Special orientable sequences

Chris J. Mitchell and Peter R. Wild
Information Security Group, Royal Holloway, University of London, UK
me@chrismitchell.net;  peterrwild@gmail.com

17th January 2026

Abstract

Analogously to de Bruijn sequences, orientable sequences have ap-
plication in automatic position-location applications and, until recently,
studies of these sequences focused on the binary case. In recent work
by Alhakim et al., recursive methods of construction were described for
orientable sequences over arbitrary finite alphabets, requiring ‘starter
sequences’ with special properties. Some of these methods required
as input special orientable sequences, i.e. orientable sequences which
were simultaneously negative orientable. We exhibit methods for con-
structing special orientable sequences with properties appropriate for
use in two of the recursive methods of Alhakim et al. As a result we
are able to show how to construct special orientable sequences for ar-
bitrary sizes of alphabet (larger than a small lower bound) and for all
window sizes. These sequences have periods asymptotic to the optimal
as the alphabet size increases.

1 Introduction

Orientable sequences, i.e. periodic sequences with elements drawn from a
finite alphabet with the property that any subsequence of n consecutive
elements (an n-tuple) occurs at most once in either direction, were intro-
duced in 1992 [3| [4]. They are of interest due to their application in certain
position-resolution scenarios. For the binary case, a construction and an
upper bound on the period were established by Dai et al. [4], and further
constructions were established by Gabri¢ and Sawada [6] and Mitchell and
Wild [§]. A bound on the period and methods of construction for g-ary
alphabet sequences (for arbitrary g) were given by Alhakim et al. [2].

In this paper we examine a particular class of orientable sequences known
as special orientable sequences; such sequences were defined by Alhakim
et al. [2], who described a series of recursive constructions for orientable
sequences using special orientable sequences as input. We give a bound on
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the length of special orientable sequences and describe various methods of
construction. We then show how certain of the constructed sequences can
be used to obtain orientable sequences using methods defined in [2].

1.1 Basic terminology

We first establish some simple notation, following [2]. For mathematical
convenience we consider the elements of a sequence to be elements of Z, for
an arbitrary integer g > 1.

For a sequence S = (s;) we write s,,(7) = (8i, Sit1,- -, Sitn—1). Since we
are interested in tuples occurring either forwards or backwards in a se-
quence we also introduce the notion of a reversed tuple, so that if u =

(ug,ut,...,upn—1) is a g-ary n-tuple (a string of symbols of length n) then
u? = (up_1,Up_2,...,up) is its reverse. The negative of a g-ary n-tuple
u = (ug, Ui, ..., u,—1) is the n-tuple —u = (—ug, —u1, ..., —Up_1).

We can then give the following.

Definition 1.1 ([2]). A g-ary n-window sequence S = (s;) is a periodic
sequence of elements from Z, (¢ > 1, n > 1) with the property that no
n-tuple appears more than once in a period of the sequence, i.e. with the
property that if s, (i) = s,(j) for some i, j, then i = j (mod m) where m is
the period of the sequence.

Definition 1.2 ([2]). An n-window sequence S = (s;) is said to be an
orientable sequence of order n (an OS,(n)) if s, (i) # s,,(§)%, for any i, j.

We also need two related definitions.

Definition 1.3 (J2]). An n-window sequence S = (s;) is said to be a negative
orientable sequence of order n (a NOSq(n)) if s, (i) # —s,(), for any i, j.

Definition 1.4 ([2]). An orientable sequence S = (s;) of order n is said
to be a special orientable sequence of order n (a SOSy(n)) if, for any 1,7,
s, (i) # —sn (), i.e. it is also negative orientable.

As discussed in Alhalkim at al. [2], it turns out that negative and special
orientable sequences are of importance in constructing orientable sequences.
Observe that a sequence is orientable if and only if it is negative orientable
for the case ¢ = 2. Also note that if S = (s;) is orientable, negative orientable
or special orientable then so is its negative (—s;).

Bounds on the period of, and methods of construction for, negative ori-
entable sequences were given by Mitchell and Wild [9]; they also showed
how to use the constructed negative orientable sequences to construct fam-
ilies of orientable sequences employing two approaches defined in [2]. By
contrast, in this paper we focus on special orientable sequences, giving a
period bound and methods of construction.



1.2 The de Bruijn graph and the Lempel Homomorphism

Following Alhakim et al. [2] we also introduce the de Bruijn graph. For
positive integers n and g greater than one, let Zj be the set of all g™ vectors
of length n with entries from the group Z, of residues modulo ¢q. A de Bruijn
sequence of order n with alphabet in Z, is a periodic sequence that includes
every possible n-tuple precisely once as a subsequence of consecutive symbols
in one period of the sequence.

The order n de Bruijn digraph, By(g), is a directed graph with Z as its
vertex set and where, for any two vectors x = (z1,22,...,2,) and y =
(y1,92,---,Yn), (x;y) is an edge if and only if y; = x;4; for every i (1 <
i < n). We then say that x is a predecessor of y and y is a successor
of x. Evidently, every vertex has exactly ¢ successors and g predecessors.
Furthermore, two vertices are said to be conjugates if they have the same
set of successors.

A cycle in By, (q) is a path that starts and ends at the same vertex. It is said
to be wvertex disjoint if it does not visit any vertex more than once. Two
cycles or two paths in the digraph are vertex-disjoint if they do not have a
common vertex. This terminology departs somewhat from standard graph
theoretic terminology where the term closed path is typically used for what
we call a cycle, and cycle is used where we use vertex-disjoint cycle.

Following the notation of Lempel [7], a convenient representation of a vertex
disjoint cycle (x(1);...;xW) is the ring sequence [z, .., z'] of symbols from
Zg4 defined such that the ith vertex in the cycle starts with the symbol z'.
Corresponding to the ring sequence [xl, .. ,:El] is an n-window sequence
S = (s;) where s;14 = ;41 for i = 0,...,l —1 and t > 0. Conversely, an
n-window sequence determines a ring sequence of a vertex disjoint cycle. A
translate of a word x = (x1,...,x,) isaword x + A= (x1 + A,..., 2, + A)
where A is any nonzero element in Z, and addition is performed in Z,. We
also define a translate of a cycle as the cycle obtained by a translate of the

ring sequence that defines this cycle.

Finally, we need a well-established generalisation of the Lempel graph ho-
momorphism [7] to non-binary alphabets — see, for example, Alhakim and
Akinwande [I] (in fact we use a simplified version of their definition).

Definition 1.5. Define a function D from B,(q) to B,_1(q) as follows.
If a = (aj,a2,...,ay), then D(a) = (b1,ba,...,b,—1), where b; = a;11 —
a; mod g fori=1ton— 1.

We extend the notation to allow the Lempel morphism D to be applied to
periodic sequences in the natural way, as we now describe. That is, D is the
map from the set of periodic sequences to itself defined by

D((si)) = (&) : tj = sj11 — 85



The image of a sequence of period m will clearly have period dividing m.
In the usual way we can define D~! to be the pre-image of D, i.e. if S
is a periodic sequence than D~1(S) is the set of all sequences T" with the
property that D(T) = S.

The weight w(S) of a sequence S is the weight of the ring sequence corre-
sponding to S (that is the sum of the terms sg, ..., s;,—1 treating s; as an
integer in the range [0,¢ — 1]). Similarly we write wq(S) for w(S) mod gq.
The notion of weight is key to the rest of the paper since, when applied to
an n-window sequence of period m and weight coprime to ¢, its pre-image
under D! consists of ¢ sequences of period gm whose ring sequences are
cyclic shifts of each other. This enables us to identify a unique element of
this set to be the inverse, e.g. the one starting with a zero.

1.3 Related work

This paper builds on the work of Alhakim et al. [2], in which recursive
methods of construction for non-binary orientable sequences are described.
Alhakim et al. described a range of methods of recursively generating ori-
entable sequences using sequences with special properties, notably negative
orientable and special orientable sequences. However, general methods for
providing ‘starter’ sequences for these constructions were not provided, and
this paper is aimed at addressing this.

In a recent paper [5], Gabri¢ and Sawada showed how to construct non-
binary orientable sequences of asymptotically maximal period. Their ap-
proach involves applying the inverse Lempel Homomorphism to an orientable
sequence and then demonstrating ways to join together the multiple se-
quences that result. In parallel work, Mitchell and Wild [9] showed how
to construct orientable sequences using a rather different approach, namely
first constructing negative orientable sequences and then applying certain
methods of Alhakim et al. to construct larger period orientable sequences.
This paper follows a similar path, except that we show how to construct spe-
cial orientable sequences, and then use these in other methods of Alhakim
et al. to construct larger period orientable sequences.

2 A simple period bound

By definition it follows automatically that the period of an SOS,(n) is
bounded above by the bounds on the period of an orientable sequence and
that of a negative orientable sequence established in |2, Theorem 4.11] and
[9, Theorem 3.10]. We next give a bound on the period of an SOS,(n)
which is of the same order as these general bounds.



Theorem 2.1. Suppose S is an SOS,(n). Then the period of S is at most:

n

_ q(n+1)/2 _ Qq(nfl)/Q + 9(n+3)/2 _ 9(n+1)/2

n

_ q(n+1)/2 _ q(nfl)/Q +1
2
qn _ 2qn/2 +1
2

q

if ¢ and n are both odd;

if ¢ is odd and n is even;

Proof. First observe that if an n-tuple s satisfies s =s

5 if q is even and n is odd;

q" — 2qn/2 + 9(n+2)/2 _ 9n/2
2

if ¢ and n are both even.

R or s = —s® then it

cannot occur in S since S is both orientable and negative orientable. Hence,
since at most one of s and s can occur in S, the period of S is at most
half the number of g-ary n-tuples s such that s # s and s # —s®. We
examine the four cases separately. Note that the ¢ odd cases are simpler,
since when ¢ is odd there is only one n-tuple satisfying s = —s, namely the
all-zero n-tuple.

e Suppose ¢ and n are both odd. Then there is one n-tuple s with

s = —s = st = —gf; ¢(+1)/2 _ 1 tuples with s = s £ —s = —sft;
¢ 1/2 _ 1 with s = —s® # —s = s’%; and hence there are h with
s, —s, s, —s® all distinct, where h = ¢ — ¢ tD/2 — ¢(»=1/2 L 1 The
bound is h/2, and the result follows.

Suppose g is odd and n is even. Then there is one n-tuple s with
s=—s=slt= sl "2 —1 withs =sf £ —s = —s¥; ¢"/2 — 1 with
s = —s®® £ —s = s®; and hence h = ¢" — 2¢™?% + 1 with s, —s, sf, —sF
all distinct. The bound is h/2, and the result follows.

Suppose ¢ is even and n is odd. Then there are 2(*t1/2 n_tuples s with
s=—s=sl = —sft; N =27 — 20t1)/2 pp_tuples with s = —s # s/t =
—SR; q(n+1)/2 —9(n+1)/2 with s = s £ —s= —SR; 2q(n—1)/2 —9(n+1)/2
with s = —sf # —s = s®; and hence h = ¢" — ¢("t1)/2 — 24(n=1)/2
2(n+3)/2 _on with s, —s, s, —s’? all distinct. The bound is (N + h)/2,
and the result follows.

Suppose ¢ and n are both even. Then there are 2"/ n-tuples s with
s=-—s=slt= —gfiy N =927"_27/2 j_tuples with s = —s £ sft = sk,
g2 — 2?2 with s = sft #£ —s = —sfi; /2 — 2"/2 with s = —sf £
—s = s’ and hence h = ¢" — 2¢"/2 + 2("12)/2 _on with s, —s, s, —sB
all distinct. The bound is (N + h)/2, and the result follows.



3 Constructing special orientable sequences

3.1 A simple construction

We first show how to construct an SOS,(n) with period about one quarter
the bound given by Theorem for every odd ¢ > 5 when n = 2.

Construction 3.1. Let ¢,¢’ be integers with ¢’ > ¢ > 1. For = € Z, we
write z for the non-negative integer in {0,1,...,q — 1} belonging to the
residue class z, and 2’ for the residue class of Z, that contains z. Let
S = [s0,...,5m—1] be an OS4(n). Let S’ = [sg,...,s),_;] be the sequence
over Zg obtained from S in the obvious notational way.

Theorem 3.1. If S is an OSy(n), ¢ > 2g — 1 and S’ is obtained from S
using Construction 3.1, then S" is an SOSy (n).

Proof. First observe that if x is a non-zero term of S’ then —z # y for any
term y of S’

Suppose 0 < 4,5 < m. We need to establish three properties.

e S is an n-window sequence. Suppose s, (i) = s} (j). Then s,(i) =
sn(j) and so i = j (mod m) (i.e. i = j).

e S’ is orientable. Suppose s/, (i) = s*(j). Then s, (i) = s®(j). This is
impossible since S is an OS4(n).

e S’ is negative orientable. Finally, suppose s, (i) = —s/¥(j). Then,
by the observation above, s = s, = --- = s;,,_; = 0 so that
S; = Six1 = -+ = Sitn—1 = 0, contradicting the assumption that S is
an OS,(n).

O

When n = 2, this allows us to give the following.

Corollary 3.2. There exists an SOS,(2) of period about one quarter of the
mazimum period given in Theorem for all g > 5.

Proof. From [9, Lemma 2.2] there exists an OS,(2) with period either g(q —
1)/2 (g odd) or q(qg — 2)/2 (q even) for every ¢ > 3. From Construction
this implies the existence of an SOSy,-1(2) and an SOSy,(2) with period
either ¢(¢ — 1)/2 (g odd) or q(q¢ —2)/2 (q even) for every ¢ > 3. The result
follows, since (by Theorem the maximum period for an SOSy,-1(2) is
(2¢—2)%/2 and the maximum period for an SOS9,(2) is ((2¢—1)%+1)/2. O



3.2 A second construction

We next modify the method given immediately above to double the period
and so enable the construction of special orientable sequences with period
approximately half the maximum when n = 2. We do so by means of a
general result regarding the relationship between a sequence and its negative.

Following Alhakim et al. [2] we make the following definition.

Definition 3.1. Suppose S = (s;) and T = (¢;) are n-window sequences.
They are said to be special-orientable-disjoint (s-disjoint) if:

1. they are n-tuple disjoint, i.e. s, (i) # t,,(j) for any i, j;

2. they are orientable disjoint (o-disjoint), i.e. s,,(i) # t,,(j)% for any i, j;
and

3. they are negative orientable disjoint (n-disjoint), i.e. s, (i) # —t,(j)%
for any i, j.

We can now state the following result.

Theorem 3.3. Suppose S is an SOS,(n) with the property that, for any
n-tuple s, at most one of s and —s is contained in S. Then S and —S are
s-disjoint.

Proof. S and —S are clearly n-tuple disjoint since we assumed that at most
one of s and —s is contained in S for any s. Now s, (i) # —s, () for all
i,j since S is an NOS,(n), and hence S and —S are o-disjoint. Finally,
sn(i) # —(=sn(5)%) = sp(j)f for all 4,5 since S is an OS,(n), and hence S
and —S are n-disjoint. O

Remark 3.1. It follows immediately from Theoremthat if Sisan SOS,(n)
of period m with the property that, for any n-tuple s, at most one of s and
—s is contained in S, and if in addition S and —S share an (n—1)-tuple, then
S and —S can be joined to form an SOS,(n) with period 2m. This follows
since, when concatenating s-disjoint sequences, the only possible problem
arises for n-tuples that ‘cross the join’, and by joining them on a common
n — 1 tuple we can avoid creating any new n-tuples.

Next observe that any sequence S obtained from Construction has the
property that, for any n-tuple s, at most one of s and —s is contained in S.
This immediately motivates the following construction.

Construction 3.2. Let ¢,q¢ be integers with ¢ > 2¢g — 1 > 2. For z €
Zq we write x for the non-negative integer in {0,1,...,¢ — 1} belonging
to the residue class x and 2’ for the residue class of Zg that contains x.



Let S = [s0,51,...,8m—1] be an OS,4(n). Let S’ = [sg,s],...,s,_1] be
the sequence over Zy obtained from S in the obvious notational way. Let
S" = [sg,sY,...,s5,_1] be the periodic sequence whose ring sequence is the
concatenation of the ring sequences of S’ and —S5’.

We next introduce some notation. Let ¢, ¢’ be integers with ¢/ > 2¢g — 1 >
2. As in Construction given x € Zq, we write z for the integer in
{0,1,...,q— 1} belonging to the residue class x, and z’ for the residue class
of Zy that contains x. Similarly, for y € Zy, we write y for the integer in
{0,1,...,¢' — 1} belonging to the residue class y. Let Eq,q/ :Zy — Zy be
the mapping given by E, ,(z) = 2’ for all z € Z,.

Let My o : Zy — Z4 be the mapping given by

x when 0 <y =2z <q—1 (so that 2’ =y),
Myq(y) =40 when ¢ <y<g¢ —gq,and
z when ¢ —qg+1<y<q¢ —1andz=q —y (sothat 2’ = —y).

When ¢ and ¢’ are understood we simply write E and M for E, , and M,
respectively.

Note that it follows immediately from the definitions of £ and M that
M(—y) = M(y) for all y € Zy, in particular M(E(z)) = M(—E(x)) =«
for all x € Z,;. We extend the application of £ and M to n-tuples and
sequences in the natural way, that is by applying them to each term. So, in
Construction S' = E(S) and M(s!(i)) = sn(i), M(s"%(i)) = s®(i) and
M(—s"(i)) = sy,(i) for all 7.

Theorem 3.4. If S is an OS4(n) and S” is obtained from S using Con-
struction then 8" is an SOS y(n) with wy (S") = 0.

Proof. We establish three properties.

e 5" is an n-window sequence. Suppose s, (i) = s](j). Then M(s'(i)) =
M (s!!(4)), that is s, (i) = s,(j) and so i = j (mod m) as S is an n-
window sequence of period m. Since s/'(i +m) = —s!'(i) and s, (i)

cannot have every term equal to 0, we deduce that i = j (mod 2m).

e S" is orientable. Suppose s’ (i) = s!'f(j). Then M (s” (1)) = M (s!'E(j)),
that is s,,(i) = s(j) which is impossible as S is an orientable sequence.

e S is negative orientable. Finally, suppose s/ (i) = —s/f(j). Then
M(s"(i)) = M(—s!'R(j)), that is s, (i) = sf(j) which is impossible as
S is an orientable sequence.

The result follows, observing that wy (S”) = wy (S") + wy (—=5") = wy(S) —
wa(S/) =0. O



The following simple example demonstrates Construction

Example 3.1. First observe that S = [01234 02413] is an OS5(2) (obtained
using Construction 5.3 of [2])|H

If we put ¢ =9, then S’ = [01234 02413] and
S = §'||(—S") = [01234 02413 08765 07536]

(where || denotes sequence concatenation). It follows from Theorem [3.4] that
S” is an SOSy(2).

We can also perform the same construction with ¢’ = 10. In this case
S = §'[|(—S") = [01234 02413 09876 08697]

and S” is an SOS10(2).

Corollary 3.5. There exists an SOS4(2), of period

M=) i =0 (mod 4),
W if ¢=1 (mod 4),
12 i y=2 (mod4),
W if =3 (mod 4),

for all ¢ > 5.

Proof. Suppose ¢ > 5. If ¢ = 0 (mod 4) then £ is even and by [9, Lemma
2.2] there exists an OS¢ (2) with period 2(4 — 2)/2; hence by Theorem

there exists an SOS;(2) of period %.

If ¢ =1 (mod 4) then %L is odd and by [9, Lemma 2.2] there exists an
OS% (2) with period ’7;—1(% —1)/2; hence by Theorem |3.4] there exists an

S05,(2) of period W.

If g =2 (mod 4) then £ is odd and by [9, Lemma 2.2] there exists an 0S4 (2)
with period £(4 —1)/2; hence by Theorem there exists an SOS,(2) of

g 2a—2)
period =5

If ¢ = 3 (mod 4) then % is even and by [9, Lemma 2.2] there exists an
OS% (2) with period ’7;—1(% —2)/2; hence by Theorem |3.4| there exists an
S0OS,(2) of period W_

O

'Here and in other examples the spaces are included simply to make reading easier.



We remark that the period of these Special Orientable Sequences of order 2
is approximately half that of the maximum period given by Theorem

3.3 Extending the construction

We now further modify the previous constructions, doubling the period
again, to enable us to obtain special orientable sequences which have pe-
riod of the same order as the bound of Theorem 2.1l when n = 2.

Construction 3.3. Let ¢,¢ be integers with ¢ > 2¢ > 3. Let S =

(S0, - .., 8m—1] be an OS4(n) and let S" = [s, ..., s.,_;] be the OS,(n) con-
structed as in Construction Let T' = [to,t1,...,tm—1] be the sequence

over Zy such that t; = (=1)""™"1s! for i = 0,...,m — 1 unless s; = 0 in
which case t; = (—1)*"1q.

Lemma 3.6. The sequence T of Construction 3.9 is an SOS,(¢').
Proof. We establish three properties.

e T is an n-window sequence. Suppose t, (i) = t, (7). Then M(t,(i)) =
M (t,,(j)), so that s,(i) = sp(j) since M(q) = M(—¢q) = 0. Hence
i =7 (mod m) as S is an n-window sequence of period m.

e T is orientable. Suppose t,(i) = t(j). Then M(t,(i)) = M(tE(j)),
so that s, (i) = s%(j), which is impossible as S is an orientable se-
quence.

e T is negative orientable. Finally, suppose t,(i) = —tZ(j). Then
M(t,(i)) = M(—tE(j)), that is s,(i) = sZ(j), which is impossible
as S is an orientable sequence.

The result follows. O

An example of Construction [3.3] follows.

Example 3.2. As in Example let S = [01234 02413] be the OS5(2)
obtained using Construction 5.3 of [2].

If we put ¢’ = 10, then, as m = 10, (—=1)™ ! = —1 and
T = [51836 58493].

It follows from Lemma [3.6|that 7" is an SOS10(2).

We next show that we can adjoin —7 to T' to obtain an SOS with twice the
period, just as was the case with S’

10



Construction 3.4. Let ¢q,¢,n be integers with ¢ > 2¢ > 3 and n > 1.
Let S = [so,...,Sm—1] be an OSy(n). Let T = [to,t1,...,tm—1] be as
in Construction Let T be the sequence whose ring sequence is the
concatenation of the ring sequences of 7" and —7T'.

Theorem 3.7. If S is an OSy(n) and T' is obtained from S using Con-
struction then T is an SOSy(n) with wy (T') = 0.

Proof. We establish three properties.

e 1" is an n-window sequence. Suppose t (i) =t (7). Then M(t),(i)) =
M(t],(j)), so that s,(i) = s,(j) since M(q) = M(—q) = 0. Hence
i = j (mod m) as S is an n-window sequence of period m. Since
t, (i +m) = —t] (i) # t],(i), as s,(i) is not the all 0 tuple, we must
have j =i (mod 2m).

e T’ is orientable. Suppose t/,(i) = t,7(j). Then M(t, (1)) = M(t.%(5)),

n

so that s,(i) = sf(j), which is impossible as S is an orientable se-

quence.

o T' is negative orientable. Finally, suppose t/ (i) = —t %(j). Then
M(t),(i)) = M(—t.2(4)), that is s, (i) = s(5), which is impossible as

n
S is an orientable sequence.

The result follows, observing that wy (T") = wy (T) + wy (—T) = wy(T) —
wy (T) = 0. [

We extend our previous example to give an example of Construction

Example 3.3. As in Examples and let S = [01234 02413] be the
OS5(2) obtained using Construction 5.3 of [2].

If we put ¢ = 10, then, as in Example
T = [51836 58493].
We then have that
T' =T||(-T) = [51836 58493 59274 52617].

It follows from Theorem 3.7 that 7" is an SOS1(2).

We complete the extended construction by combining the sequence T” gen-
erated using Construction with the sequence S” generated using Con-
struction

11



Corollary 3.8. Let q,q' be integers with ¢ > 2q +1 > 4. Let S =
(50, - - s8m—1] be an OSy(n) of period m with sp = 0. Let S” be obtained
from S as in Construction and let T' be obtained from S as in Construc-
tion . Then S” and T are s-disjoint.

Proof. We consider three cases.

e Suppose s, (i) = t,,(j). Then M(s!'(i)) = M(t],(j)), so that s,(i) =
sn(j) since M(q) = M(—q) = 0. Hence i = j (mod m) as S is an
n-window sequence of period m. Suppose 0 < i < 2m — 1. Then
for some k with 0 < k < n — 1, we have that SQ’M for ¢ =0,...,k
all lie in {0,1,...,¢ =1} or in {0,—1,...,—(¢ — 1)} and s}, for £ =
kE+1,...,n—T1allliein {0,—1,...,—(¢—1)} orin {0,1,...,(¢— 1)}
respectively while the terms of t/,(j) alternate between the two sets
{1,...,¢} and {—1,..., —q} unless m is even and t} (j) contains ¢, _,

and t, for some a > 1. Since n > 1 and s/, = 0 so that t,,, = +¢

this is not possible. It follows that S" and T’ are n-window disjoint.

e Suppose s/ (i) = t'(j). Then M(sl.(i)) = M(t'E(j)), so that s,(i) =
si(j) since M(q) = M(—q) = 0. Hence i = j (mod m) as S is an ori-
entable sequence of period m. Now a similar argument as above about
where the terms of s” (i) and t//(5) lie shows that the supposition is

impossible and it follows that S” and T" are o-disjoint.

e Finally, suppose s/ (i) = —t/f¥(j). Then M(s(i)) = M(—t/E(j)), so
that s, (i) = sf(j) since M(q) = M(—q) = 0. Hence i = j (mod m)
as S is an orientable sequence of period m. Now a similar argument
as above about where the terms of s (i) and t/7(5) lie shows that the
supposition is impossible and it follows that S” and T” are n-disjoint.

The result follows. O

Corollary 3.9. Suppose q,q',n are integers satisfying ¢ > 2q+1, ¢ > 1
andn > 1. If S is an OS4(n) of period m with sy =0, and S” and T' are
obtained from S using Constructions[3.9 and[3.4), then the ring sequences of
S" and T" may be concatenated to obtain the ring sequence of an SOSy(n)
U of period 4m, where wy (U) = 0.

Proof. As S" and T are s-disjoint SOS,(n) we need only check that the
n-tuples u, (i), i =2m—-n+1,....2m—1land i =4m—n+1,...,4m—1do
not appear as u,(j) for any j #Z i (mod 4m), nor as uf(j) for any j, nor as
—ult(5) for any j. Suppose u, (i), with i € {2m —n+1,...,2m — 1} or with
i€ {dm —n+1,...,4m — 1} equals u,(j) for some j. Then M(u,(i)) =
M(u,(j)) are n-tuples of S so that 7 = i (mod m). We now need only
check that for £ = 1,...n — 1 the four n-tuples u,,_¢, Uy —_r, Uzm—¢, Uam—¢
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are distinct. This follows if the four 2-tuples (tm—1,um), (U2m—1,U2m),
(U3m—1,U3m), (Uam—1, Uam) are distinct. That is (s, _1,0), (=s/,_1,(=1)""1q),
(tm-1,(—1)"q), (—tm—1,0) are distinct. This is easily checked, knowing
that t,,—1 = (=1)>""2 | —s! 4 unless s/, _; = 0 in which case
tm—1 = (=1)2""2q. Tt follows that j = i (mod 4m) and U is an n-window

sequence.

Similar arguments as before, using the mapping M, show that u, (i) does
not equal u’?(j) or —uf(j) for any j, so U is both orientable and negative
orientable. Thus U is an SOSy(n). The result follows, observing that

wq’(U) = wq’(SH) + wq’(_SN) +wy (T,) + wq’(_T/) = wq’(sﬁ) - wq’(_SH) +

wy (T7) — wy (~T") = 0, O

A simple example of Corollary [3.9]is as follows.

Example 3.4. Suppose ¢ =5, ¢ = 11 and n = 2. As previously, we build
upon the OS5(2) with ring sequence S = [01234 02413]. Analogously to the
second part of Example [3.1] we have

S"=10,1,2,3,4, 0,2,4,1,3, 0,10,9,8,7, 0,9,7,10,8].
Analogously to Example we have

T =1[6,1,9,3,7, 5,9,4,10,3, 5,10,2,8,4, 6,2,7,1,8].
We simply concatenate them to obtain

U:[0717273747 072747173) 07 10,958577 0a9777 10787
6,1,9,3,7, 5,9,4,10,3, 5,10,2,8,4, 6,2,7,1, 8|

which by Corollary [3.9]is an SOS11(2).

Corollary 3.10. There exists an SOS4(2) of period:

((1_2)2(‘1_4) if ¢=0 (mod4),
@—1)2((1—5) if ¢q=1 (mod 4),
@_2)2(‘1_6) if ¢=2 (mod 4),
@=D6=5) i g=3 (moda),

for all g > 6.

Proof. Suppose g > 6.
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e If =0 (mod 4) then % is odd, and by [0, Lemma 2.2] there exists

an 0842 (2) with period 52 (%52 —1)/2. So by Corollary 3.9 there
exists an SOS,(2) of period 4952 (42 — 1)/2 = %.

e If g=1 (mod 4) then % is even, and by [0, Lemma 2.2] there exists

an OS4-1(2) with period %(qg—l —2)/2. So by Corollary there
2

exists an SOS(2) of period 445+ (451 — 2)/2 = %.

e If g =2 (mod 4) then % is even, and by [9, Lemma 2.2] there exists

an OS%(Q) with period %(% —2)/2. So by Corollary there

exists an SOS,(2) of period 4452 (42 — 2)/2 = W.

e If g =3 (mod 4) then % is odd, and by [9, Lemma 2.2] there exists
an 08%1(2) with period %(qg—l —1)/2. So by Corollary there

exists an SOS(2) of period 442 (451 —1)/2 = W.

Observe that all the constructed sequences have ¢’-ary weight zero.

3.4 Adjusting the weight

Our main objective in giving the above constructions is to provide ‘starter
sequences’ for certain constructions of Alhakim et al. [2]. However, all the
sequences constructed here have weight zero; in particular, the sequence U
obtained in Corollary satisfies wy (U) = 0. We would ideally like to
construct sequences U* such that wy (U*) is coprime to ¢’. Therefore we
next describe how to modify the sequences U of Corollary in the case
n = 2 to obtain sequences with precisely this property.

We first need the following simple result.

Lemma 3.11. Suppose ¢ > 4. Then, for any distinct x,y,z in Z,, there
exists an OS4(2) of mazimal period, i.e. of period q(q¢ — 1)/2 (q odd) or
q(qg — 2)/2 (q even), such that its ring sequence has the form [ryzz...].
Moreover, if x,y,z # 0 then there exists an OS4(2) of maximal period such
that its ring sequence has the form [Ozyzz .. .].

Proof. If ¢ is odd then, from Lemma 2.2 of [9], there exists an OS,(2) of
period ¢(¢ — 1)/2 corresponding to an Eulerian circuit in K, the complete
graph on ¢ vertices. Every vertex has degree ¢ — 1, which is at least 4 since
g > 5, and hence there exists an Eulerian circuit in K, starting with the
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edges (z,y), (v, 2), (z,2), and, should z, y, z # 0, an Eulerian circuit starting
with the edges (0,x), (z,y), (v, 2), (z,2). The result follows.

If ¢ is even, then (again from Lemma 2.2 of [9]), there exists an OS,(2)
of period ¢(q — 2)/2 corresponding to an Eulerian circuit in K, where K
is K, with an arbitrary one-factor removed. Since ¢ > 6, it is simple to
choose a one-factor which avoids the edges (z,y), (v, 2), and (z, x) or, should
x,y,z # 0, the edges (0, z), (z,v), (y,2), and (z,x); moreover the vertices in
K will have degree at least 4. As a result there will exist an Eulerian circuit
in K starting with the edges (z,y), (y,2), (2,2) and, should z,y,z # 0,
with edges (0, z), (z,y), (v,2), and (z,z). The result follows. O

Construction 3.5. Suppose ¢ > 2 and ¢ = 2¢+ 1 or ¢ = 2¢ + 2. If
g>5and ¢ =2¢g+1,set x =2,y =¢gq—2and 2z = ¢q—1 (and so
r4+y+z=2¢q—1). fg>T7and ¢ =2¢+2,set x =4, y = ¢—2 and
z=¢q—1 (and so x +y + z = 2¢g + 1). Otherwise set x, y and z according
to Table I

Table 1: Choosing x, y and z

gld |z]ylz]at+y+z
5112101114 5
61410112 3

First observe that, in all cases z, ¥ and z are distinct and y,z # 0. By
inspection it also holds that x +y + z is coprime to ¢’ for all possible choices
of ¢ and ¢'.

Suppose S is an OS,(2) of maximal period m (i.e. of period ¢(¢—1)/2 (¢ odd)
or q(q — 2)/2 (g even)), such that its ring sequence has the form [zyzx .. ]
or, should z,y, z # 0, the form [0zyzx...], which exists from Lemma
Construct U from S using the method of Corollary Observe that, from
the method of construction, the ring sequence for U has the form [zyzz .. ]
or, should =z # 0, the form [0zyzx...]. Finally, construct U* from U by
deleting the cycle [zyz] from its ring sequence.

Theorem 3.12. Suppose ¢ > 4 and ¢ = 2q+1 or ¢ = 2¢+2. If U*
is constructed according to the method of Construction then it is an
SOS,(2) of period 2q(q — 1) — 3 (q odd) or 2q(q¢ —2) — 3 (q even) where in
every case wy (U*) is coprime to ¢'.

Proof. By Corollary the sequence U is an SOS,(2) of period 2¢(¢q — 1)

(¢ odd) or 2g(q — 1) (¢ odd) where wy(U) = 0. The result now follows
immediately by observing that constructing U* from U does not add any
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new 2-tuples, that wy (U*) = ¢’ — (z+y+ z), and, as noted above, x4y + 2
is coprime to ¢'. O

The following brief example shows the operation of this construction.

Example 3.5. Suppose ¢ = 5 and ¢’ = 11. In this case z = 2, y = 3 and
z = 4, and so we need an OS3(q) of maximal period with ring sequence of
the form [02342...]. An example of such a sequence is S = [02342 10314].
Then S = [02342 10314] and

S =8'|(=8") =[0,2,3,4,2, 1,0,3,1,4, 0,9,8,7,9, 10,0,8,10,7]

(where || denotes sequence concatenation). It follows from Theorem 3.4 that
S” is an SOS11(2). We next have

T =106,2,8,4,9, 1,6,3,10,4],
where, from Lemma T is an SOS11(2). Then
T' = T||(~T) = [6,2,8,4,9, 1,6,3,10,4, 5,9,3,7,2, 10,5,8,1,7].
We next concatenate S” and 7" to obtain

U =0,2,3,4,2, 1,0,3,1,4, 0,9,8,7,9, 10,0,8,10,7
6,2,8,4,9, 1,6,3,10,4, 5,9,3,7,2, 10,5,8,1,7].

which by Corollary is an SOS11(2). Finally we simply delete the cycle
[234] from U to obtain

Uu*=[,2, 1,0,3,1,4, 0,9,8,7,9, 10,0,8,10,7
6,2,8,4,9, 1,6,3,10,4, 5,9,3,7,2, 10,5,8,1,7].

which is an SOS811(2) of period 37 with wy1(U*) = 2.

We also have the following simple corollary, which follows immediately from

Corollary
Corollary 3.13. There ezists an SOS4(2) U* of period:

@—2)2(‘1—4)3 if ¢=0 (mod 4),
((1—1)2(41—5)_3 if ¢=1 (mod 4),
<q‘2>2(‘1—6)_3 if ¢=2 (mod 4),
(‘1_1)2((1_3)_3 if =3 (mod 4),

for all ¢ > 11, where we(U*) is coprime to q.
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4 Good special orientable sequences

We next consider how to construct good special orientable sequences, given
that this additional property enables us to apply certain recursive construc-
tions from Alhakim at al. [2]. We first need the following.

Definition 4.1 ([2]). An orientable (respectively negative orientable) se-
quence with the property that any run of 0 has length at most n — 2 is said
to be good.

4.1 An initial observation

We immediately have the following, although the sequences have period only
of the order of half the bound of Theorem 2.1l

Theorem 4.1. There exists a good SOS(2), of period

Q(q4_4) if ¢=0 (mod 4),
W‘fq_l) if =1 (mod4),
q((14—2> if ¢=2 (mod 4),
D=5 i g=3 (moda),

for all ¢ > 5.

Proof. The OSy(n) T" of Theorem is good by construction. The result
follows using the same argument as in Corollary O

In the remainder of this section we show how we can do considerably better
than this.

4.2 A simple modification

A simple method of constructing a good special orientable sequence arises
from the observation that an SOS,(n) that possesses no zeros is automat-
ically a good SOS,(n). With this is mind we modify the sequences U of
Corollary Note that such a sequence U will always contain an even
number of zeros, since in the sequences S’ and —S’ that are concatenated
to construct U, every zero in S’ will give rise to a zero in —S5’.

Construction 4.1. Suppose q,¢,n are integers satisfying ¢ > 2q + 2,
g > 1and n > 1. Suppose U is an SOSy(n) constructed according to
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Corollary Then let U’ be derived from U by replacing half of the zeros
with ¢ + 1 and the other half with ¢ — ¢ — 1.

Theorem 4.2. Suppose q,q',n are integers satisfying ¢ > 2q+2, ¢ > 1 and
n > 1. Suppose U is an SOSy(n) constructed according to Corollary .
If U’ is derived from U using Construction then U’ is a good SOS y(n)
of the same period as U, and wy(U'") = 0.

Proof. If we can show that U does not contain any occurrences of ¢ + 1 or
¢’ —q—1 then the main result will follow immediately. Now U is constructed
by concatenating sequences S” and T, obtained using Constructions [3.2
and so we next examine these two sequences.

S" is obtained by concatenating sequences S’ and —S’, where S is an OS,(n).
Now S’ contains only elements between 0 and ¢ — 1 inclusive, and —S5’
contains only 0 or elements between ¢’ — ¢+ 1 and ¢’ — 1. Since ¢’ > 2q + 2,
¢ —q+1>q+2. Hence S” does not contain any occurrences of ¢ + 1 or
¢ —q—1

T’ is constructed as the concatenation of sequences T' and —T', where an
element of T is in one of the ranges [1,¢| and [¢' — q,¢' — 1]. Also, as before,
since ¢’ > 2q + 2 we have ¢ — q > q + 2. Hence T does not contain any
occurrences of ¢+ 1 or ¢ — ¢ — 1. Now consider —T'. It follows immediately
that the elements of —T are in the same ranges as T. Hence 7" will not
contain any instances of ¢+ 1 or ¢ — ¢ — 1.

It remains to show that wy(U’) = 0. From Corollary we know that
wy(U) = 0. The only changes made to U are to add ¢ + 1 to half of
the zeros and ¢’ — g — 1 to the other half. Thus, if U contains 2s zeros,
wU) =wlU)=0+s(¢g+1+q¢ —qg—1) =0 (mod ¢'), and the result
follows. O

Remark 4.1. A good SOS,(n) with identical parameters could be con-
structed by taking an SOSy_1(n) constructed according to Corollary
and ‘adding one’ to every element. More formally, since each element of U
is in Zgy_1, we treat every element of U as an integer, add one, and then
treat the result as an element of Z.

The following example is similar to Examples and

Example 4.1. Suppose ¢ =5, ¢ = 12 and n = 2. As previously, we build
upon the OS5(2) with ring sequence S = [01234 02413]. Analogously to the
second part of Example we have

S"=10,1,2,3,4, 0,2,4,1,3, 0,11,10,9,8, 0,10,8,11,9].
Analogously to Example [3.3] we have
T =[7,1,10,3,8, 5,10,4,11,3, 5,11,2,9,4, 7,2,8,1,9].
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We simply concatenate them to obtain
U =[0,1,2,3,4, 0,2,4,1,3, 0,11,10,9,8, 0,10,8,11,9,
7,1,10,3,8, 5,10,4,11,3, 5,11,2,9,4, 7,2,8,1,9]

which by Corollary is an SOS12(2) (and we can observe it contains no
occurrences of ¢ + 1 = 6).

Finally, we replace every 0 with ¢+1 = 6 (since in this case ¢ —q—1 = q¢+1)
to obtain

U' =[6,1,2,3,4, 6,2,4,1,3, 6,11,10,9,8, 6,10,8,11,9,
7,1,10,3,8, 5,10,4,11,3, 5,11,2,9,4, 7,2,8,1,9]
which by Theorem is a good SO812(2) with wi2(U’) = 0.
Corollary 4.3. There exists a good SOS,(2) of period:

W=2=D i =0 (mod 1),
(‘13)2((15) if ¢=1 (mod 4),
@=200=9) i y=2 (mod ).
(q_?’)2(‘1_7) if ¢=3 (mod 4),

for all g > 6.

Proof. Suppose g > 6.
e If g =0 (mod 4) then % is odd, and by [9, Lemma 2.2] there exists
an OS2 (2) with period 952 (952 2 1)/2. So by Theorem there
2
exists a good SOS,(2) of period 4452 (45% — 1)/2 = w
e If g =1 (mod 4) then q% is odd, and by [9, Lemma 2.2] there exists
an OS ¢-3(2) with period ﬁ(@ —1)/2. So by Theorem 3 there
2
exists a good SOS,(2) of period 495°% (42 —1)/2 = L@_S.

o If ¢ =2 (mod 4) then 52 is even and by [9, Lemma 2.2] there exists

an OS2 (2) with period % (— —2)/2. So by Theorem 3 there
2
exists a good SOS,(2) of perlod 492(12 —2)/2 = 7‘16

e If g =3 (mod 4) then ; is even and by [0, Lemma 2.2] there exists
an OS4-3(2) with perlod (— —2)/2. So by Theorem there
2

exists a good SOS,(2) of perlod 49342 —2)/2 = %.

O]
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4.3 Adjusting the weight

Just as was the case in the previous section, we need to modify the sequences
we have just constructed to ensure the result has weight coprime to ¢’. We
can employ an identical strategy to that described in Section

Construction 4.2. Suppose ¢ > 4 and ¢ = 2¢ + 2 or ¢ = 2qg + 3. Set
x=0,y=1and z = q— 1 (which are distinct since ¢ > 2). By inspection
it also holds that (z+¢+1)+y+2 = 2¢+ 1 is coprime to ¢ for all possible
choices of ¢ and ¢'.

Suppose S is an 0S,(2) of maximal period m (i.e. of period g(¢ — 1)/2
(¢ odd) or g(q —2)/2 (g even)), such that its ring sequence has the form
[xyzz . ..], which exists from Lemma — also observing that since g > 4
the sequence will contain at least two occurrences of x. Construct U from S
using the method of Corollary and U’ from U using Construction
ensuring that the first two zeros in U are changed to ¢ + 1. Observe that,
from the method of construction, the ring sequence for U’ has the form
[q+1,1,g—1,9+1,...]. Finally, construct U** from U’ by deleting the first
three elements of its ring sequence.

Theorem 4.4. Suppose ¢ > 4 and ¢ = 2q+ 2 or ¢ = 2q + 3. If U** is
constructed according to the method of Construction then it is a good
SOS4(2) of period 2q(q — 1) — 3 (q odd) or 2q(q —2) — 3 (q even) where in

every case wy (U**) is coprime to ¢'.

Proof. By Theorem the sequence U’ is an SOS(2) of period 2¢(q — 1)
(¢ odd) or 2¢(q¢ — 1) (¢ odd) where wy(U) = 0. The result now follows
immediately by observing that constructing U** from U’ does not add any
new 2-tuples, that wy (U**) = ¢’ — (2¢+ 1), and, ¢’ — (2¢ + 1) is coprime to
q. O
The following brief example shows the operation of this construction.

Example 4.2. Suppose ¢ =5, ¢ =12 and n = 2. We need an OS5(2) with
ring sequence starting [0140...]. One possibility is [01402 13423]. As in the
previous examples we have

S"=5-5=10,1,4,0,2, 1,3,4,2,3, 0,11,8,0,10, 11,9,8,10,9].
Analogously to Example [3.3] we have
T =[7,1,8,5,10, 1,9,4,10,3, 5,11,4,7,2, 11,3,8,2,9].
We simply concatenate them to obtain

U =[0,1,4,0,2, 1,3,4,2,3, 0,11,8,0,10, 11,9,8,10,9,
7,1,8,5,10, 1,9,4,10,3, 5,11,4,7,2, 11,3,8,2,9]
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which by Corollary is an SOS812(2) (and we can observe it contains no
occurrences of ¢+ 1=¢ —qg—1=6).

Next, we replace every 0 with ¢+ 1 = 6 (since in this case ¢ —¢—1=qg+1)
to obtain

U’ =[6,1,4,6,2, 1,3,4,2,3, 6,11,8,6,10, 11,9,8,10,9,
7,1,8,5,10, 1,9,4,10,3, 5,11,4,7,2, 11,3,8,2,9]

which by Theorem 4.2|is a good SOS12(2) with wi2(U’) = 0.
Finally we simply delete the first three terms of U’ to obtain

U =[6,2, 1,3,4,2,3, 6,11,8,6,10, 11,9,8,10,9,
7,1,8,5,10, 1,9,4,10,3, 5,11,4,7,2, 11,3,8,2,9].

which is a good SOS12(2) of period 37 with wi2(U**) =1

The following result follows immediately from Corollary 4.3]and Theorem[£.4]
Corollary 4.5. There ezists a good SOS4(2) of period:

@—2);(1—4)_3 if ¢=0 (mod 4),
W=3G=5) 3 i g=1 (mod4).
@—2)2((1—6)_3 if ¢=2 (mod 4),
((1_3)2(‘1_7)_3 if ¢=3 (mod 4),

for all ¢ > 12, where in every case the weight of the sequence is a unit
modulo q.

5 Constructing orientable sequences

We now consider how to obtain large-period orientable sequences using
the special orientable sequences we have constructed earlier in this paper.
We follow two different approaches, both employing recursive construction
methods described in Alhakim et al. [2].

5.1 Special orientable sequences for n = 3

We first show how to generate an SOS,(3) with large period for arbitrary
q > 2. We do so using the following resuhﬂ In this case we do not require
the input sequences to be good.

*Note that this is actually a special case of the result from [2].
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Theorem 5.1 ([2], Theorem 6.11). Suppose S = (s;) is an SOS,(n) of
period m and q > 2. If wy(S) is coprime to q then the set D™1(S) contains
cyclic shifts of a single SOS,(n+ 1) of period gm (where D is as defined in

Section .

Combining this with Construction|3.5|and Theorem[3.12| we get the following
corollary.

Corollary 5.2. Suppose ¢ > 5 and let S be an OS4(2) of mazimal period
m (i.e. of period q(q — 1)/2 (q odd) or q(q — 2)/2 (q even)), such that its
ring sequence has the form [xyzx ...] or, should x # 0, the form [Ozxyzz...],
which exists from Lemma where x, y and z are as specified in Con-
struction [3.5. Suppose U* is constructed from S using the method of Con-
struction where ¢ =2q+1 or ¢ =2q+2. Then D~ (U*) is a SOSy(3)
of period 2¢° — 2q® — 3q (q odd) or 2¢® — 4¢*> — 3q (q even).

Proof. By Theorem U* is a SOSy(2) of period 2¢(¢ — 1) — 3 (¢ odd)
or 2¢(q —2) — 3 (¢ even) where wgy is coprime to ¢’. The result follows from
Theorem [5.1] O

We also have the following, which is immediate from Corollary
Corollary 5.3. There exists an SOS,(3) of period:

TSCE2 iy =0 (umod 4),
q3_62q2_q if ¢=1 (mod 4),
TSCE0 iy =2 (mod 4)
T3 =3 (mod 4),

for all ¢ > 11.

Observe that these sequences have period a little less than the OS,(3) se-
quences constructed in [9]. However, the sequences constructed here have
the additional property of being both orientable and negative orientable,
which may be of use in some applications.

5.2 Special orientable sequences for general n

We next show how to construct SOS,(n) with large period for arbitrary
g > 3 and arbitrary n > 2. We employ the following resultﬂ Note that in

3 As above, this is actually a special case of the result from [2].

22



this case we do require our input sequences to be good. We first need the
following notation from [2]. Suppose that the ring sequence of a periodic
sequence S is [sg, 1, , Sm—1] and that r is the smallest non-negative in-
teger such that a' = s,, Sp41,° 5 Sr+t—1 18 @ maximal run for a € Zg, where
a’ denotes a string of ¢ consecutive terms a. Define the sequence &,(S) to
be the sequence with ring sequence

[807 81, 3 Sr—1,Q, Spy Sp41," " * 73m—1]
i.e. where the occurrence of a® is replaced with a‘*!.

Theorem 5.4 ([2], Corollary 6.22). Suppose S, is a good SOS,(n) of period
My, where wy(Sy) is coprime to q. Recursively define the sequences Sjt1 =
E(D7Y(S))), where a = 1 — wy(D71(S;)), for i > n, and suppose S; has
period m; (i > n). Then, S; is an SOS,(i) for every i > n, and myq; =
qMmp4j—1 + 1 for every j > 1 (and hence my4; = “m, + qq]_—_ll for every
i>1).

Combining this theorem with Construction 4.2 and Theorem [£.4] we get the
following corollary.

Corollary 5.5. Suppose ¢ > 5 and let S be an OS,(2) of mazimal pe-
riod m (i.e. of period q(q¢ — 1)/2 (q odd) or q(q — 2)/2 (q even)), such
that its ring sequence has the form |[xyzx...] or, should x # 0, the form
Pxyzx .. .|, which exists from Lemma where x, y and z are as specified
in Construction [{.3 Suppose U** is constructed from S using the method
of Construction[{.3, where ¢ =2q+2 or ¢ = 2q+ 3. Setting So = U** in
Theorem Sy is a good SOSy(n) of period

P q/n—2 -1

2¢" " (qlg—1) = 3) + -1 (¢ odd), or
P q/n—2 -1

2¢" *(q(¢—2)-3) + (q even)

¢ —1

for every i > 2.

Proof. By Theorem U** is a good SOS,(2) of period 2¢(¢ — 1) — 3 (q
odd) or 2¢(q —2) — 3 (¢ even), where wgy is coprime to ¢’. The result follows
from Theorem [5.4 O

Corollary 5.6. There exists an SOS,(n) of period:
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qn _ 6qn—1 4 2qn—2 qn—2 -1

5 + 1 if ¢=0 (mod 4),
n_8 n—1 9n—2 n—2_1
C— 2+ 1 +qq_1 if ¢=1 (mod 4),
n_g n—1 6n72 n72_1
a ¢ 2+ a —|—qq_1 if ¢=2 (mod 4),
n_ 10 n—1 15 n—2 n—2_1
a g 2+ 7 1 1 if ¢=3 (mod 4),
q_

for all ¢ > 12, and n > 2.

Proof. Suppose ¢ > 12 and n > 2.

e If ¢ =0 (mod 4) then r = % is odd, and by Corollarythere exists
a good SOS,(n) with period 2¢"2(r(r—1)—3)+ q"q_jl_l. Substituting
in 7 = (¢ — 2)/2 the result follows.

e Ifg=1 (mod 4) then r = %3 is odd, and by Corollarythere exists
a good SOS,(n) with period 2¢"2(r(r—1)—3)+ qn(:’l—y Substituting
in 7 = (¢ — 3)/2 the result follows.

o If =2 (mod 4) thenr = %2 is even, and by Corollarythere exists
a good SOS,(n) with period 2¢"2(r(r—2) —3)+ L =

q—1
in 7 = (¢ — 2)/2 the result follows.

e If ¢ =3 (mod 4) thenr = qg—?’ is even, and by Corollarythere exists
a good SOS,(n) with period 2¢"2(r(r—2)—3)+ qn(;jl_l
in 7 = (¢ — 3)/2 the result follows.

. Substituting

. Substituting

O

6 Concluding remarks

In this paper we have constructed orientable sequences with the additional
property that they are also negative orientable. We used an approach pro-
posed in [2] to generate orientable sequences with large period of any order
over an alphabet of any size using ‘starter’ sequences with this additional
property. Whilst this yields sequences with shorter periods than general
orientable sequences, the periods remain asymptotic to the optimal as the
alphabet size increases and the additional property could be a benefit in
some applications.

It remains an open problem to find constructions of orientable sequences
with optimal periods.
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