3], i.e.

– either first hand experience of consistent behaviour, or trust in someone who
vouches for consistent behaviour;

– unambiguous identification; and
– unhindered operation.

In order to implement a platform of this nature, a trusted component, which
is usually in the form of built-in hardware, is integrated into a computing plat-
form [4]. This trusted component is then used to create a foundation of trust for
software processes running on the platform [4]. Bodies such as the Trusted Com-
puting Group (TCG) (discussed in section 3) standardise specific functionality
to be incorporated into end systems which are known as ‘trusted platforms’.
Depending on how the specified functionality is implemented, such a platform is
then able to provide a degree of assurance about some aspect of its operation.



2.2 Computer Security

Computer security is a long-established subject, with a considerable literature
dating back to the 1960s. There are many books on the subject of secure comput-
ing (see, for example, Gollmann [5] and Pfleeger [6]). Trusted computing, with
the meaning applied here, is a much more recent phenomenon, and is essentially
one specialised part of the larger subject of computer security. One reason that
the notion has emerged is because of the changing nature of computer systems,
and their increasing ubiquity.

Historically, computer security has provided a theory to understand and rea-
son about fundamentally important security functionality within operating sys-
tems. This functionality covers issues such as access control to resources within
the context of multi-user operation. Most of computer security is thus concerned
with security aspects of software, and pays relatively little attention to hardware
security issues.

The reason for this is clear. Until the advent of the PC, computers were
relatively large and expensive devices, typically with a number of users. The
hardware was often kept in a physically secure location, to which access was
only granted to authorised staff. Hence the main security issue was to design
the file system software such that one user could not access data and resources
to which he or she was not entitled, including other users’ data. The security
of the hardware was not something directly addressed — it was essentially a
prerequisite for the correct operation of the software.

This resulted in a large and well-developed theory of computer security, cov-
ering such topics as multi-level system security and a host of models for access
control systems. This theory remains very important; however despite overlap-
ping terminology, this is not the main subject of this article. Terminological
confusion is a particular problem, not just because of the overuse of the word
trust, but because the term Trusted Computing Base (TCB) has become widely
used to mean something somewhat different to the recent use of trusted comput-
ing.

As defined in the Orange Book [7] (see also Gollmann [5]) the TCB is the
totality of protection mechanisms within a computer system, including hard-
ware, firmware and software. Whilst this is by no means unrelated to trusted
computing, as discussed here, the meaning is definitely not the same.

Of course, it is true that physically secure subsystems have always had a
place in the spectrum of secure computing, but they have mainly been used in
specialist applications. For example, many secure subsystems have been designed
and used in applications requiring physical security for stored keying material
— examples of such systems include the IBM 4758 [8] (see also Chapter 15 of
[9] for a discussion of interfaces to such subsystems).

2.3 Computer Security and PCs

The traditional assumptions regarding the physical security of important com-
puter systems are clearly completely inappropriate for the vast majority of PCs



in use today. Most such PCs have only a single user, and no physical security is
provided for the PC hardware. Short term access to the PC can easily result in
unauthorised copying of information and/or modifications to software and data;
this is easy to achieve regardless of what software protections exist, simply by
temporarily removing a hard disk and attaching it to a different system. That is,
regardless of how ‘secure’ the operating system is in the traditional sense, the lack
of guarantees about physical security means that the correctness of software or
information stored on the PC cannot be trusted; neither can the confidentiality
of any such information. The situation is made worse by the fact that modern
PC operating systems and application software are enormously complex, and
removing all software vulnerabilities is an almost impossible task. Hence for a
combination of reasons today’s systems are very vulnerable to a range of attacks.

Trusted computing as we mean it here is an idea which has arisen from the
need to address these problems. Trusted computing refers to the addition of
hardware functionality to a computer system to enable entities with which the
computer interacts to have some level of trust in what the system is doing. Pear-
son [10] defines a related notion, namely that of a trusted platform, as follows.

A trusted platform is a computing platform that has a trusted compo-
nent, probably in the form of built-in hardware, which it uses to create
a foundation of trust for software processes.

The exact nature of a trusted platform is an issue that is explored below. An
interesting discussion of trust and trusted computing can be found in [11]. A
useful high level introduction to trusted computing has also been given by Felten
[12].

2.4 Goals of Trusted Computing

The main goals of trusted computing are to add some (modest) set of hardware
enhancements to a computer system to enable (a) the state of the system to
be checked, both locally and remotely, and (b) data to be protected so that it
will be available only when the system is in a specified state. Achieving these
apparently limited goals requires adding a significant amount of functionality to
a PC, although most of the necessary functionality can be incorporated into a
special-purpose chip, the Trusted Platform Module (TPM).

Achieving the first of these goals is perhaps the most fundamental, and much
of the functionality of the TPM is necessary simply to meet this goal. For exam-
ple, it is clear that, unless there is some way of providing assurance about the
correct functioning of the operating system, then there is no way of providing
any assurance about the correct operation of applications. This means that it is
necessary to monitor the process of booting the operating system, in such a way
that the integrity of the system after the boot process has been completed can
be verified. This is by no means a simple requirement, since booting a platform
such as a PC is a highly complex process.

Essentially, it requires the first piece of software that executes to be fixed
(unchangeable), and also for each piece of software that runs subsequently to



be checked (measured) by its predecessor. This process of measurement involves
applying a cryptographic hash function to the software, storing the result, and
later reporting the result in a reliable way. As we will see below, this means that
the ‘roots of trust’ for measurement, storage and reporting are essential to meet
the first goal.

This notion of monitoring the booting of an operating system also highlights
the limitations of hardware-based trusted computing. That is, since modern
operating systems are large and complex, it is clear that determining whether
a measured version of the operational state of a PC can be trusted or not is
essentially a hopeless task. This is because there will be a very large number of
different possible ‘valid’ states for such a system, each of which will generate a
measurement. As a result, trying to decide whether a measurement represents a
valid or invalid software state becomes infeasible.

Thus, whilst the TPM can measure the initial stages of the booting of a PC,
this process cannot be extended indefinitely to the entire system. As a result,
at some point the software must be trusted to ‘look after itself’. That is, at
least for complex multi-purpose systems such as PCs, the use of hardware-based
measurements of software state must be combined with some other means of
providing ongoing protection for a system.

This is achieved by introducing the notion of a isolation layer (discussed
in more detail below). That is, the trusted computing hardware can be used
to provide assurance that a particular isolation layer has been booted; after
that the isolation layer must itself guarantee the integrity of the system. An
isolation layer will typically be booted immediately prior to starting up one or
more ‘guest’ operating systems. The isolation layer must be trusted to provide
ongoing security for the operating systems which it hosts. In particular, it must
be trusted to isolate the different operating systems (and applications running
on operating systems) so that data cannot pass between them in unauthorised
ways, and so that even if malicious code is introduced into one environment it
cannot damage other environments.

Of course, this analysis does not necessarily apply to all trusted platforms.
For single use, simple platforms, e.g. as might be the case for embedded or mobile
systems, ongoing hardware-based measurement and verification of the complete
software environment may be possible, because the number of possible valid
states may not be very large.

Finally, note that the functionality provided by the TPM can be used for
a host of purposes, many quite distinct from the fundamental goals discussed
above. Indeed, the addition of a TPM to a computer system is somewhat akin
to equipping every PC with a physically secure ‘hardware security module’. The
presence of such hardware is likely to give rise to a host of new applications,
which we cannot begin to envisage today.



3 A Brief History of Trusted Computing

The concept of trusted computing, as described throughout this article, was ini-
tially defined by the Trusted Computing Platform Alliance (TCPA). The TCPA,
an industry working group which focussed on the development and standardi-
sation of trusted computing technology, was formed in January 1999 by Com-
paq, HP, IBM, Intel and Microsoft. Some of the earliest papers introducing this
paradigm were published by HP in 2000 [13, 14]. In early 2001, following the
expansion of the group, the TCPA published the first specification for a TPM,
a fundamental component of a trusted platform. Following this, a PC-specific
specification, detailing the additional changes required in order to produce a
TCPA-compliant trusted PC, was published. The TCPA TPM and PC specifi-
cations are described in [4].

In April 2003 the TCPA was superseded by the TCG. The TCG have contin-
ued to develop and expand the TPM specifications, the current version of which
is v1.2 [15–17]. The TPM specifications are supported by a standard set of TPM
APIs which provide an abstraction of the TPM to software developers/vendors
[18]. The TCG has defined how a TPM may be utilised on a variety of platform
types such as a PC client, server, hard copy device, and storage device. A trusted
mobile platform is also being specified (see also section 7). In conjunction with
this, work is ongoing on specifications designed to aid the seamless adoption,
integration and inter-operability of trusted computing platforms.

Microsoft’s proposals for a trusted computing architecture were initially re-
leased under the name Palladium, and subsequently under the title Next Gen-
eration Secure Computing Base (NGSCB). The fundamental component of the
most recently described version of the Microsoft architecture is an isolation layer
designed to support the execution of isolated runtime environments for sensitive
applications. This architecture assumes the presence of TPM functionality, as
defined by the TCG, in conjunction with processor enhancements and chipset ex-
tensions which enable the implementation of the high-assurance isolation layer.
For further information see [19–22].

The Terra system architecture [23], the Perseus framework [24, 25], the Open
Trusted Computing architecture [26] and the European Multilaterally Secure
Computing Base (EMSCB) [27] have some similarities to the current version of
NGSCB. At the heart of each architecture is an isolation layer, which has been
designed to support the isolated execution of software. Terra is based on the
notion of a Trusted Virtual Machine Monitor (TVMM), that partitions a com-
puting platform into multiple, isolated virtual machines. The Perseus framework
and the Open Trusted Computing architecture have been designed to use either
a virtual machine monitor such as XEN [28] or a microkernel in order to provide
isolated execution environments. EMSCB incorporates an L4 microkernel-based
isolation layer. Each architecture also assumes a hardware platform which in-
cludes a TPM. The presence of chipset and processor enhancements are also ac-
knowledged within all architectures as pivotal in order to ensure a high-assurance
isolation layer implementation.



Hardware manufacturers such as Intel and AMD have specified the required
processor enhancements and chipset extensions under the names of LaGrande
[29] and Presidio respectively.

As this technology has evolved and matured, a growing body of work has
emerged on the potential applications of trusted computing. Both Balacheff et
al. [30] and Spalka, Cremers and Langweg [31] describe how trusted computing
functionality may be utilised in order to enhance the security of the digital
signature process. Schechter et al. [32], Kinateder and Pearson [33] and Balfe,
Lakhani and Paterson [34] discuss the application of trusted computing to peer-
to-peer networks. The deployment of trusted computing functionality has also
been proposed in order to enable secure software download [35], support secure
single sign-on solutions [36], improve the security and privacy of a biometric
user authentication process [37] and to facilitate identity management [38, 39].
A number of authors have also considered trusting computing’s applicability to
the agent paradigm [40–43] and online gaming [44]. Further application scenarios
are described in [4, 23, 26, 45].

While the benefits of trusted computing functionality have become apparent,
this new technology has also been criticised. Anderson [46] expresses the view
that trusted computing may be used to support censorship, stifle competition
between software vendors, and hinder the deployment and use of open source
software. The issues of software ‘lock in’ and interoperability, the contentious
issue of TC-enabled DRM, and, more generally, remote control of the software
on a platform, are also highlighted by members of the Electronic Frontier Foun-
dation, namely Scheon [47] and von Lohmann [48]. Privacy concerns relating to
trusted platforms have also been widely discussed [49], and will be revisited in
section 6. A high level account of these criticisms is provided by Arbaugh [50].

In parallel to the development of the trusted computing technologies de-
scribed above, closely related concepts such as secure boot have been widely
discussed, and a number of alternative architectures have been developed with
the goal of providing more secure and trustworthy computing platforms. The
concept of a secure boot has been repeatedly discussed in the literature, most no-
tably by Tygar and Yee [51], Clark [52], Arbaugh, Farber and Smith [53] and Itoi
et al. [54]. While the eXecute-Only Memory (XOM) architecture [55, 56] and the
architecture for tamper evident and tamper resistant processing (AEGIS) [57]
are not strictly examples of trusted computing platforms, like trusted comput-
ing they provide strong process isolation through the development of hardened
processors.

4 Trusted Computing Concepts

Trusted computing, as defined by the TCG, is synonymous with four fundamen-
tal concepts: integrity measurement, authenticated boot, sealing and platform
attestation. A platform incorporating these concepts constitutes what we refer
to here as a Trusted Platform (TP). Note that, since the original description was



published, the definition of what constitutes trusted computing functionality has
been revised and extended to incorporate the concept of software isolation.

4.1 Integrity Measurement

An integrity measurement is defined in [22] as the cryptographic digest or hash
of a platform component (i.e. a piece of software executing on the platform).
For example, the integrity measurement of a program could be calculated by
computing the cryptographic digest or hash of its instruction sequence, its initial
state (i.e. the executable file) and its input.

An integrity metric is defined as ‘a condensed value of integrity measure-
ments’ [4]. Integrity metrics indicate the history of the platform.

4.2 Authenticated Boot

An authenticated boot is the process by which a platform’s configuration or
state is reliably captured and stored. During this process, the integrity of a pre-
defined set of platform components is measured, as defined in section 4.1. These
measurements are condensed to form a set of integrity metrics which are then
stored in a tamper-resistant log. A record of the platform components which have
been measured is also stored on the platform. Condensing enables an unbounded
number of platform component measurements to be stored. If each measurement
was stored separately, an unbounded amount of memory would be required to
store them [4].

4.3 Sealing

Sealing is the process by which sensitive data can be associated with a set of
integrity metrics representing a particular platform configuration, and encrypted.
The protected data can only be decrypted and released for use when the current
state of platform matches the integrity metrics sealed with the data.

4.4 Attestation

Attestation is the process by which a platform can reliably report evidence of its
identity and its current state (i.e. the integrity metrics which have been stored
to the tamper resistant log, and the record of the platform components which
have been measured, as described in section 4.2).

4.5 Software Isolation

Isolation enables the unhindered execution of software through the provision of
assured memory space separation between processes [58].



5 The Trusted Platform Subsystem

As stated in section 2.1, in order to provide the services described in sections
4.1 to 4.4, a ‘trusted component’ must be integrated into a computing platform.
This ‘trusted component’ is made up of three roots of trust — the Root of
Trust for Measurement (RTM), the Root of Trust for Storage (RTS) and the
Root of Trust for Reporting (RTR). In order to provide software isolation, as
described in section 4.5, an isolation layer can be deployed on the platform. In
conjunction with this, the platform may also incorporate processor enhancements
and chipset extensions which have been designed to enable a secure and high
assurance isolation layer implementation.

5.1 The RTM

The RTM is a computing engine capable of measuring at least one platform
component, and hence providing an integrity measurement, as described in sec-
tion 4.1. The RTM is typically implemented as the normal platform processor
controlled by a particular instruction set (the so-called ‘Core Root of Trust for
Measurement’ (CRTM)). On a PC, the CRTM may be contained within the
BIOS or the BIOS Boot Block (BBB), and is executed by the platform when it
is acting as the RTM. It is required by the TCG that the CRTM is protected
against software attack: the CRTM must be immutable, as defined by the TCG,
meaning that its replacement or modification must be under the control of the
host platform manufacturer alone [59]. It is also preferable that the CRTM be
physically tamper-evident [4].

5.2 The RTS and RTR

The RTS is a collection of capabilities which must be trusted if storage of data
inside a platform is to be trusted [4]. The RTS is capable of maintaining an
accurate summary of integrity measurements made by the RTM, i.e. condensing
integrity measurements and storing the resulting integrity metrics, as described
in section 4.2. The RTS also provides integrity and confidentiality protection to
data and enables sealing.

In conjunction with the RTM and RTS, an additional root of trust is neces-
sary for the implementation of platform attestation, namely the RTR. The RTR
is a collection of capabilities that must be trusted if reports of integrity metrics
are to be trusted (platform attestation) [4].

The RTR and the RTS constitute the minimum functionality that should be
provided by a TPM [15–17]. A TPM is generally implemented as a chip which
must be physically bound to a platform. In order to support RTS and RTR
functionality, a TPM incorporates a number of functional components such as:
input/output; non-volatile and volatile memory; a minimum of 16 Platform Con-
figuration Registers (PCRs), which are used by the RTS to store the platform’s
integrity metrics; a random number generator; a HMAC engine; a SHA-1 en-
gine; key generation capabilities; an asymmetric encryption and digital signature



engine; and an execution engine, as shown in figure 1. The TPM must be pro-
tected completely against software attack, i.e. the RTS and RTR (i.e. the TPM)
must be immutable, which implies that the replacement or modification of RTS
and RTR code must be under the control of the TPM manufacturer alone. The
TPM is required to provide a limited degree of protection against physical attack
(tamper-evidence) [4].

Fig. 1. The TPM chip

5.3 Software Isolation Technology

A number of approaches have been proposed in order to facilitate software isola-
tion. Many of these approaches, however, have associated difficulties with respect
to assurance, device support, legacy OS compatibility and performance.

OS-Hosted VMM: In the case of an OS-hosted virtual machine monitor,
such as VMWare workstation, all guest OSs executing in VMs utilise the host
OS device drivers. While this implies that the every guest can utilise drivers
developed for the host machine, it also means that the isolation layer essentially
incorporates the VMM and the host OS, making assurance problematic [22, 60].

Standalone VMM: In a standalone virtual machine monitor, such as Terra
[23], all devices are virtualised or emulated by the VMM. This means that the
VMM must contain a virtual device driver for every supported device. As the set
of devices utilised in consumer systems is often large, and as many virtual device
drivers are complex, the size of the VMM quickly grows at the cost of assurance.
A standalone VMM exposes the original hardware interface to its guests. While
this implies that legacy OSs can be supported, it also means that the VMM



size is increased because of the complexity involved in virtualising the x86 CPU
instruction set [22].

Para-Virtualisation: Isolation layers using para-virtualisation techniques, such
as XEN [28], have been designed for efficiency, and try to alleviate the complexity
introduced when devices are virtualised. Two common approaches used in order
to para-virtualise I/O are as follows [60]. In the first case, an I/O-type-specific
API for each device is integrated into the VMM, in conjunction with the device
drivers [60]. This approach requires a guest OS to incorporate para-virtualised
drivers which enable communication with the VMM APIs rather than the hard-
ware device interfaces. While this gives performance gains over full virtualisation,
the guest OS must be modified to communicate with the I/O-type-specific APIs.
Alternatively, a service OS, which incorporates the VMM APIs and the device
drivers, may execute in parallel to guest OSs, which are modified to incorporate
para-virtualised drivers [60]. To enable this approach, devices are exported to
the service OS. While this approach means that device drivers do not have to
be implemented within the isolation layer, the isolation layer may become open
to attack from a guest in control of a direct memory access device which is,
by default, given unrestricted access to the full physical address space of the
machine.

An Isolation Layer with Hardware Support: The isolation layer described
as part of the NGSCB [21, 22] was designed to take advantage of CPU and
chipset extensions incorporated in a new generation of processor hardware; such
hardware is being provided, for example, by Intel’s LaGrande initiative [29]. The
isolation kernel has been designed to execute in a CPU mode more privileged
than the existing ring 0, effectively in ring -1, which is being introduced in new
versions of the x86 processors. This enables the isolation layer to operate in ring
-1 and all guest OSs to execute in ring 0. Thus, complexity problems which arise
when virtualising the x86 instruction set are avoided [22]. The original hardware
interface is exposed to one guest OS [22]. However, rather than necessitating the
virtualisation of all devices, as a VMM does, devices are exported to guest OSs
which contain drivers for the devices they choose to support. Guest operating
systems may then efficiently operate directly on the chosen device.

This does, however, leave the problem of uncontrolled DMA devices, which
by default have access to all physical memory. In order to prevent DMA devices
circumventing virtual memory-based protections provided by the isolation layer,
it is necessary for the chipset manufacturers to provide certain instruction set
extensions. These enable a DMA policy to be set by the isolation layer which
indicates, given the state of the system, if a particular subject (DMA device)
has access (read or write) to a specified resource (physical address), [22]. The
DMA policy is then read and enforced by hardware, for example the memory
controller or bus bridges.

Hardware extensions required in order to facilitate the implementation of the
NGSCB isolation layer have been provided as part of Intel’s LaGrande [29] and



AMD’s Presidio initiatives. Both enable the efficient and secure implementation
of an isolation layer, as described by Microsoft, through the implementation of
CPU and chipset extensions. Both also support the establishment of trusted
channels between the input and output devices and programs running within an
isolated environment.

6 The Trusted Platform Subsystem Functionality

6.1 The Authenticated Boot Process

An authenticated boot process enables the state of a platform to be measured and
recorded. In order to describe an authenticated boot process we need to intro-
duce some fundamental TPM concepts. A PCR is a 20-byte integrity-protected
register present in a TPM; a TPM must contain a minimum of 16 such registers.
When a component is ‘measured’, a 20-byte SHA-1 hash of the component is
computed. The output hash value (i.e. the measurement of the component) is
then stored in one of the TPM PCRs. In order to ensure that an unlimited num-
ber of measurements can be stored in the limited number of PCRs in a TPM,
multiple measurements can be stored in a single PCR. This is achieved by con-
catenating a new measurement with the existing contents of a PCR, hashing the
resulting string, and then storing the output hash code in the PCR.

A record of all measured components is stored in the Stored Measurement
Log (SML), which is maintained externally to the TPM. The information in the
SML is necessary to interpret the PCR values, but does not need to be integrity
protected.

A simplified authenticated boot process might proceed as follows, where we
assume that the CRTM is part of the BBB. The CRTM measures itself and the
rest of the BIOS (i.e. the POST BIOS). The computed measurements are then
passed to the RTS, which condenses them and records the resulting integrity
metric in the first of the 16 PCRs (PCR-0) within the TPM. Control is then
passed to the POST BIOS which measures the host platform configuration, the
option ROM code and configuration, and the Operating System (OS) loader.
The computed measurements are passed to the RTS, which condenses them and
stores the resulting integrity metrics in PCRs 1-5. Control is then passed to the
OS loader which measures the OS. At each stage a record of all measurements
computed is stored to the SML. This process is illustrated in figure 2.

This process of measuring, condensing, storing, and handing-off, continues
until the platform’s configuration has been measured and stored. The exact
measurement process is dependent on the platform; for example, the TCG spec-
ifications detail authenticated boot processes for a platform which has a 32-bit
PC architecture BIOS [59] and for an Extensible Firmware Interface (EFI) plat-
form [61].



Fig. 2. The authenticated boot process

6.2 TPM Protected Storage

The TPM provides secure (‘protected’) storage functionality, which incorporates
a sealing capability. This functionality was designed so that an unbounded num-
ber of secrets/data could be confidentiality and integrity protected on a TP.

Each TPM contains a 2048-bit asymmetric key pair known as a Storage Root
Key (SRK). The private key from this key pair is permanently stored inside the
TPM. This key pair is the root of the TPM protected object hierarchy. A TPM
protected object in this hierarchy may be classified as either a TPM protected
key object, i.e. an asymmetric key pair whose private key is encrypted using a
key at a higher layer in the hierarchy, or a TPM protected data object, i.e. data
(or, indeed, a symmetric key), which has been encrypted using a key at a higher
layer of the hierarchy. A simplified TPM protected object hierarchy is illustrated
in figure 3.

Asymmetric encryption is used to confidentiality-protect key and data ob-
jects. Protected storage also provides implicit integrity protection of TPM pro-
tected objects. Data can be associated with a string of 20 bytes of authorisation
data before it is encrypted. When data decryption is requested, the authorisation
data must be submitted to the TPM. The submitted authorisation data is then
compared to the authorisation data in the decrypted string, and the decrypted
data object is only released if the values match. If the encrypted object has been
tampered with, the authorisation data will most likely have been corrupted (be-
cause of the method of encryption employed) and access will not be granted
even to an entity which has submitted the correct authorisation data. However,
functionality to control how data is used on its release, or to protect data from
deletion, is not provided.



Fig. 3. The TPM protected object hierarchy

The TPM protected storage functionality incorporates an asymmetric key
generation capability. This capability enables the generation of key pairs for
which the private keys can only be used on the TPM on which they were gener-
ated. An additional constraint may also be applied which prevents private key
use unless the TPM host platform is in a specified state. Moreover, key pairs can
be generated with the property that the private keys from the pairs are never
exported from the TPM in unencrypted form.

The TPM enables the encryption of keys or data outside the TPM in such a
way that they can only be decrypted on a particular TPM. It also enables the
encryption of keys or data so that they can only be decrypted when a particular
TPM host platform is in a specified state.

Finally, sealing functionality is provided, i.e. the ability to associate data
with a particular platform configuration, and then encrypt the data so that it
is bound to this configuration. The configuration is recorded as a pair of sets of
integrity metrics, which represent the state of the platform when the data was
sealed (digest at creation), and the state of the platform required for the data
to be unsealed (digest at release). The sealed data can only be decrypted by the
TPM on which it was encrypted, and will only be released by the TPM of the
host platform is in the state specified in the digest at release. Once the data has
been released the digest at creation must be checked in order to ensure that the
data was not sealed by rogue software.

6.3 Platform Attestation

Platform attestation enables a TPM to reliably report information about its
identity and the current state of the TPM host platform. This is achieved using
asymmetric cryptography, as we describe below. However, to achieve this, it



uses a set of key pairs and associated credentials (certificates); this somewhat
complex process is necessary in order to allow TP anonymity. We describe the
key pairs and the credentials before describing the attestation process itself.

Platform Keys and Credentials: Each TPM is associated with a unique
asymmetric encryption key pair called an endorsement key pair, which is gen-
erated at the time of manufacture. The TP incorporating the TPM is further
equipped with a set of credentials, i.e. signed data structures (certificates), signed
by a variety of third parties. It is to be expected that these credentials will all
be in place at the time the platform is provided to an end user.

We next briefly enumerate the three key types of credential.

– A entity known as the trusted platform management entity (which is likely
to be the TPM manufacturer) attests to the fact that the TPM is genuine by
digitally signing an endorsement credential. This certificate binds the public
endorsement key to a TPM description.

– Conformance credentials are certificates that attest that, when considered
together, a particular type of TPM, associated components such as a CRTM,
the connection of a CRTM to a motherboard, and the connection of a TPM
to a motherboard, conform to the TCG specifications. Such a certificate
might be signed by a third party testing laboratory.

– A platform entity (typically the platform manufacturer) offers assurance in
the form of a platform credential that a particular platform is an instantiation
of a TP. In order to create a platform credential, a platform entity must
examine the endorsement credential of the TPM, the conformance credentials
relevant to the TP, and the platform to be certified.

Since a TPM can be uniquely identified by the public key from its endorse-
ment key pair, this key pair is not routinely used by a platform, helping to ensure
that the activities of a TP cannot be tracked. Instead, an arbitrary number of
pseudonyms in the form of Attestation Identity Key (AIK) key pairs (see figure
3) can be generated by a TPM and associated with a TP. This can be achieved
using a special type of third party known as a Privacy-Certification Authority
(P-CA). A P-CA associates AIK public keys with TPs by signing certificates
known as AIK credentials.

When a platform requests an AIK credential from a P-CA, it must supply the
three types of TP credential listed above, as issued at the time of manufacture.
The P-CA verifies the TP credentials, thereby obtaining assurance that the TP
is genuine, and then creates (signs) an AIK credential binding the AIK public
key to a generic description of the TP; note that this generic description should
capture enough information for a verifier of the credential to have assurance
in the trustworthiness of the platform, but not enough information to uniquely
identify it. A highlevel description of a TPM endorsement credential, a platform
credential, an AIK credential and their relationship is shown in figure 4.

The AIK private key is then used by the TPM during platform attestation.
Note that the fact that a platform can generate arbitrary numbers of AIKs (and
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obtain associated credentials) enables a platform to obtain and use unlinkable
pseudonyms, i.e. so that attestations to different third parties (or even to the
same party) can be made unlinkable.

Platform Attestation: As stated above, platform attestation is a process by
which a platform makes a verifiable claim about its current state, as captured
by the current contents of its PCRs. The process starts with the challenger, i.e.
the party wishing to have assurance about the current platform state, sending
a nonce to the platform. The platform then uses one of its AIK private keys to
sign this nonce together with integrity metrics reflecting the current state of the
platform.

This signed string is returned to the challenger, along with the record of the
platform components which are reflected in the integrity metrics ((a portion of)
the SML), together with the appropriate AIK credential. The challenger then
uses this information to determine whether it is:

– safe to trust the TP from which the statement has originated by verifying
the TPM’s signature and the AIK credential;

– safe to trust (all or part of) the software environment running on the plat-
form; this is achieved by validating the integrity metrics received from the TP
using ‘trustworthy’ software integrity measurements attested to by trusted
third parties such as software vendors.



Anonymity Issues: The above approach has attracted a certain amount of
criticism, since it puts the P-CA in a powerful position. That is, because the
P-CA generates the AIK credentials, and it also sees all the platform credentials
when it does so, a P-CA can link together all the pseudonyms of a particular
platform, and hence breach anonymity for that platform.

As a result, v1.2 of the TCG specifications incorporates a new system that
allows for trusted platform anonymity/pseudonymity without replying on a third
party to keep links between pseudonyms secret. That is, it incorporates a means
for an entity to obtain AIK credentials without revealing its ‘identity’ to the
third party generating these credentials. This new technique, known as Direct
Anonymous Attestation (DAA), is due to Brickell, Camenisch and Chen [63–65].

DAA essentially divided the process of obtaining AIK credentials into two
phases. In the first phase, a platform obtains a DAA certificate from a third party,
to which it shows all its credentials. This DAA certificate can then be used to
obtain AIK credentials, in such a way that the issuer of the credentials does
not actually get to see the DAA certificate, but just receives evidence that the
platform possesses such an object. In this way, even the entity which generates
the DAA certificate cannot link together two or more AIK public keys belonging
to the same platform.

Whilst we do not describe the process here (it is, in fact, highly complex) it is
important to note that it also possesses a number of other interesting properties.
For example, the scheme can be used in such a way that the degree of unlinka-
bility is ‘tunable’; this allows the possibility of blacklisting (revoking) credentials
for platforms which have been compromised.

6.4 Isolated Execution Environments

An isolated execution environment, independent of how it is implemented, should
provide the following services to hosted software [22]:

– protection of the software from external interference;
– observation of the computations and data of a program running within an

isolated environment only via controlled inter-process communication;
– secure communication between programs running in independent execution

environments; and
– a trusted channel between an input/output device and a program running

in an isolated environment.

7 Trusted Mobile Platforms

7.1 The Development of Trusted Mobile Platforms

Whilst trusted computing technology is already becoming commonplace in new
PCs, at least as far as the inclusion of TPMs is concerned, the situation is not
so advanced for other types of platform. In particular, whilst many potential



applications for the technology can be identified for mobile devices (e.g. PDAs,
smart phones, etc.), the inclusion of TPMs in such platforms has yet to occur.

Indeed, for a variety of reasons, including cost and complexity, it would ap-
pear that trusted computing technology may be implemented in rather different
ways in mobile devices. In particular, it would appear that such devices may
not include an identifiable separate TPM, but instead the functionality of the
TPM could be implemented using a combination of trusted hardware function-
ality built into a mobile platform and software. How this might be achieved will
probably vary widely from manufacturer to manufacturer.

The functionality that must be provided by such a device is in the process of
being standardised. This is the role of the TCG Mobile Phone Working Group
(MPWG), discussed immediately below.

7.2 The MPWG Activity

The TCG has always had the mission of providing specifications for any type of
device that connects to a network. However, the initial standardisation work cen-
tred around the specification of the TPM and a standard set of APIs which pro-
vide an abstraction of the TPM to software developers/vendors. More recently,
the baseline TCG specification set has been expanded by platform-specific work-
ing groups to include specifications describing specific platform implementations
for PC clients, servers, peripherals and storage systems.

One such working group is the TCG MPWG, the main challenge for which
is to determine the ‘roots of trust’, see section 5, required within a trusted
mobile phone. In order to identify the capabilities required of a trusted mobile
phone, a number of use cases, whose secure implementation may be aided by
the application of trusted platform functionality, have been identified by the
MPWG. Among these use cases are SIMLock, device authentication, mobile
ticketing, mobile payment and robust DRM implementation [66]. As stated by
the MPWG [66], the use cases lay a foundation for the ways in which:

– the MPWG derives requirements that address situations described in the use
cases;

– the MPWG specifies an architecture based on the TCG architecture that
meet these requirements; and

– the MPWG specifies the functions and interfaces that meet the requirements
in the specified architecture.

The MPWG has recently published the TCG Mobile Trusted Module (MTM)
Specification [67]. It is assumed that a mobile platform will typically contain
multiple MTMs to support multiple mobile device stakeholders. It is envisaged
that each MTM will provide a subset of the TPM v1.2 functionality. Some MTMs
may also contain additional functionality to ensure that parts of the device boot
into a preset state (i.e. secure boot functionality) [68]. More specifically, two
types of MTM have been defined.

A Mobile Local-owner Trusted Module (MLTM) supports uses (or a subset of
uses) similar to those of existing v1.2 TPMs (controlled by an entity with physical



access to the platform). Some TPM v1.2 functionality may not be supported
because of the restrictions inherent in today’s phone technologies [68]. The use
cases described by the TCG in [66] have been analysed, along the lines of the
analyses given in [69], in order to determine the subset of functionality required
within a MTM to enable their secure implementation.

A Mobile Remote-owner Trusted Module (MLTM) also supports a subset of
uses similar to those of existing v1.2 TPMs. It moreover enables a remote entity
(such as the device manufacturer or network operator) to predetermine the state
into which some parts of the phone must boot [68].

7.3 Applications

The applications for trusted mobile phones discussed in the current TCG MPWG
use case document cover:

– the protection of downloaded content and software;
– the protection of user data and identity information, and device identity

information; and
– enabling mobile payment and mobile ticketing.

In this article we focus on three specific use-cases, namely OMA DRM and
software download, which involve the protection of downloaded data, and SIM-
Lock, which requires the protection of device identity information. These use
cases have been chosen because of their commercial and scientific interest.

In the following sections these three use cases are presented. Also given is an
analysis of the trusted computing functionality required of a mobile platform in
order to support a secure and robust implementation of each use case.

8 A Robust Implementation of OMA DRM v2

8.1 Use Case Description

DRM: Current 3G systems are already capable of delivering a wide range of
digital content to subscribers’ mobile telephones, including music, video clips,
ring tones, screen savers or java games. As network access becomes ever more
ubiquitous and media objects become more easily accessible, providers are ex-
posed to increased risks of illegal consumption and use of their content. DRM
facilitates the safe distribution of various forms of digital content in a wide range
of computing environments, and gives assurance to the content providers that
their media objects cannot be illegally accessed.

A Digital Rights Management system is an umbrella term for mechanisms
used to manage the life cycle of digital content of any sort. A DRM agent,
i.e. the DRM functionality of a device responsible for enforcing permissions and
constraints associated with protected content, must be trusted with respect to its
correct behaviour and secure implementation [70]. Stipulation of a trust model,
within which robustness rules are defined, is one method of specifying how secure



a device implementation of a DRM agent must be, and what actions should be
taken against a manufacturer that builds devices that are insufficiently robust
[71].

The OMA: The OMA was founded in June 2002. One of the original objec-
tives of the OMA was to define a DRM specification set for use in a mobile
environment. OMA DRM v1 was published as a candidate specification in Octo-
ber 2002, and was approved as an OMA enabler specification in 2004 [72], after
full interoperability testing had been completed.

Following this, OMA DRM v2 was published as a candidate specification
in July 2004 [73]. OMA DRM v2 builds upon the version 1 specifications to
provide higher security and a more extensive feature set [71]. Devices other than
mobile phones are also supported by OMA DRM v2. The OMA DRM version 2
specification set defines [70]:

– the format and the protection mechanism for protected content;
– the format and the protection mechanism for rights objects;
– the security model for the management of encryption keys; and
– how protected content and rights objects may be transferred to devices using

a range of transport mechanisms.

OMA DRM Functional Architecture: The model under consideration is
taken from [70] and is summarised in figure 5. A user requests a media object
from a content issuer. The requested content, which is packaged in order to
prevent unauthorised access, is then sent to the user’s device. The packaging of
the content may either be completed by the content issuer or by the content
owner, before it is dispatched to the content issuer. The rights object associated
with the requested media object is delivered to the user by the rights issuer. In
practice, this rights issuer may be the same entity as the content issuer.

OMA DRM v1: Version 1 of the OMA specifications [74, 75] represents the
OMA’s initial attempt to define a DRM solution for a mobile environment. Three
main goals were specified for OMA DRM v1 [71]. The solution was required to
be timely and inexpensive to deploy. It was also required to be easy to implement
on mass market mobile devices. Finally, it was required that the initial OMA
DRM solution did not necessitate the roll-out of a costly infrastructure. In the
development of OMA DRM v1 a trade-off was made, so that the objectives listed
above could be met at the expense of certain security requirements.

Three classes of DRM functionality are specified in OMA DRM v1 [74, 75].
The first class of DRM functionality, forward lock, must be supported by an
OMA DRM v1 agent on a device. Provision of combined delivery and separate
delivery, the second and third classes of DRM functionality, is optional.

1. Forward lock prevents unencrypted content being forwarded from the device
to which it was initially delivered. The protected content is wrapped inside a
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DRM message, which indicates to the OMA DRM v1 agent on the receiving
device that the content is not to be forwarded. Protection is dependent on
the OMA DRM v1 agent acting accordingly.

2. Combined delivery involves sending unencrypted content and its associated
rights object together within a DRM message.

3. Separate delivery involves sending encrypted content and the associated
rights object separately. The content is encrypted and sent in a format
known as the DRM Container Format (DCF). Headers, which allow a re-
ceiving device to associate the correct rights object with the corresponding
DCF object, are also contained in the transmitted file. The associated rights
object, which contains the relevant permissions and constraints, and the de-
cryption key for the associated content, is delivered via SMS.

OMA DRM v2: OMA DRM v2 [70, 76] builds upon the OMA DRM v1 spec-
ifications, with the primary objective of providing a more secure DRM solution.
The following security vulnerabilities have been identified in OMA DRM v1 [71].

1. A rights issuer has no way of determining whether the requesting device
supports DRM. When using the forward lock and combined delivery features,
where the content is not encrypted, this particular security vulnerability
enables an attack in which unencrypted content is initially sent to a PC
made to look like a compliant phone. On receipt, content is then extracted
and illegally distributed.



2. In the separate delivery DRM class, where the content is encrypted, the con-
tent encrypting key is not protected. This implies that the attack described
above in step 1 is also possible in this case, although it is more complex and
more difficult to complete successfully [71].

3. The device has no way of authenticating the rights issuer, and therefore may
be sent bogus rights objects from an entity claiming to be the legitimate
rights issuer.

OMA DRM v2 addresses the above security weaknesses by using additional
security mechanisms.

– Both device authentication and rights issuer authentication are provided.
– Mechanisms are deployed in order to protect the confidentiality of media

objects. Content is protected using a Content Encrypting Key (CEK). This
CEK is sent in a rights object encrypted using a Rights Object Encrypting
Key (REK). The REK itself is sent encrypted using the public key of the
device or a pre-established domain key.

– Mechanisms are also deployed so that the OMA DRM v2 agent can determine
whether a media object received from a Rights Issuer (RI) has been modified
in an unauthorised way.

The OMA DRM v2 specifications are no longer mobile device specific, as was
the case with the v1 specifications. It also provides a richer feature set which
includes, most notably, support for [71]:

– the automatic preview of protected content;
– subscription services;
– continuous media such as streaming and progressive download of content;
– reward schemes;
– domains, i.e. collections of devices belonging to a single user. A domain

can be established by a user. When a device joins a domain, the RI sends
a domain key to the device, encrypted using the device’s OMA DRM v2
public key. Following this, content and the associated access rights may be
shared among the devices in the domain. Rights objects must be explicitly
acquired for the domain rather than a specific device. A RI may control the
number of devices allowed in a domain, although the user is entitled to add
and remove devices at will, as long as the limit set by the RI is adhered to.

– unconnected devices, i.e. devices not network connected. This feature is sup-
ported by the implementation of domains. An unconnected device may be
added to a domain, after which content and rights may be copied from a
connected domain device to the unconnected device.

In order to support the additional security mechanisms, and, indeed, the
expanded feature set described above, a dedicated suite of DRM security pro-
tocols, the Rights Object Acquisition Protocol (ROAP) suite, was developed by
the OMA. In addition to the ROAP suite, it was agreed that the OMA DRM
v2 specification set should be supported by a ‘trust model’. Such a trust model



enables an RI to obtain assurances about DRM agent behaviour, and the ro-
bustness of the DRM agent implementation [70]. It is the responsibility of the
Content Management Licensing Administrator for Digital Rights Management
(CMLA DRM), or a similar organisation, to provide a trust model, i.e. robust-
ness rules, and to define actions which may be taken against a manufacturer who
builds devices which are not sufficiently robust.

The OMA DRM v2 Security-Critical Data: In order to use the ROAP
suite, OMA DRM agents must be equipped with the necessary security-critical
data.

Every OMA DRM v2 agent is assigned a unique key pair [70]. The private
key from this key pair is used by an OMA DRM v2 agent to generate digital
signatures, so that a rights issuer can authenticate a particular DRM agent. The
public key from this pair is used by rights issuers in order to distribute rights
object encryption keys, which are used to protect content encryption keys, that
are themselves used to encrypt content.

A certificate, which identifies the DRM agent and binds the agent to the
public key described above, is also provided to the DRM agent. The OMA DRM
v2 certificate can be specified as part of one or more certificate chains. If so, the
OMA DRM v2 certificate comes first in a chain, and each subsequent certificate
contains the public key necessary to verify the certificate preceding it [73]. When
the rights issuer with whom the OMA DRM v2 agent is communicating, indicates
its preferred trust anchor(s), i.e. its trusted root CA(s), the OMA DRM v2
agent must select and send back a device certificate (chain) which points to
an appropriate anchor [73], so that the RI can verify the OMA DRM v2 agent
certificate.

The device details indicate the device manufacturer, model, and version num-
ber. Finally, the trusted RI authorities certificate is used to indicate which rights
issuer trust anchor(s) are recognised by the OMA DRM v2 agent. This trusted
RI authorities certificate may either be a single root certificate, as is the case
in the CMLA trust model [77] where the trusted RI authorities certificate is a
self-signed CMLA root CA certificate, or a collection of self-signed public key
certificates representing the preferred trust anchors of the OMA DRM v2 agent.

The ROAP Suite: This dedicated suite of DRM security protocols was devel-
oped by the OMA to enhance the security of the DRM process and the func-
tionality of the OMA DRM agent. The ROAP suite consists of five protocols.

The 4-pass registration protocol is defined by the OMA as a “complete se-
curity information exchange and handshake between the RI and a DRM agent
in a device” [76]. The protocol enables the negotiation of protocol parameters
including protocol version, cryptographic algorithms, certificate preferences, op-
tional exchange of certificates, mutual authentication of the mobile device and
RI, integrity protection of protocol messages, and optional device DRM time
synchronisation [76]. In this protocol, two messages are sent from the device to
the RI, namely the device hello and the registration request, and two messages



are sent from the RI to the device, namely the RI hello and the registration
response. There are three occasions when the 4-pass registration protocol can be
used [76]:

– on first contact between the RI and a mobile device;
– when security information needs to be updated; and
– when the device time source is deemed to be inaccurate by the RI.

On receipt of the registration request message, and before the registration re-
sponse message is sent, the RI may optionally perform a nonce-based OCSP
request for its own certificate, using the device nonce sent in the registration
request message [76]. An OCSP request may also be performed if the RI deems
the device DRM time source to be inaccurate, or if the device is an unconnected
device which does not support DRM time [76]. The device nonce is used to cryp-
tographically bind an OCSP response to the corresponding OCSP request, to
prevent replay attacks [78].

The 2-pass and 1-pass rights acquisition protocols allow a device to request
and acquire a rights object from a RI.

The 2-pass join domain and leave domain protocols are used to manage do-
mains. Once a domain has been established by a user, and after devices have
been added to the established domain, protected content and associated rights
objects, which have been explicitly created for domain use, may be copied and
moved between domain devices. Therefore, rather than requesting a separate
rights object for each individual device, only one domain RO need be requested.

8.2 The Robustness Rules

In order to comply with the definition of a ‘robust OMA DRM v2 implementa-
tion’, as defined by the CMLA [77], a number of requirements must be met, as
summarised below.

It is required that “an OMA DRM v2 agent can perform self-checking of
the integrity of its component parts so that unauthorised modifications will be
expected to result in a failure of the implementation to provide the authorised
authentication and/or decryption function” [77].

A robust implementation of OMA DRM v2 must confidentiality-protect the
OMA DRM v2 agent private key when loaded into and while stored and used
on the device.

The OMA DRM v2 agent private key and OMA DRM v2 security critical
data such as the OMA DRM v2 agent certificate (chains), the device details and
the trusted RI authorities certificate, must be integrity-protected when loaded
into, while stored on, and while in use on the device. While it is not necessary
to integrity-protect the OMA DRM v2 agent certificate or the OMA DRM v2
agent certificate (chain), as any unauthorised modification will be detected when
the certificate(chain)(s) are verified, the trusted authorities certificate, which is
defined in the CMLA trust model as a self-signed CMLA root CA certificate,
needs to be integrity-protected.



Domain context information, communicated by a rights issuer to a mobile
device during a 2-pass join domain protocol, must also be protected:

– the domain ID, the expiry time of the domain context and the rights issuer’s
public key must be integrity-protected while stored and used on the device;
and

– the domain key, used to protect domain rights objects, must be confidential-
ity and integrity-protected while in storage and in use on the device.

Rights issuer context information, established during the 4-pass registration
protocol, such as protocol parameters, protocol version, RI certificate prefer-
ences, agreed RI identification information, RI certificate information and the
context expiry time, must also be integrity-protected.

The secret keys used to protect the integrity and confidentiality of rights
objects must be confidentiality and integrity-protected while in storage and in
use on the device.

All of the elements mentioned above should only be accessible by authorised
entities, namely the correctly functioning OMA DRM v2 agent.

A robust OMA DRM v2 implementation must incorporate a DRM time
source synchronisation mechanism which is reasonably accurate and resistant to
malicious modifications by the end user.

Finally, nonces generated on the OMA DRM v2 device and used in the 4-
pass registration protocol, the 2-pass RO acquisition protocol or the join domain
protocol must be both non-repeating and unpredictable in order to mitigate the
threats of both replay and preplay attacks against the protocol suite.

8.3 A Robust Implementation of OMA DRM using Trusted
Computing

In this section, we consider how trusted computing functionality can be used
to help meet the requirements in the CMLA client adopter agreement [77] and
summarised in section 8.2, thereby enabling a robust implementation of OMA
DRM v2.

While TC functionality cannot guarantee the integrity of the OMA DRM
v2 agent while it is being stored, TC mechanisms can be used to help detect
malicious or accidental modifications or removal. Secure boot functionality can
be used to ensure that a set of security-critical platform components boot into
a predetermined state. Secure boot is not currently enabled by the TCG TPM
main specifications. However, much work on secure boot has been conducted in-
dependently of the TCG, including by Tygar and Yee [51], Clark [52], Arbaugh,
Farber and Smith [50] and Itoi et al. [54]. Each of these papers describe a similar
process, in which the integrity of a pre-defined set of system components is mea-
sured, as described in section 4.2, and these measurements are then compared
against a set of expected measurements which must be securely stored and ac-
cessed by the platform during the boot process. If, at any stage during the boot
process, the removal or modification of a platform component, such as the OMA



DRM v2 agent, is detected, the boot process is aborted. While a secure boot
process is not specified in the TPM specification set, the TCG mobile phone
working group has recently released a specification for a Mobile TPM which
enables a secure boot process [67].

Security-critical data associated with the OMA DRM v2 agent, such as the
device details and the trusted RI authorities certificate, which require integrity
protection while in storage, can also be verified as part of a secure boot process.

Alternatively, sealed storage functionality may be used in order to detect the
malicious or accidental modification or removal of the OMA DRM v2 agent while
in storage, and, indeed, to store data which needs to be confidentiality and/or
integrity-protected. It can also ensure that sensitive data is only accessible by
authorised entities when the mobile device is in a predefined state, for example,
when a legitimate OMA DRM v2 agent is executing in an isolated execution
environment.

The security-critical data and any domain and RI context information to be
protected is first associated with a ‘digest at creation’ and a ‘digest at release’,
and then encrypted by the TPM, as described in section 6.2. While integrity-
protection is not explicitly provided by the TPM, 20 bytes of authorisation data
can be associated with the data to be sealed prior to its encryption, as described
in section 6.2, thereby ensuring that the data is integrity-protected while in
storage. The sealed data is asymmetrically encrypted and the corresponding
private decryption key is securely stored within the TPM, thereby ensuring that
the data is confidentiality-protected while in storage. The inclusion of the 20
bytes of authorisation data and the digest at release with the sealed data prior
to encryption ensures that only an authorised entity can access the data, and
that access can only take place when the platform is in the required software
state. Finally, sealing the data to a specified platform configuration also ensures
that any unauthorised modification and/or removal of security-critical software
(e.g. the OMA DRM v2 agent) reflected in the digest at release will be detected,
and access to the sealed data denied.

Rather than using the TPM merely to confidentiality and integrity-protect
the OMA DRM v2 private key, the TPM can also be used to generate the
required OMA DRM v2 agent asymmetric key pair as well as to protect the
private key while in storage and in use on the device.

TC functionality also enables the isolation of security-critical software and
data in a secure execution environment so that it cannot be observed and/or
modified in an unauthorised manner by software executing in parallel execution
environments.

A good quality random number generator is provided by a TPM, enabling
the generation of non-repeating unpredictable nonces for use in the ROAP suite
protocols, thereby mitigating replay and preplay attacks. The TPM may also be
used to provide accurate time source synchronisation, as described in [15].



9 SIMLock

9.1 Use Case Description

Mobile device personalisation, or SIMLocking, is the process by which the device
can be constrained to operate only with certain (U)SIMs. In earlier discussions
of the GSM and DCS1800 technical specifications, the fundamental property of
SIM mobility was praised as highly advantageous [79]. Over the years, however,
the disadvantages associated with SIM mobility have also become apparent.
Phone operators, for example, who subsidise the cost of mobile equipment, with
the intention of recovering this initial loss from future profits from network
or service subscriptions, may suffer a loss if mobile device users can, without
authorisation from their current operator, move their phone to another network
before the original subscription contract has been upheld. SIM mobility may also
encourage handset theft for re-use or re-sale. These issues have led to the need
for SIMLock functionality.

SIMLock has five personalisation categories:

– Network, where a network operator personalises a mobile device so that it
can only be used with (U)SIMs from that particular network operator;

– Network subset, where a network operator personalises a mobile device so
that it can only be used with a subset of (U)SIMs from that particular
network operator;

– Service provider, where a service provider personalises a mobile device so
that it can only be used with (U)SIMs from that particular service provider;

– Corporate, where a corporate customer personalises an employee’s or cus-
tomer’s mobile device so that it can only be used with (U)SIMs belonging
to that particular company; and

– SIM/USIM, where an end user personalises a mobile device so that it can
only be used with a particular (U)SIM.

SIMLock Security-Critical Data: A personalisation indicator and a person-
alisation code or code group are associated with each personalisation category.

– A personalisation indicator is used to show whether a particular personali-
sation category is active (set to ‘on’) or deactivated (set to ‘off’). Each cat-
egory has an independent personalisation indicator. If an indicator is active
it shows that the SIM has been locked to a network(s), network subset(s),
service provider(s), corporate entity/entities or SIM/(U)SIM(s).

– A personalisation code or code group is used to personalise a device to a par-
ticular entity. An independent personalisation code or code group is defined
for each category — see [80].

SIMLock-Related Processes: In order to personalise a device the required
personalisation code or code group must be entered into the device and the



appropriate personalisation indicator set to ‘on’. The relevant control key, used
for device de-personalisation, must be also be stored within the device.

When a (U)SIM is inserted into the device, or when the device is powered
on, the mobile device checks which personalisation indicators are set to ‘on’. The
personalisation agent reads the (U)SIM, and extracts the required code(s)/code
group(s). The code(s)/code group(s) are then verified against the list of values
stored on the mobile device. The mobile device then responds accordingly, dis-
playing a message of success or failure to the device user. Should this checking
process fail, the device enters ‘limited service state’ in which only emergency
calls can be made [80]. This process is shown in figure 6.

Fig. 6. SIMLock

In order to de-personalise a device, the control key for the particular person-
alisation category must first be entered into the device. This is then compared
against the control key stored by the device. If the entered control key matches
the stored value, then the personalisation indicator for the category in question
is set to ‘off’.

9.2 Threat Analysis

The fundamental threats to the SIMLock process include the following:

– Unauthorised modification or removal of the device personalisation agent
software while in storage on or while executing on the device.

– Unauthorised reading/copying of a control key while in storage or in use on
the device.



– Unauthorised modification or deletion of a personalisation code/code group,
control key or personalisation indicator while in storage or in use on the
device.

9.3 Secure SIMLock using Trusted Computing

The unauthorised modification or removal of the device personalisation agent
cannot be prevented using trusted computing technology. However, while the
software is in storage, secure boot functionality can be deployed so that, at
start-up, a measurement of the device personalisation agent software is verified
against an expected value. This enables any unauthorised modification and/or
removal to be detected. That security critical data requiring integrity protection,
such as network, network subset, corporate and service provider codes or code
groups and indicators, can also be incorporated into the secure boot process. TC
isolation mechanisms can be used to ensure the integrity of the personalisation
agent, and that any security-critical data is protected while in use on the device.

Alternatively, personalisation code/code groups, personalisation indicators
and control keys could simply be sealed to an isolated execution environment
which hosts a device personalisation agent. In this way, security-critical data can
be both integrity and confidentiality-protected while in storage. If the personal-
isation agent, and/or the supporting environment to which the data is sealed,
is modified, then the security-critical data will be inaccessible. While sealing
ensures that data is released into a predefined execution environment, isolation
technologies are necessary to ensure that both the device personalisation agent
and the security related data remain confidentiality and integrity-protected while
in use on the platform.

10 Software Download

10.1 Use Case Description

Two distinct types of software can be downloaded to a mobile device, namely
application software (e.g. games) and core software (e.g. operating system soft-
ware/updates/patches) [81]. For the purpose of this use case, we will focus on the
secure download of core software, including updates or patches to the device’s
native OS, such as DRM agents or browsers, or firmware updates or patches.
Core software download enables efficient device management, and can also be
used to support applications such as Software Defined Radio (SDR) and Digital
Video Broadcast (DVB) in a mobile environment.

Device Management: Core software not only enhances device management,
but can also be used to enhance the end user experience. As devices become
more complex, it is increasingly likely that they have to be recalled because of
core software bugs [82]. The ability to download core software, however, enables
more efficient bug fixing. It is also desirable that users are able to upgrade core



software on their devices, e.g. to give added functionality or enhanced security
or performance [82]. As devices become more open, it is also likely that users
will wish to extend the capabilities of their devices through the addition of new
software, including, for example, device drivers.

SDR: A software defined radio is a communications device “whose operational
modes and parameters can be changed or augmented, post manufacturing via
software” [83]. This implies that the device can be reconfigured to communicate
using multiple frequency bands and protocols, or upgraded in a low cost and
efficient manner. Software defined radio is an important innovation for the com-
munications industry, providing many advantages over purely hardware-based
wireless networking infrastructures and terminals. Importantly, cost reductions
may result from the deployment of a generic hardware platform which can be cus-
tomised using software [81]. The value of terminals is increased as public/private
sector radio system sharing becomes possible, and as terminals can be upgraded
to comply with evolving communications standards.

SDR also enables operation and maintenance cost reductions, as bugs can be
fixed by software download rather than terminal recall. Re-configurable radios
can also be adapted to meet evolving user and/or operator preferences. A ter-
minal can moreover be reconfigured to efficiently cope with changing network
conditions such as utilization, interference or radio channel quality, thereby of-
fering an enhanced user experience [82]. Efficient roaming is also enabled, as air
interface and frequency bands can be reconfigured as required.

However, while there are many advantages associated with the introduction
of SDR terminals, there are also some significant security and safety issues. If
SDR is to be accepted, then the security threats introduced by reconfigurable
terminals and core software download must be analysed, and measures taken to
mitigate these threats.

DVB: It is expected that the next generation of mobile communications systems
will be able to interwork with broadcast networks to provide wireless access to
video content from a wide range of mobile devices [84]. For a service like this
to achieve its full commercial potential, the owners of the content will require
assurance that their material is not illegally accessed. Current broadcast systems
accomplish this by using conditional access systems to ensure that only bona fide
subscribers have access to the content. The DVB organisation has developed
several standards defining a common interface to conditional access systems
at both the transmission site and at the receiver, while allowing the systems
themselves to remain proprietary [85–87].

Services broadcast today are protected by a range of proprietary access con-
trol systems. The DVB common interface solution requires receiving devices to
have a pc-card interface and the user to possess a number of modules, each of
which implements a different conditional access system. The cost of adding such
an interface to a small mobile device, as well as the practical design issues, could



make this an infeasible solution for the mobile environment. The cost of the mod-
ules may also deter some subscribers. The alternative solution, Simulcrypt, in-
volves broadcasting each service under the control of as many conditional access
systems as possible; this is likely to prove prohibitively complex and expensive
for many broadcasters, especially small ‘niche’ providers. Both current solutions
therefore have potential difficulties when applied in a mobile environment, which
is likely to significantly restrict the content available to mobile receivers.

In order to overcome these limitations, the mobile platform could be re-
configured to be compatible with the appropriate conditional access system, if
the proprietary system is implemented entirely in software. Such software could
be delivered to the mobile device on demand. Of course, such a solution presents
major security challenges.

Core Software Download — State of the Art: The model under consid-
eration is illustrated in figure 7, and involves three parties: the user, a mobile
device, and the software provider.

Fig. 7. Core software download model

Core software download, as defined by the OMA Device Management Work-
ing Group (DMWG) [82], consists of five stages, as shown in figure 8.

1. Core software download initiation. The software download process may be
either network initiated or user initiated. The software provider may initiate
a data connection with a device in order to:
– request an inventory of the core software installed on the device so that

the necessary software can be updated/patched/installed; or
– inform the user of available upgrades and/or additional core software.

Alternatively, a user may initiate a data connection with a software provider
in order to request additional software over the default configuration. This



initiation results in an open data connection between the device and the
software provider.

2. Device information exchange enables a device to inform the software provider
about its current configuration. In this way the software provider can ensure
that the appropriate software/updates/patches are delivered to the device.
This exchange may require user authorisation.

3. Core software download is the process by which the core software is down-
loaded from the software provider to the mobile device.

4. Core software installation is the method by which the software download is
processed on the device.

5. Finally, the software provider and/or the end user may be notified of the
result of the download.

Fig. 8. Core software download

Two mechanisms have been proposed to secure non-application software
download. We now briefly review these two approaches.

Firstly, the software provider could digitally sign the core software before it
is downloaded to the device, thereby providing software origin authentication
and software integrity protection (so that any unauthorised modification to, or
addition of, incoming software can be detected by the mobile device) [81]. On
receipt of the software, the digital signature of the software provider must be



verified by the mobile device. Depending on the outcome of this check and the
policy of the mobile device, the software is either executed or discarded. This
approach, as described in [81], is, however, susceptible to a replay attack. The
mobile device has no way to determine whether the incoming signed software is
fresh. An attacker could therefore replay an older version of the software, which
will then be installed on the device.

It has therefore been recommended [81] that, in order to mitigate the risk
of a replay attack against downloaded software, either timestamps or nonces
should used so that freshness of the software can be checked. Either the mobile
device generates and transmits a nonce to the software provider, which is then
concatenated with the download, digitally signed by the software provider, and
returned to the mobile device, or the download is concatenated with a timestamp,
digitally signed by the software provider, and delivered to the mobile device. On
receipt of the software, the digital signature of the software provider and the
freshness mechanism must be verified by the mobile device. Depending on the
outcome of the checks and the policy of the mobile device, the software is then
either executed/installed or discarded.

A second approach to securing non-application software download is the use
of HTTPS, i.e. HTTP carried over one of the following protocols: Transport
Layer Security 1.0 (TLS 1.0); Secure Sockets Layer v3 (SSL v3); or Wireless
Transport Layer Security (WTLS).

SSL, TLS and WTLS involve two protocol layers. The record protocol takes
messages to be transmitted, optionally compresses the data, computes a Message
Authentication Code (MAC), encrypts, and then transmits the result [88]. Re-
ceived data is decrypted, the MAC verified, decompressed and passed to higher
level clients such as HTTP for processing. The record protocol has been designed
to provide: software origin authentication; confidentiality and integrity protec-
tion; and freshness, so that the replay of messages can be detected by the mobile
device.

The second layer of protocols, the record protocol clients, includes the hand-
shake protocol, the change cipher suite protocol and the alert protocol. The hand-
shake protocol enables a client and a server to authenticate each other and to
negotiate the security parameters for a client/server session, i.e. an association
between a client and a server [89]. Sessions are used so that the expensive pro-
cess of security parameter negotiation does not have to be completed for each
connection between the client and the server [89]. Security parameters include: a
session identifier, peer certificate, compression method, cipher suite and a mas-
ter secret. The cipher suite specifies the MAC and encryption algorithms which
will be used to protect data transmitted in an SSL/TLS/WTLS record. The
handshake protocol also enables the agreement of a pre-master secret which is
used by both the client and the server in order to generate a master secret for an
SSL/TLS/WTLS session. This shared master secret is in turn used by the client
and the server in order to generate shared MAC and encryption keys for each
SSL/TLS/WTLS connection (i.e. a transient peer to peer relationship between
a client and a server [89]).



The change cipher suite protocol consists of only one message. This message
is sent either by the client or the server at the end of the handshake protocol to
notify the other party that the newly negotiated ciphersuite and master secret
will be utilised in the protection of all subsequent records. The alert protocol is
used to convey alerts to the peer entity [89].

10.2 Threat Analysis

The threats which impact upon a reconfigurable mobile device can divided into:

– those which impinge on the security of the downloaded reconfiguration soft-
ware; and

– those which impinge on host security.

The fundamental threat to the security of the downloaded reconfiguration
software is unauthorised reading of software while in transit between the software
provider and the end host, or while in storage or executing on the end host.
This threat could result in an infringement of the intellectual property rights
associated with the downloaded reconfiguration software. It might also result in
unauthorised access to, and execution of, software.

Fundamental threats to end host security include:

– malicious or accidental modification or removal of security-critical software
and data when incorporated into, while in storage on, or when executing on,
the end host;

– the download of inappropriate reconfiguration software which does not meet
the capability requirements of the mobile device; and

– malicious or accidental modification, addition or removal of downloaded soft-
ware in development, in transit or while in storage or executing on the end
host.

As a result of these threats, a device might be rendered inoperable (a denial
of service attack), or user applications and/or data could be compromised by
malicious software.

More specifically, in the case of SDR these threats could result in the follow-
ing.

– An inoperable device. If, for example, a device used software modulation, an
improper change of the modulation format could render it inoperable [90].

– Violation of Radio Frequency (RF) spectrum rights. This could, for example,
result in RF interference. If a device can be programmed to transmit on a
frequency for which it is not authorised, signals from nodes which are autho-
rised to use this frequency might be jammed [90]. Also, spurious emissions
resulting from unauthorised radio spectrum use could violate user safety [91].

– Increased output power. If, for example, a device operated at maximum
power, its performance may be increased at the expense of other users in
the communications network [90]. This in turn may force other users to
use increased power. As a result, the device battery life would be severely
shortened; moreover, if the radiated power is sufficiently high, user safety
may also be put at risk [91].



10.3 Secure Software Download using Trusted Computing

We now investigate some of the ways in which trusted computing functionality
can be used to address the threats outlined above or, failing that, to limit the
level to which a threat may be exploited.

Protecting the Reconfiguration Software: TC mechanisms can be used to
confidentiality-protect the reconfiguration software while in transit between the
software provider and the end host, while in storage or executing on the end host,
and to ensure that only the intended recipient device can access the software.
For example, a software download protocol which exploits trusted computing
functionality is described in [35, 92]. This protocol builds upon sealed storage,
platform attestation, and isolation techniques. This protocol is now summarised.

Before the required reconfiguration software can be downloaded to a TP, the
TPM is used to generate an asymmetric key pair. This key pair is bound to a
set of integrity metrics, so that the private key can only be used by the TPM
on which it was generated, and only when the platform is in the specified state.
The public key from this pair, and the integrity metrics with which its private
key are associated, are then certified by the TPM using a TP AIK, as described
in section 6.3, so that the state to which the private key is bound can be shown
to the software provider. The certified public key and the corresponding AIK
credential are then sent to the software provider.

On receipt of the certified key and the AIK credential, the software provider
verifies the TP’s AIK credential and the signature of the TPM on the public key
and the associated integrity metrics. If these two elements can be verified, and
if the software provider considers the platform software state to which the key
is bound to be trustworthy, the provider computes a MAC on and encrypts the
reconfiguration software, encrypts the secret MACing and encryption keys using
the public key received from the TP, signs the encrypted keys using its private
signature key, and transmits this data to the TP. The secret keys received by the
TP, and therefore the reconfiguration software, can only be accessed when the
TP is in the state deemed trustworthy by the software provider. The software
provider may require that the integrity metrics to which the private key is bound,
represent an isolated execution environment executing on a specified isolation
layer, which is turn is supported by a TP which incorporates hardware extensions
that enable efficient and secure isolation, as described in section 6.4.

The confidentiality of the reconfiguration software can thus be protected
while it is in transit between the software provider and the TP, in storage, and
executing on the device. The software provider is also given assurance that only
a specified TP in a particular state can access the software.

Alternatively, if a more traditional mechanism such as SSL/TLS/WTLS is
used in order to secure the download of the reconfiguration software, TC func-
tionality can be used in order to ‘harden’ the SSL/TLS/WTLS implementation.
In this case, prior to the completion of any SSL/TLS/WTLS protocol, the TPM
is used in order to generate the client-side (the mobile device) asymmetric key
pair for authentication, which is bound to a set of integrity metrics so that the



private key can only be utilised by the TPM on which it was generated, and
only when the platform is in the required state. This key is then certified using
a TP AIK. Evidence that this SSL/TLS/WTLS key pair has been generated on,
and certified by, a TPM is then provided by a Certification Authority (CA) in
an extension of the mobile device’s X.509 SSL/TLS/WTLS certificate.

During an SSL/TLS/WTLS protocol run between a software provider and
the mobile device, the information provided in the extension of the mobile de-
vice’s X.509 SSL/TLS/WTLS public key certificate enables a software provider
to trust that the mobile device’s private SSL/TLS/WTLS key is held within a
TPM, and that the key can only be used when the platform is in a particular
state. As above, the software provider may require that the integrity metrics
to which the private key is bound, represent an isolated execution environment
into which the software will be downloaded and executed. This hardened im-
plementation of SSL/TLS/WTLSS gives the software provider assurance that
the mobile device’s SSL/TLS/WTLS private key is stored securely and cannot
been stolen. Evidence of the device’s ability to provide an isolated execution en-
vironment for the downloaded software can also be demonstrated. This process
is described in [93].

Protecting the Host’s Security-Critical Software: While the integrity of
security-critical software while in storage cannot be ensured using TC function-
ality, TC mechanisms can be used to help detect its malicious or accidental
modification or removal, through the deployment of secure boot functionality.
Security-critical data, such as device private keys, the public key certificate store
and the core software download policy, can also be verified during a secure boot
process.

Alternatively, sealed storage functionality can be used to ensure that security-
critical data is stored in encrypted form and only accessible when the mobile
platform is in a predefined state. As described above, the TPM can also be used
to generate asymmetric key pairs, as well as protect any private keys while in
storage and in use on the device.

TC functionality also enables the isolation of security-critical software and
data in a secure execution environment so that it cannot be observed or modified
when in use by software executing in parallel insecure execution environments.

Protecting the Host from Reconfiguration Software: A capability ex-
change could be performed by the network and the mobile device prior to soft-
ware download, to ensure that the appropriate software entities and parameter
sets are selected for a particular mobile device. The use of platform attestation,
as described in section 6.3, could be used to ensure that the reports sent by the
device are accurate.

TC cannot prevent denial of service attacks resulting from the removal/deletion
of the downloaded reconfiguration software, either in development, or in transit
between the software provider and the host or in storage on the host. However,
standard cryptographic mechanisms, such as digital signatures and/or MACs,



can be used in combination with freshness mechanisms to mitigate these threats.
TC functionality can be used to make such mechanisms more robust. A good
quality random number generator is provided by a TPM, thereby enabling the
generation of non-repeating unpredictable nonces which may then be sent to a
software provider and returned from to a trusted mobile platform in conjunc-
tion with the requested software, thereby mitigating replay and preplay attacks
against the exchange. If timestamps are used in order to guarantee the freshness
of the downloaded software, the TPM could be used to provide an accurate and
trusted time source, as described in [15].

In the advent of malicious or buggy software being downloaded to and exe-
cuted on a device, there are a number of ways in which TC can lessen the impact
of this threat. If the downloaded software is isolated in its own execution environ-
ment, as described in section 6.4, then any malicious behaviour can be controlled
and its effects limited. If sealed storage is used to protect private user data (e.g.,
credit card numbers), then the impact of malicious software is lessened, as it
cannot gain access to security sensitive data which has been protected. On con-
nection/reconnection to a service provider, a trusted mobile platform could be
required to attest to its state so that a decision can be made as to whether the
device should be considered trusted for a particular purpose.

11 Conclusions

In this article we have reviewed the main functional components of a trusted
platform. We have also considered why such functionality is necessary, and how
the technology might be used. We have then considered possible applications
of this technology to mobile devices, and have considered in detail three spe-
cific applications. In each case we have discussed how the security functionality
necessary for the application could be supported using the trusted computing
capabilities.
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