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Abstract

Analogously to de Bruijn sequences, orientable sequences have ap-
plication in automatic position-location applications and, until recently,
studies of these sequences focused on the binary case. In recent work
by Alhakim et al., recursive methods of construction were described for
orientable sequences over arbitrary finite alphabets, requiring ‘starter
sequences’ with special properties. Some of these methods required
as input special orientable sequences, i.e. orientable sequences which
were simultaneously negative orientable. We exhibit methods for con-
structing special orientable sequences with properties appropriate for
use in two of the recursive methods of Alhakim et al. As a result we
are able to show how to construct special orientable sequences for ar-
bitrary sizes of alphabet (larger than a small lower bound) and for all
window sizes. These sequences have periods asymptotic to the optimal
as the alphabet size increases.

1 Introduction

Orientable sequences, i.e. periodic sequences with elements drawn from a
finite alphabet with the property that any subsequence of n consecutive
elements (an n-tuple) occurs at most once in either direction, were intro-
duced in 1992 [3, 4]. They are of interest due to their application in certain
position-resolution scenarios. For the binary case, a construction and an
upper bound on the period were established by Dai et al. [4], and further
constructions were established by Gabrić and Sawada [6] and Mitchell and
Wild [8]. A bound on the period and methods of construction for q-ary
alphabet sequences (for arbitrary q) were given by Alhakim et al. [2].

In this paper we examine a particular class of orientable sequences known
as special orientable sequences; such sequences were defined by Alhakim
et al. [2], who described a series of recursive constructions for orientable
sequences using special orientable sequences as input. We give a bound on
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the length of special orientable sequences and describe various methods of
construction. We then show how certain of the constructed sequences can
be used to obtain orientable sequences using methods defined in [2].

1.1 Basic terminology

We first establish some simple notation, following [2]. For mathematical
convenience we consider the elements of a sequence to be elements of Zq for
an arbitrary integer q > 1.

For a sequence S = (si) we write sn(i) = (si, si+1, . . . , si+n−1). Since we
are interested in tuples occurring either forwards or backwards in a se-
quence we also introduce the notion of a reversed tuple, so that if u =
(u0, u1, . . . , un−1) is a q-ary n-tuple (a string of symbols of length n) then
uR = (un−1, un−2, . . . , u0) is its reverse. The negative of a q-ary n-tuple
u = (u0, u1, . . . , un−1) is the n-tuple −u = (−u0,−u1, . . . ,−un−1).

We can then give the following.

Definition 1.1 ([2]). A q-ary n-window sequence S = (si) is a periodic
sequence of elements from Zq (q > 1, n > 1) with the property that no
n-tuple appears more than once in a period of the sequence, i.e. with the
property that if sn(i) = sn(j) for some i, j, then i ≡ j (mod m) where m is
the period of the sequence.

Definition 1.2 ([2]). An n-window sequence S = (si) is said to be an
orientable sequence of order n (an OSq(n)) if sn(i) ̸= sn(j)

R, for any i, j.

We also need two related definitions.

Definition 1.3 ([2]). An n-window sequence S = (si) is said to be a negative
orientable sequence of order n (a NOSq(n)) if sn(i) ̸= −sn(j)

R, for any i, j.

Definition 1.4 ([2]). An orientable sequence S = (si) of order n is said
to be a special orientable sequence of order n (a SOSq(n)) if, for any i, j,
sn(i) ̸= −sn(j)

R, i.e. it is also negative orientable.

As discussed in Alhalkim at al. [2], it turns out that negative and special
orientable sequences are of importance in constructing orientable sequences.
Observe that a sequence is orientable if and only if it is negative orientable
for the case q = 2. Also note that if S = (si) is orientable, negative orientable
or special orientable then so is its negative (−si).

Bounds on the period of, and methods of construction for, negative ori-
entable sequences were given by Mitchell and Wild [9]; they also showed
how to use the constructed negative orientable sequences to construct fam-
ilies of orientable sequences employing two approaches defined in [2]. By
contrast, in this paper we focus on special orientable sequences, giving a
period bound and methods of construction.
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1.2 The de Bruijn graph and the Lempel Homomorphism

Following Alhakim et al. [2] we also introduce the de Bruijn graph. For
positive integers n and q greater than one, let Zn

q be the set of all qn vectors
of length n with entries from the group Zq of residues modulo q. A de Bruijn
sequence of order n with alphabet in Zq is a periodic sequence that includes
every possible n-tuple precisely once as a subsequence of consecutive symbols
in one period of the sequence.

The order n de Bruijn digraph, Bn(q), is a directed graph with Zn
q as its

vertex set and where, for any two vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn), (x;y) is an edge if and only if yi = xi+1 for every i (1 ≤
i < n). We then say that x is a predecessor of y and y is a successor
of x. Evidently, every vertex has exactly q successors and q predecessors.
Furthermore, two vertices are said to be conjugates if they have the same
set of successors.

A cycle in Bn(q) is a path that starts and ends at the same vertex. It is said
to be vertex disjoint if it does not visit any vertex more than once. Two
cycles or two paths in the digraph are vertex-disjoint if they do not have a
common vertex. This terminology departs somewhat from standard graph
theoretic terminology where the term closed path is typically used for what
we call a cycle, and cycle is used where we use vertex-disjoint cycle.

Following the notation of Lempel [7], a convenient representation of a vertex
disjoint cycle (x(1); . . . ;x(l)) is the ring sequence [x1, . . . , xl] of symbols from
Zq defined such that the ith vertex in the cycle starts with the symbol xi.
Corresponding to the ring sequence [x1, . . . , xl] is an n-window sequence
S = (si) where si+tl = xi+1 for i = 0, . . . , l − 1 and t ≥ 0. Conversely, an
n-window sequence determines a ring sequence of a vertex disjoint cycle. A
translate of a word x = (x1, . . . , xn) is a word x+ λ = (x1 + λ, . . . , xn + λ)
where λ is any nonzero element in Zq and addition is performed in Zq. We
also define a translate of a cycle as the cycle obtained by a translate of the
ring sequence that defines this cycle.

Finally, we need a well-established generalisation of the Lempel graph ho-
momorphism [7] to non-binary alphabets — see, for example, Alhakim and
Akinwande [1] (in fact we use a simplified version of their definition).

Definition 1.5. Define a function D from Bn(q) to Bn−1(q) as follows.
If a = (a1, a2, . . . , an), then D(a) = (b1, b2, . . . , bn−1), where bi = ai+1 −
ai mod q for i = 1 to n− 1.

We extend the notation to allow the Lempel morphism D to be applied to
periodic sequences in the natural way, as we now describe. That is, D is the
map from the set of periodic sequences to itself defined by

D((si)) = (ti) : tj = sj+1 − sj .
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The image of a sequence of period m will clearly have period dividing m.
In the usual way we can define D−1 to be the pre-image of D, i.e. if S
is a periodic sequence than D−1(S) is the set of all sequences T with the
property that D(T ) = S.

The weight w(S) of a sequence S is the weight of the ring sequence corre-
sponding to S (that is the sum of the terms s0, . . . , sm−1 treating si as an
integer in the range [0, q − 1]). Similarly we write wq(S) for w(S) mod q.
The notion of weight is key to the rest of the paper since, when applied to
an n-window sequence of period m and weight coprime to q, its pre-image
under D−1 consists of q sequences of period qm whose ring sequences are
cyclic shifts of each other. This enables us to identify a unique element of
this set to be the inverse, e.g. the one starting with a zero.

1.3 Related work

This paper builds on the work of Alhakim et al. [2], in which recursive
methods of construction for non-binary orientable sequences are described.
Alhakim et al. described a range of methods of recursively generating ori-
entable sequences using sequences with special properties, notably negative
orientable and special orientable sequences. However, general methods for
providing ‘starter’ sequences for these constructions were not provided, and
this paper is aimed at addressing this.

In a recent paper [5], Gabrić and Sawada showed how to construct non-
binary orientable sequences of asymptotically maximal period. Their ap-
proach involves applying the inverse Lempel Homomorphism to an orientable
sequence and then demonstrating ways to join together the multiple se-
quences that result. In parallel work, Mitchell and Wild [9] showed how
to construct orientable sequences using a rather different approach, namely
first constructing negative orientable sequences and then applying certain
methods of Alhakim et al. to construct larger period orientable sequences.
This paper follows a similar path, except that we show how to construct spe-
cial orientable sequences, and then use these in other methods of Alhakim
et al. to construct larger period orientable sequences.

2 A simple period bound

By definition it follows automatically that the period of an SOSq(n) is
bounded above by the bounds on the period of an orientable sequence and
that of a negative orientable sequence established in [2, Theorem 4.11] and
[9, Theorem 3.10]. We next give a bound on the period of an SOSq(n)
which is of the same order as these general bounds.
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Theorem 2.1. Suppose S is an SOSq(n). Then the period of S is at most:

qn − q(n+1)/2 − q(n−1)/2 + 1

2
if q and n are both odd;

qn − 2qn/2 + 1

2
if q is odd and n is even;

qn − q(n+1)/2 − 2q(n−1)/2 + 2(n+3)/2 − 2(n+1)/2

2
if q is even and n is odd;

qn − 2qn/2 + 2(n+2)/2 − 2n/2

2
if q and n are both even.

Proof. First observe that if an n-tuple s satisfies s = sR or s = −sR then it
cannot occur in S since S is both orientable and negative orientable. Hence,
since at most one of s and sR can occur in S, the period of S is at most
half the number of q-ary n-tuples s such that s ̸= sR and s ̸= −sR. We
examine the four cases separately. Note that the q odd cases are simpler,
since when q is odd there is only one n-tuple satisfying s = −s, namely the
all-zero n-tuple.

� Suppose q and n are both odd. Then there is one n-tuple s with
s = −s = sR = −sR; q(n+1)/2 − 1 tuples with s = sR ̸= −s = −sR;
q(n−1)/2 − 1 with s = −sR ̸= −s = sR; and hence there are h with
s,−s, sR,−sR all distinct, where h = qn − q(n+1)/2 − q(n−1)/2 +1. The
bound is h/2, and the result follows.

� Suppose q is odd and n is even. Then there is one n-tuple s with
s = −s = sR = −sR; qn/2 − 1 with s = sR ̸= −s = −sR; qn/2 − 1 with
s = −sR ̸= −s = sR; and hence h = qn − 2qn/2 +1 with s,−s, sR,−sR

all distinct. The bound is h/2, and the result follows.

� Suppose q is even and n is odd. Then there are 2(n+1)/2 n-tuples s with
s = −s = sR = −sR; N = 2n − 2(n+1)/2 n-tuples with s = −s ̸= sR =
−sR; q(n+1)/2−2(n+1)/2 with s = sR ̸= −s = −sR; 2q(n−1)/2−2(n+1)/2

with s = −sR ̸= −s = sR; and hence h = qn − q(n+1)/2 − 2q(n−1)/2 +
2(n+3)/2− 2n with s,−s, sR,−sR all distinct. The bound is (N +h)/2,
and the result follows.

� Suppose q and n are both even. Then there are 2n/2 n-tuples s with
s = −s = sR = −sR; N = 2n−2n/2 n-tuples with s = −s ̸= sR = −sR;
qn/2 − 2n/2 with s = sR ̸= −s = −sR; qn/2 − 2n/2 with s = −sR ̸=
−s = sR; and hence h = qn− 2qn/2+2(n+2)/2− 2n with s,−s, sR,−sR

all distinct. The bound is (N + h)/2, and the result follows.
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3 Constructing special orientable sequences

3.1 A simple construction

We first show how to construct an SOSq(n) with period about one quarter
the bound given by Theorem 2.1 for every odd q ≥ 5 when n = 2.

Construction 3.1. Let q, q′ be integers with q′ > q > 1. For x ∈ Zq we
write x for the non-negative integer in {0, 1, . . . , q − 1} belonging to the
residue class x, and x′ for the residue class of Zq′ that contains x. Let
S = [s0, . . . , sm−1] be an OSq(n). Let S′ = [s′0, . . . , s

′
m−1] be the sequence

over Zq′ obtained from S in the obvious notational way.

Theorem 3.1. If S is an OSq(n), q
′ ≥ 2q − 1 and S′ is obtained from S

using Construction 3.1, then S′ is an SOSq′(n).

Proof. First observe that if x is a non-zero term of S′ then −x ̸= y for any
term y of S′.

Suppose 0 ≤ i, j < m. We need to establish three properties.

� S′ is an n-window sequence. Suppose s′n(i) = s′n(j). Then sn(i) =
sn(j) and so i ≡ j (mod m) (i.e. i = j).

� S′ is orientable. Suppose s′n(i) = s′Rn (j). Then sn(i) = sRn (j). This is
impossible since S is an OSq(n).

� S′ is negative orientable. Finally, suppose s′n(i) = −s′Rn (j). Then,
by the observation above, s′i = s′i+1 = · · · = s′i+n−1 = 0 so that
si = si+1 = · · · = si+n−1 = 0, contradicting the assumption that S is
an OSq(n).

When n = 2, this allows us to give the following.

Corollary 3.2. There exists an SOSq(2) of period about one quarter of the
maximum period given in Theorem 2.1) for all q ≥ 5.

Proof. From [9, Lemma 2.2] there exists an OSq(2) with period either q(q−
1)/2 (q odd) or q(q− 2)/2 (q even) for every q ≥ 3. From Construction 3.1,
this implies the existence of an SOS2q−1(2) and an SOS2q(2) with period
either q(q − 1)/2 (q odd) or q(q − 2)/2 (q even) for every q ≥ 3. The result
follows, since (by Theorem 2.1) the maximum period for an SOS2q−1(2) is
(2q−2)2/2 and the maximum period for an SOS2q(2) is ((2q−1)2+1)/2.
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3.2 A second construction

We next modify the method given immediately above to double the period
and so enable the construction of special orientable sequences with period
approximately half the maximum when n = 2. We do so by means of a
general result regarding the relationship between a sequence and its negative.

Following Alhakim et al. [2] we make the following definition.

Definition 3.1. Suppose S = (si) and T = (ti) are n-window sequences.
They are said to be special-orientable-disjoint (s-disjoint) if:

1. they are n-tuple disjoint, i.e. sn(i) ̸= tn(j) for any i, j;

2. they are orientable disjoint (o-disjoint), i.e. sn(i) ̸= tn(j)
R for any i, j;

and

3. they are negative orientable disjoint (n-disjoint), i.e. sn(i) ̸= −tn(j)
R

for any i, j.

We can now state the following result.

Theorem 3.3. Suppose S is an SOSq(n) with the property that, for any
n-tuple s, at most one of s and −s is contained in S. Then S and −S are
s-disjoint.

Proof. S and −S are clearly n-tuple disjoint since we assumed that at most
one of s and −s is contained in S for any s. Now sn(i) ̸= −sn(j)

R for all
i, j since S is an NOSq(n), and hence S and −S are o-disjoint. Finally,
sn(i) ̸= −(−sn(j)

R) = sn(j)
R for all i, j since S is an OSq(n), and hence S

and −S are n-disjoint.

Remark 3.1. It follows immediately from Theorem 3.3 that if S is an SOSq(n)
of period m with the property that, for any n-tuple s, at most one of s and
−s is contained in S, and if in addition S and −S share an (n−1)-tuple, then
S and −S can be joined to form an SOSq(n) with period 2m. This follows
since, when concatenating s-disjoint sequences, the only possible problem
arises for n-tuples that ‘cross the join’, and by joining them on a common
n− 1 tuple we can avoid creating any new n-tuples.

Next observe that any sequence S obtained from Construction 3.1 has the
property that, for any n-tuple s, at most one of s and −s is contained in S.
This immediately motivates the following construction.

Construction 3.2. Let q, q′ be integers with q′ ≥ 2q − 1 > 2. For x ∈
Zq we write x for the non-negative integer in {0, 1, . . . , q − 1} belonging
to the residue class x and x′ for the residue class of Zq′ that contains x.
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Let S = [s0, s1, . . . , sm−1] be an OSq(n). Let S′ = [s′0, s
′
1, . . . , s

′
m−1] be

the sequence over Zq′ obtained from S in the obvious notational way. Let
S′′ = [s′′0, s

′′
1, . . . , s

′′
2m−1] be the periodic sequence whose ring sequence is the

concatenation of the ring sequences of S′ and −S′.

We next introduce some notation. Let q, q′ be integers with q′ ≥ 2q − 1 >
2. As in Construction 3.2, given x ∈ Zq, we write x for the integer in
{0, 1, . . . , q− 1} belonging to the residue class x, and x′ for the residue class
of Zq′ that contains x. Similarly, for y ∈ Zq′ we write y for the integer in
{0, 1, . . . , q′ − 1} belonging to the residue class y. Let Eq,q′ : Zq → Zq′ be
the mapping given by Eq,q′(x) = x′ for all x ∈ Zq.

Let Mq,q′ : Zq′ → Zq be the mapping given by

Mq,q′(y) =


x when 0 ≤ y = x ≤ q − 1 (so that x′ = y),

0 when q ≤ y ≤ q′ − q, and

x when q′ − q + 1 ≤ y ≤ q′ − 1 and x = q′ − y (so that x′ = −y).

When q and q′ are understood we simply write E and M for Eq,q′ and Mq,q′

respectively.

Note that it follows immediately from the definitions of E and M that
M(−y) = M(y) for all y ∈ Zq′ , in particular M(E(x)) = M(−E(x)) = x
for all x ∈ Zq. We extend the application of E and M to n-tuples and
sequences in the natural way, that is by applying them to each term. So, in
Construction 3.5, S′ = E(S) and M(s′′n(i)) = sn(i), M(s′′Rn (i)) = sRn (i) and
M(−s′′n(i)) = sn(i) for all i.

Theorem 3.4. If S is an OSq(n) and S′′ is obtained from S using Con-
struction 3.2 then S′′ is an SOSq′(n) with wq′(S

′′) = 0.

Proof. We establish three properties.

� S′′ is an n-window sequence. Suppose s′′n(i) = s′′n(j). Then M(s′′n(i)) =
M(s′′n(j)), that is sn(i) = sn(j) and so i ≡ j (mod m) as S is an n-
window sequence of period m. Since s′′n(i + m) = −s′′n(i) and sn(i)
cannot have every term equal to 0, we deduce that i ≡ j (mod 2m).

� S′′ is orientable. Suppose s′′n(i) = s′′Rn (j). ThenM(s′′n(i)) = M(s′′Rn (j)),
that is sn(i) = sRn (j) which is impossible as S is an orientable sequence.

� S′′ is negative orientable. Finally, suppose s′′n(i) = −s′′Rn (j). Then
M(s′′n(i)) = M(−s′′Rn (j)), that is sn(i) = sRn (j) which is impossible as
S is an orientable sequence.

The result follows, observing that wq′(S
′′) = wq′(S

′)+wq′(−S′) = wq′(S
′)−

wq′(S
′) = 0.
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The following simple example demonstrates Construction 3.2.

Example 3.1. First observe that S = [01234 02413] is an OS5(2) (obtained
using Construction 5.3 of [2])1.

If we put q′ = 9, then S′ = [01234 02413] and

S′′ = S′||(−S′) = [01234 02413 08765 07586]

(where || denotes sequence concatenation). It follows from Theorem 3.4 that
S′′ is an SOS9(2).

We can also perform the same construction with q′ = 10. In this case

S′′ = S′||(−S′) = [01234 02413 09876 08697]

and S′′ is an SOS10(2).

Corollary 3.5. There exists an SOSq(2), of period

q(q − 4)

4
if q ≡ 0 (mod 4),

(q + 1)(q − 1)

4
if q ≡ 1 (mod 4),

q(q − 2)

4
if q ≡ 2 (mod 4),

(q + 1)(q − 3)

4
if q ≡ 3 (mod 4),

for all q ≥ 5.

Proof. Suppose q ≥ 5. If q ≡ 0 (mod 4) then q
2 is even and by [9, Lemma

2.2] there exists an OS q
2
(2) with period q

2(
q
2 − 2)/2; hence by Theorem 3.4

there exists an SOSq(2) of period
q(q−4)

4 .

If q ≡ 1 (mod 4) then q+1
2 is odd and by [9, Lemma 2.2] there exists an

OS q+1
2
(2) with period q+1

2 ( q+1
2 −1)/2; hence by Theorem 3.4 there exists an

SOSq(2) of period
(q+1)(q−1)

4 .

If q ≡ 2 (mod 4) then q
2 is odd and by [9, Lemma 2.2] there exists an OS q

2
(2)

with period q
2(

q
2 − 1)/2; hence by Theorem 3.4 there exists an SOSq(2) of

period q(q−2)
4 .

If q ≡ 3 (mod 4) then q+1
2 is even and by [9, Lemma 2.2] there exists an

OS q+1
2
(2) with period q+1

2 ( q+1
2 −2)/2; hence by Theorem 3.4 there exists an

SOSq(2) of period
(q+1)(q−3)

4 .

1Here and in other examples the spaces are included simply to make reading easier.
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We remark that the period of these Special Orientable Sequences of order 2
is approximately half that of the maximum period given by Theorem 2.1.

3.3 Extending the construction

We now further modify the previous constructions, doubling the period
again, to enable us to obtain special orientable sequences which have pe-
riod of the same order as the bound of Theorem 2.1 when n = 2.

Construction 3.3. Let q, q′ be integers with q′ ≥ 2q > 3. Let S =
[s0, . . . , sm−1] be an OSq(n) and let S′ = [s′0, . . . , s

′
m−1] be the OSq′(n) con-

structed as in Construction 3.2. Let T = [t0, t1, . . . , tm−1] be the sequence
over Zq′ such that ti = (−1)i+m−1s′i for i = 0, . . . ,m − 1 unless s′i = 0 in
which case ti = (−1)i+m−1q.

Lemma 3.6. The sequence T of Construction 3.3 is an SOSn(q
′).

Proof. We establish three properties.

� T is an n-window sequence. Suppose tn(i) = tn(j). Then M(tn(i)) =
M(tn(j)), so that sn(i) = sn(j) since M(q) = M(−q) = 0. Hence
i = j (mod m) as S is an n-window sequence of period m.

� T is orientable. Suppose tn(i) = tRn (j). Then M(tn(i)) = M(tRn (j)),
so that sn(i) = sRn (j), which is impossible as S is an orientable se-
quence.

� T is negative orientable. Finally, suppose tn(i) = −tRn (j). Then
M(tn(i)) = M(−tRn (j)), that is sn(i) = sRn (j), which is impossible
as S is an orientable sequence.

The result follows.

An example of Construction 3.3 follows.

Example 3.2. As in Example 3.1, let S = [01234 02413] be the OS5(2)
obtained using Construction 5.3 of [2].

If we put q′ = 10, then, as m = 10, (−1)m−1 = −1 and

T = [51836 58493].

It follows from Lemma 3.6 that T is an SOS10(2).

We next show that we can adjoin −T to T to obtain an SOS with twice the
period, just as was the case with S′.
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Construction 3.4. Let q, q′, n be integers with q′ ≥ 2q > 3 and n > 1.
Let S = [s0, . . . , sm−1] be an OSq(n). Let T = [t0, t1, . . . , tm−1] be as
in Construction 3.3. Let T ′ be the sequence whose ring sequence is the
concatenation of the ring sequences of T and −T .

Theorem 3.7. If S is an OSq(n) and T ′ is obtained from S using Con-
struction 3.4 then T ′ is an SOSq′(n) with wq′(T

′) = 0.

Proof. We establish three properties.

� T ′ is an n-window sequence. Suppose t′n(i) = t′n(j). Then M(t′n(i)) =
M(t′n(j)), so that sn(i) = sn(j) since M(q) = M(−q) = 0. Hence
i ≡ j (mod m) as S is an n-window sequence of period m. Since
t′n(i + m) = −t′n(i) ̸= t′n(i), as sn(i) is not the all 0 tuple, we must
have j = i (mod 2m).

� T ′ is orientable. Suppose t′n(i) = t
′R
n (j). Then M(t′n(i)) = M(t

′R
n (j)),

so that sn(i) = sRn (j), which is impossible as S is an orientable se-
quence.

� T ′ is negative orientable. Finally, suppose t′n(i) = −t
′R
n (j). Then

M(t′n(i)) = M(−t
′R
n (j)), that is sn(i) = sRn (j), which is impossible as

S is an orientable sequence.

The result follows, observing that wq′(T
′) = wq′(T ) + wq′(−T ) = wq′(T ) −

wq′(T ) = 0.

We extend our previous example to give an example of Construction 3.4.

Example 3.3. As in Examples 3.1 and 3.2, let S = [01234 02413] be the
OS5(2) obtained using Construction 5.3 of [2].

If we put q′ = 10, then, as in Example 3.2

T = [51836 58493].

We then have that

T ′ = T ||(−T ) = [51836 58493 59274 52617].

It follows from Theorem 3.7 that T ′ is an SOS10(2).

We complete the extended construction by combining the sequence T ′ gen-
erated using Construction 3.4 with the sequence S′′ generated using Con-
struction 3.2.
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Corollary 3.8. Let q, q′ be integers with q′ ≥ 2q + 1 > 4. Let S =
[s0, . . . , sm−1] be an OSq(n) of period m with s0 = 0. Let S′′ be obtained
from S as in Construction 3.2 and let T ′ be obtained from S as in Construc-
tion 3.4. Then S

′′
and T ′ are s-disjoint.

Proof. We consider three cases.

� Suppose s′′n(i) = t′n(j). Then M(s′′n(i)) = M(t′n(j)), so that sn(i) =
sn(j) since M(q) = M(−q) = 0. Hence i ≡ j (mod m) as S is an
n-window sequence of period m. Suppose 0 ≤ i ≤ 2m − 1. Then
for some k with 0 ≤ k ≤ n − 1, we have that s′′i+ℓ for ℓ = 0, . . . , k
all lie in {0, 1, . . . , q − 1} or in {0,−1, . . . ,−(q − 1)} and s′′i+ℓ for ℓ =
k+ 1, . . . , n− 1 all lie in {0,−1, . . . ,−(q− 1)} or in {0, 1, . . . , (q− 1)}
respectively while the terms of t′n(j) alternate between the two sets
{1, . . . , q} and {−1, . . . ,−q} unless m is even and t′n(j) contains t

′
αm−1

and t′αm for some α ≥ 1. Since n > 1 and s′′αm = 0 so that t′αm = ±q
this is not possible. It follows that S

′′
and T ′ are n-window disjoint.

� Suppose s′′n(i) = t′Rn (j). Then M(s′′n(i)) = M(t′Rn (j)), so that sn(i) =
sRn (j) since M(q) = M(−q) = 0. Hence i ≡ j (mod m) as S is an ori-
entable sequence of period m. Now a similar argument as above about
where the terms of s′′n(i) and t′Rn (j) lie shows that the supposition is
impossible and it follows that S′′ and T ′ are o-disjoint.

� Finally, suppose s′′n(i) = −t′Rn (j). Then M(s′′n(i)) = M(−t′Rn (j)), so
that sn(i) = sRn (j) since M(q) = M(−q) = 0. Hence i ≡ j (mod m)
as S is an orientable sequence of period m. Now a similar argument
as above about where the terms of s′′n(i) and t′Rn (j) lie shows that the
supposition is impossible and it follows that S′′ and T ′ are n-disjoint.

The result follows.

Corollary 3.9. Suppose q, q′, n are integers satisfying q′ ≥ 2q + 1, q > 1
and n > 1. If S is an OSq(n) of period m with s0 = 0, and S′′ and T ′ are
obtained from S using Constructions 3.2 and 3.4, then the ring sequences of
S′′ and T ′ may be concatenated to obtain the ring sequence of an SOSq′(n)
U of period 4m, where wq′(U) = 0.

Proof. As S
′′
and T ′ are s-disjoint SOSq′(n) we need only check that the

n-tuples un(i), i = 2m−n+1, . . . , 2m−1 and i = 4m−n+1, . . . , 4m−1 do
not appear as un(j) for any j ̸≡ i (mod 4m), nor as uR

n (j) for any j, nor as
−uR

n (j) for any j. Suppose un(i), with i ∈ {2m−n+1, . . . , 2m−1} or with
i ∈ {4m − n + 1, . . . , 4m − 1} equals un(j) for some j. Then M(un(i)) =
M(un(j)) are n-tuples of S so that j ≡ i (mod m). We now need only
check that for ℓ = 1, . . . n − 1 the four n-tuples um−ℓ,u2m−ℓ,u3m−ℓ,u4m−ℓ
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are distinct. This follows if the four 2-tuples (um−1, um), (u2m−1, u2m),
(u3m−1, u3m), (u4m−1, u4m) are distinct. That is (s′m−1, 0), (−s′m−1, (−1)m−1q),
(tm−1, (−1)mq), (−tm−1, 0) are distinct. This is easily checked, knowing
that tm−1 = (−1)2m−2s′m−1 ̸= −s′m−1 unless s′m−1 = 0 in which case
tm−1 = (−1)2m−2q. It follows that j = i (mod 4m) and U is an n-window
sequence.

Similar arguments as before, using the mapping M , show that un(i) does
not equal uR

n (j) or −uR
n (j) for any j, so U is both orientable and negative

orientable. Thus U is an SOSq′(n). The result follows, observing that
wq′(U) = wq′(S

′′
)+wq′(−S

′′
)+wq′(T

′)+wq′(−T ′) = wq′(S
′′
)−wq′(−S

′′
)+

wq′(T
′)− wq′(−T ′) = 0.

A simple example of Corollary 3.9 is as follows.

Example 3.4. Suppose q = 5, q′ = 11 and n = 2. As previously, we build
upon the OS5(2) with ring sequence S = [01234 02413]. Analogously to the
second part of Example 3.1 we have

S′′ = [0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 10, 9, 8, 7, 0, 9, 7, 10, 8].

Analogously to Example 3.3 we have

T ′ = [6, 1, 9, 3, 7, 5, 9, 4, 10, 3, 5, 10, 2, 8, 4, 6, 2, 7, 1, 8].

We simply concatenate them to obtain

U =[0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 10, 9, 8, 7, 0, 9, 7, 10, 8,

6, 1, 9, 3, 7, 5, 9, 4, 10, 3, 5, 10, 2, 8, 4, 6, 2, 7, 1, 8]

which by Corollary 3.9 is an SOS11(2).

Corollary 3.10. There exists an SOSq(2) of period:

(q − 2)(q − 4)

2
if q ≡ 0 (mod 4),

(q − 1)(q − 5)

2
if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
if q ≡ 2 (mod 4),

(q − 1)(q − 3)

2
if q ≡ 3 (mod 4),

for all q ≥ 6.

Proof. Suppose q ≥ 6.
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� If q ≡ 0 (mod 4) then q−2
2 is odd, and by [9, Lemma 2.2] there exists

an OS q−2
2
(2) with period q−2

2 ( q−2
2 − 1)/2. So by Corollary 3.9 there

exists an SOSq(2) of period 4 q−2
2 ( q−2

2 − 1)/2 = (q−2)(q−4)
2 .

� If q ≡ 1 (mod 4) then q−1
2 is even, and by [9, Lemma 2.2] there exists

an OS q−1
2
(2) with period q−1

2 ( q−1
2 − 2)/2. So by Corollary 3.9 there

exists an SOSq(2) of period 4 q−1
2 ( q−1

2 − 2)/2 = (q−1)(q−5)
2 .

� If q ≡ 2 (mod 4) then q−2
2 is even, and by [9, Lemma 2.2] there exists

an OS q−2
2
(2) with period q−2

2 ( q−2
2 − 2)/2. So by Corollary 3.9 there

exists an SOSq(2) of period 4 q−2
2 ( q−2

2 − 2)/2 = (q−2)(q−6)
2 .

� If q ≡ 3 (mod 4) then q−1
2 is odd, and by [9, Lemma 2.2] there exists

an OS q−1
2
(2) with period q−1

2 ( q−1
2 − 1)/2. So by Corollary 3.9 there

exists an SOSq(2) of period 4 q−1
2 ( q−1

2 − 1)/2 = (q−1)(q−3)
2 .

Observe that all the constructed sequences have q′-ary weight zero.

3.4 Adjusting the weight

Our main objective in giving the above constructions is to provide ‘starter
sequences’ for certain constructions of Alhakim et al. [2]. However, all the
sequences constructed here have weight zero; in particular, the sequence U
obtained in Corollary 3.9 satisfies wq′(U) = 0. We would ideally like to
construct sequences U∗ such that wq′(U

∗) is coprime to q′. Therefore we
next describe how to modify the sequences U of Corollary 3.9 in the case
n = 2 to obtain sequences with precisely this property.

We first need the following simple result.

Lemma 3.11. Suppose q > 4. Then, for any distinct x, y, z in Zq, there
exists an OSq(2) of maximal period, i.e. of period q(q − 1)/2 (q odd) or
q(q − 2)/2 (q even), such that its ring sequence has the form [xyzx . . .].
Moreover, if x, y, z ̸= 0 then there exists an OSq(2) of maximal period such
that its ring sequence has the form [0xyzx . . .].

Proof. If q is odd then, from Lemma 2.2 of [9], there exists an OSq(2) of
period q(q − 1)/2 corresponding to an Eulerian circuit in Kq, the complete
graph on q vertices. Every vertex has degree q − 1, which is at least 4 since
q ≥ 5, and hence there exists an Eulerian circuit in Kq starting with the
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edges (x, y), (y, z), (z, x), and, should x, y, z ̸= 0, an Eulerian circuit starting
with the edges (0, x), (x, y), (y, z), (z, x). The result follows.

If q is even, then (again from Lemma 2.2 of [9]), there exists an OSq(2)
of period q(q − 2)/2 corresponding to an Eulerian circuit in K∗

q , where K∗
q

is Kq with an arbitrary one-factor removed. Since q ≥ 6, it is simple to
choose a one-factor which avoids the edges (x, y), (y, z), and (z, x) or, should
x, y, z ̸= 0, the edges (0, x), (x, y), (y, z), and (z, x); moreover the vertices in
K∗

q will have degree at least 4. As a result there will exist an Eulerian circuit
in K∗

q starting with the edges (x, y), (y, z), (z, x) and, should x, y, z ̸= 0,
with edges (0, x), (x, y), (y, z), and (z, x). The result follows.

Construction 3.5. Suppose q > 2 and q′ = 2q + 1 or q′ = 2q + 2. If
q ≥ 5 and q′ = 2q + 1, set x = 2, y = q − 2 and z = q − 1 (and so
x + y + z = 2q − 1). If q ≥ 7 and q′ = 2q + 2, set x = 4, y = q − 2 and
z = q − 1 (and so x + y + z = 2q + 1). Otherwise set x, y and z according
to Table 1.

Table 1: Choosing x, y and z

q q′ x y z x+ y + z

5 12 0 1 4 5

6 14 0 1 2 3

First observe that, in all cases x, y and z are distinct and y, z ̸= 0. By
inspection it also holds that x+y+ z is coprime to q′ for all possible choices
of q and q′.

Suppose S is anOSq(2) of maximal periodm (i.e. of period q(q−1)/2 (q odd)
or q(q − 2)/2 (q even)), such that its ring sequence has the form [xyzx . . .]
or, should x, y, z ̸= 0, the form [0xyzx . . .], which exists from Lemma 3.11.
Construct U from S using the method of Corollary 3.9. Observe that, from
the method of construction, the ring sequence for U has the form [xyzx . . .]
or, should x ̸= 0, the form [0xyzx . . .]. Finally, construct U∗ from U by
deleting the cycle [xyz] from its ring sequence.

Theorem 3.12. Suppose q > 4 and q′ = 2q + 1 or q′ = 2q + 2. If U∗

is constructed according to the method of Construction 3.5 then it is an
SOSq′(2) of period 2q(q − 1)− 3 (q odd) or 2q(q − 2)− 3 (q even) where in
every case wq′(U

∗) is coprime to q′.

Proof. By Corollary 3.9, the sequence U is an SOSq′(2) of period 2q(q− 1)
(q odd) or 2q(q − 1) (q odd) where wq′(U) = 0. The result now follows
immediately by observing that constructing U∗ from U does not add any
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new 2-tuples, that wq′(U
∗) = q′− (x+ y+ z), and, as noted above, x+ y+ z

is coprime to q′.

The following brief example shows the operation of this construction.

Example 3.5. Suppose q = 5 and q′ = 11. In this case x = 2, y = 3 and
z = 4, and so we need an OS2(q) of maximal period with ring sequence of
the form [02342 . . .]. An example of such a sequence is S = [02342 10314].
Then S = [02342 10314] and

S′′ = S′||(−S′) = [0, 2, 3, 4, 2, 1, 0, 3, 1, 4, 0, 9, 8, 7, 9, 10, 0, 8, 10, 7]

(where || denotes sequence concatenation). It follows from Theorem 3.4 that
S′′ is an SOS11(2). We next have

T = [6, 2, 8, 4, 9, 1, 6, 3, 10, 4],

where, from Lemma 3.6, T is an SOS11(2). Then

T ′ = T ||(−T ) = [6, 2, 8, 4, 9, 1, 6, 3, 10, 4, 5, 9, 3, 7, 2, 10, 5, 8, 1, 7].

We next concatenate S′′ and T ′ to obtain

U =[0, 2, 3, 4, 2, 1, 0, 3, 1, 4, 0, 9, 8, 7, 9, 10, 0, 8, 10, 7

6, 2, 8, 4, 9, 1, 6, 3, 10, 4, 5, 9, 3, 7, 2, 10, 5, 8, 1, 7].

which by Corollary 3.9 is an SOS11(2). Finally we simply delete the cycle
[234] from U to obtain

U∗ =[0, 2, 1, 0, 3, 1, 4, 0, 9, 8, 7, 9, 10, 0, 8, 10, 7

6, 2, 8, 4, 9, 1, 6, 3, 10, 4, 5, 9, 3, 7, 2, 10, 5, 8, 1, 7].

which is an SOS11(2) of period 37 with w11(U
∗) = 2.

We also have the following simple corollary, which follows immediately from
Corollary 3.10.

Corollary 3.13. There exists an SOSq(2) U
∗ of period:

(q − 2)(q − 4)

2
− 3 if q ≡ 0 (mod 4),

(q − 1)(q − 5)

2
− 3 if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
− 3 if q ≡ 2 (mod 4),

(q − 1)(q − 3)

2
− 3 if q ≡ 3 (mod 4),

for all q ≥ 11, where wq(U
∗) is coprime to q.
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4 Good special orientable sequences

We next consider how to construct good special orientable sequences, given
that this additional property enables us to apply certain recursive construc-
tions from Alhakim at al. [2]. We first need the following.

Definition 4.1 ([2]). An orientable (respectively negative orientable) se-
quence with the property that any run of 0 has length at most n− 2 is said
to be good.

4.1 An initial observation

We immediately have the following, although the sequences have period only
of the order of half the bound of Theorem 2.1.

Theorem 4.1. There exists a good SOSq(2), of period

q(q − 4)

4
if q ≡ 0 (mod 4),

(q + 1)(q − 1)

4
if q ≡ 1 (mod 4),

q(q − 2)

4
if q ≡ 2 (mod 4),

(q + 1)(q − 3)

4
if q ≡ 3 (mod 4),

for all q ≥ 5.

Proof. The OSq′(n) T
′ of Theorem 3.7 is good by construction. The result

follows using the same argument as in Corollary 3.5.

In the remainder of this section we show how we can do considerably better
than this.

4.2 A simple modification

A simple method of constructing a good special orientable sequence arises
from the observation that an SOSq(n) that possesses no zeros is automat-
ically a good SOSq(n). With this is mind we modify the sequences U of
Corollary 3.9. Note that such a sequence U will always contain an even
number of zeros, since in the sequences S′ and −S′ that are concatenated
to construct U , every zero in S′ will give rise to a zero in −S′.

Construction 4.1. Suppose q, q′, n are integers satisfying q′ ≥ 2q + 2,
q > 1 and n > 1. Suppose U is an SOSq′(n) constructed according to
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Corollary 3.9. Then let U ′ be derived from U by replacing half of the zeros
with q + 1 and the other half with q′ − q − 1.

Theorem 4.2. Suppose q, q′, n are integers satisfying q′ ≥ 2q+2, q > 1 and
n > 1. Suppose U is an SOSq′(n) constructed according to Corollary 3.9.
If U ′ is derived from U using Construction 4.1, then U ′ is a good SOSq′(n)
of the same period as U , and wq′(U

′) = 0.

Proof. If we can show that U does not contain any occurrences of q + 1 or
q′−q−1 then the main result will follow immediately. Now U is constructed
by concatenating sequences S′′ and T ′, obtained using Constructions 3.2
and 3.4, so we next examine these two sequences.

S′′ is obtained by concatenating sequences S′ and−S′, where S is anOSq(n).
Now S′ contains only elements between 0 and q − 1 inclusive, and −S′

contains only 0 or elements between q′ − q+1 and q′ − 1. Since q′ ≥ 2q+2,
q′ − q + 1 ≥ q + 2. Hence S′′ does not contain any occurrences of q + 1 or
q′ − q − 1.

T ′ is constructed as the concatenation of sequences T and −T , where an
element of T is in one of the ranges [1, q] and [q′− q, q′− 1]. Also, as before,
since q′ ≥ 2q + 2 we have q′ − q ≥ q + 2. Hence T does not contain any
occurrences of q+1 or q′ − q− 1. Now consider −T . It follows immediately
that the elements of −T are in the same ranges as T . Hence T ′ will not
contain any instances of q + 1 or q′ − q − 1.

It remains to show that wq′(U
′) = 0. From Corollary 3.9 we know that

wq′(U) = 0. The only changes made to U are to add q + 1 to half of
the zeros and q′ − q − 1 to the other half. Thus, if U contains 2s zeros,
w(U ′) ≡ w(U) ≡ 0 + s(q + 1 + q′ − q − 1) ≡ 0 (mod q′), and the result
follows.

Remark 4.1. A good SOSq′(n) with identical parameters could be con-
structed by taking an SOSq′−1(n) constructed according to Corollary 3.9,
and ‘adding one’ to every element. More formally, since each element of U
is in Zq′−1, we treat every element of U as an integer, add one, and then
treat the result as an element of Zq′ .

The following example is similar to Examples 3.1 and 3.4.

Example 4.1. Suppose q = 5, q′ = 12 and n = 2. As previously, we build
upon the OS5(2) with ring sequence S = [01234 02413]. Analogously to the
second part of Example 3.1 we have

S′′ = [0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 11, 10, 9, 8, 0, 10, 8, 11, 9].

Analogously to Example 3.3 we have

T ′ = [7, 1, 10, 3, 8, 5, 10, 4, 11, 3, 5, 11, 2, 9, 4, 7, 2, 8, 1, 9].
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We simply concatenate them to obtain

U =[0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 11, 10, 9, 8, 0, 10, 8, 11, 9,

7, 1, 10, 3, 8, 5, 10, 4, 11, 3, 5, 11, 2, 9, 4, 7, 2, 8, 1, 9]

which by Corollary 3.9 is an SOS12(2) (and we can observe it contains no
occurrences of q + 1 = 6).

Finally, we replace every 0 with q+1 = 6 (since in this case q′−q−1 = q+1)
to obtain

U ′ =[6, 1, 2, 3, 4, 6, 2, 4, 1, 3, 6, 11, 10, 9, 8, 6, 10, 8, 11, 9,

7, 1, 10, 3, 8, 5, 10, 4, 11, 3, 5, 11, 2, 9, 4, 7, 2, 8, 1, 9]

which by Theorem 4.2 is a good SOS12(2) with w12(U
′) = 0.

Corollary 4.3. There exists a good SOSq(2) of period:

(q − 2)(q − 4)

2
if q ≡ 0 (mod 4),

(q − 3)(q − 5)

2
if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
if q ≡ 2 (mod 4),

(q − 3)(q − 7)

2
if q ≡ 3 (mod 4),

for all q ≥ 6.

Proof. Suppose q ≥ 6.

� If q ≡ 0 (mod 4) then q−2
2 is odd, and by [9, Lemma 2.2] there exists

an OS q−2
2
(2) with period q−2

2 ( q−2
2 − 1)/2. So by Theorem 4.2 there

exists a good SOSq(2) of period 4 q−2
2 ( q−2

2 − 1)/2 = (q−2)(q−4)
2 .

� If q ≡ 1 (mod 4) then q−3
2 is odd, and by [9, Lemma 2.2] there exists

an OS q−3
2
(2) with period q−3

2 ( q−3
2 − 1)/2. So by Theorem 4.2 there

exists a good SOSq(2) of period 4 q−3
2 ( q−3

2 − 1)/2 = (q−3)(q−5)
2 .

� If q ≡ 2 (mod 4) then q−2
2 is even, and by [9, Lemma 2.2] there exists

an OS q−2
2
(2) with period q−2

2 ( q−2
2 − 2)/2. So by Theorem 4.2 there

exists a good SOSq(2) of period 4 q−2
2 ( q−2

2 − 2)/2 = (q−2)(q−6)
2 .

� If q ≡ 3 (mod 4) then q−3
2 is even, and by [9, Lemma 2.2] there exists

an OS q−3
2
(2) with period q−3

2 ( q−3
2 − 2)/2. So by Theorem 4.2 there

exists a good SOSq(2) of period 4 q−3
2 ( q−3

2 − 2)/2 = (q−3)(q−7)
2 .
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4.3 Adjusting the weight

Just as was the case in the previous section, we need to modify the sequences
we have just constructed to ensure the result has weight coprime to q′. We
can employ an identical strategy to that described in Section 3.4.

Construction 4.2. Suppose q > 4 and q′ = 2q + 2 or q′ = 2q + 3. Set
x = 0, y = 1 and z = q − 1 (which are distinct since q > 2). By inspection
it also holds that (x+ q+1)+ y+ z = 2q+1 is coprime to q′ for all possible
choices of q and q′.

Suppose S is an OSq(2) of maximal period m (i.e. of period q(q − 1)/2
(q odd) or q(q − 2)/2 (q even)), such that its ring sequence has the form
[xyzx . . .], which exists from Lemma 3.11 — also observing that since q > 4
the sequence will contain at least two occurrences of x. Construct U from S
using the method of Corollary 3.9, and U ′ from U using Construction 4.1,
ensuring that the first two zeros in U are changed to q + 1. Observe that,
from the method of construction, the ring sequence for U ′ has the form
[q+1, 1, q−1, q+1, . . .]. Finally, construct U∗∗ from U ′ by deleting the first
three elements of its ring sequence.

Theorem 4.4. Suppose q > 4 and q′ = 2q + 2 or q′ = 2q + 3. If U∗∗ is
constructed according to the method of Construction 4.2 then it is a good
SOSq′(2) of period 2q(q − 1)− 3 (q odd) or 2q(q − 2)− 3 (q even) where in
every case wq′(U

∗∗) is coprime to q′.

Proof. By Theorem 4.2, the sequence U ′ is an SOSq′(2) of period 2q(q− 1)
(q odd) or 2q(q − 1) (q odd) where wq′(U) = 0. The result now follows
immediately by observing that constructing U∗∗ from U ′ does not add any
new 2-tuples, that wq′(U

∗∗) = q′ − (2q + 1), and, q′ − (2q + 1) is coprime to
q′.

The following brief example shows the operation of this construction.

Example 4.2. Suppose q = 5, q′ = 12 and n = 2. We need an OS5(2) with
ring sequence starting [0140 . . .]. One possibility is [01402 13423]. As in the
previous examples we have

S′′ = S′|| − S′ = [0, 1, 4, 0, 2, 1, 3, 4, 2, 3, 0, 11, 8, 0, 10, 11, 9, 8, 10, 9].

Analogously to Example 3.3 we have

T ′ = [7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9].

We simply concatenate them to obtain

U =[0, 1, 4, 0, 2, 1, 3, 4, 2, 3, 0, 11, 8, 0, 10, 11, 9, 8, 10, 9,

7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9]

20



which by Corollary 3.9 is an SOS12(2) (and we can observe it contains no
occurrences of q + 1 = q′ − q − 1 = 6).

Next, we replace every 0 with q+1 = 6 (since in this case q′− q−1 = q+1)
to obtain

U ′ =[6, 1, 4, 6, 2, 1, 3, 4, 2, 3, 6, 11, 8, 6, 10, 11, 9, 8, 10, 9,

7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9]

which by Theorem 4.2 is a good SOS12(2) with w12(U
′) = 0.

Finally we simply delete the first three terms of U ′ to obtain

U∗∗ =[6, 2, 1, 3, 4, 2, 3, 6, 11, 8, 6, 10, 11, 9, 8, 10, 9,

7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9].

which is a good SOS12(2) of period 37 with w12(U
∗∗) = 1.

The following result follows immediately from Corollary 4.3 and Theorem 4.4.

Corollary 4.5. There exists a good SOSq(2) of period:

(q − 2)(q − 4)

2
− 3 if q ≡ 0 (mod 4),

(q − 3)(q − 5)

2
− 3 if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
− 3 if q ≡ 2 (mod 4),

(q − 3)(q − 7)

2
− 3 if q ≡ 3 (mod 4),

for all q ≥ 12, where in every case the weight of the sequence is a unit
modulo q.

5 Constructing orientable sequences

We now consider how to obtain large-period orientable sequences using
the special orientable sequences we have constructed earlier in this paper.
We follow two different approaches, both employing recursive construction
methods described in Alhakim et al. [2].

5.1 Special orientable sequences for n = 3

We first show how to generate an SOSq(3) with large period for arbitrary
q > 2. We do so using the following result2. In this case we do not require
the input sequences to be good.

2Note that this is actually a special case of the result from [2].
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Theorem 5.1 ([2], Theorem 6.11). Suppose S = (si) is an SOSq(n) of
period m and q > 2. If wq(S) is coprime to q then the set D−1(S) contains
cyclic shifts of a single SOSq(n+1) of period qm (where D is as defined in
Section 1.2).

Combining this with Construction 3.5 and Theorem 3.12 we get the following
corollary.

Corollary 5.2. Suppose q ≥ 5 and let S be an OSq(2) of maximal period
m (i.e. of period q(q − 1)/2 (q odd) or q(q − 2)/2 (q even)), such that its
ring sequence has the form [xyzx . . .] or, should x ̸= 0, the form [0xyzx . . .],
which exists from Lemma 3.11, where x, y and z are as specified in Con-
struction 3.5. Suppose U∗ is constructed from S using the method of Con-
struction 3.5, where q′ = 2q+1 or q′ = 2q+2. Then D−1(U∗) is a SOSq′(3)
of period 2q3 − 2q2 − 3q (q odd) or 2q3 − 4q2 − 3q (q even).

Proof. By Theorem 3.12, U∗ is a SOSq′(2) of period 2q(q − 1)− 3 (q odd)
or 2q(q− 2)− 3 (q even) where wq′ is coprime to q′. The result follows from
Theorem 5.1.

We also have the following, which is immediate from Corollary 3.13.

Corollary 5.3. There exists an SOSq(3) of period:

q3 − 6q2 + 2q

2
if q ≡ 0 (mod 4),

q3 − 6q2 − q

2
if q ≡ 1 (mod 4),

q3 − 8q2 + 6q

2
if q ≡ 2 (mod 4),

q3 − 4q2 − 3q

2
if q ≡ 3 (mod 4),

for all q ≥ 11.

Observe that these sequences have period a little less than the OSq(3) se-
quences constructed in [9]. However, the sequences constructed here have
the additional property of being both orientable and negative orientable,
which may be of use in some applications.

5.2 Special orientable sequences for general n

We next show how to construct SOSq(n) with large period for arbitrary
q > 3 and arbitrary n > 2. We employ the following result3. Note that in

3As above, this is actually a special case of the result from [2].
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this case we do require our input sequences to be good. We first need the
following notation from [2]. Suppose that the ring sequence of a periodic
sequence S is [s0, s1, · · · , sm−1] and that r is the smallest non-negative in-
teger such that at = sr, sr+1, · · · , sr+t−1 is a maximal run for a ∈ Zq, where
at denotes a string of t consecutive terms a. Define the sequence Ea(S) to
be the sequence with ring sequence

[s0, s1, · · · , sr−1, a, sr, sr+1, · · · , sm−1]

i.e. where the occurrence of at is replaced with at+1.

Theorem 5.4 ([2], Corollary 6.22). Suppose Sn is a good SOSq(n) of period
mn, where wq(Sn) is coprime to q. Recursively define the sequences Si+1 =
Ea(D−1(Si)), where a = 1 − wq(D

−1(Si)), for i ≥ n, and suppose Si has
period mi (i > n). Then, Si is an SOSq(i) for every i ≥ n, and mn+j =

qmn+j−1 + 1 for every j ≥ 1 (and hence mn+j = qjmn + qj−1
q−1 for every

j ≥ 1).

Combining this theorem with Construction 4.2 and Theorem 4.4 we get the
following corollary.

Corollary 5.5. Suppose q ≥ 5 and let S be an OSq(2) of maximal pe-
riod m (i.e. of period q(q − 1)/2 (q odd) or q(q − 2)/2 (q even)), such
that its ring sequence has the form [xyzx . . .] or, should x ̸= 0, the form
[0xyzx . . .], which exists from Lemma 3.11, where x, y and z are as specified
in Construction 4.2. Suppose U∗∗ is constructed from S using the method
of Construction 4.2, where q′ = 2q + 2 or q′ = 2q + 3. Setting S2 = U∗∗ in
Theorem 5.4, Sn is a good SOSq′(n) of period

2q′n−2(q(q − 1)− 3) +
q′n−2 − 1

q′ − 1
(q odd), or

2q′n−2(q(q − 2)− 3) +
q′n−2 − 1

q′ − 1
(q even)

for every i ≥ 2.

Proof. By Theorem 4.4, U∗∗ is a good SOSq′(2) of period 2q(q − 1)− 3 (q
odd) or 2q(q−2)−3 (q even), where wq′ is coprime to q′. The result follows
from Theorem 5.4.

Corollary 5.6. There exists an SOSq(n) of period:
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qn − 6qn−1 + 2qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 0 (mod 4),

qn − 8qn−1 + 9qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 1 (mod 4),

qn − 8qn−1 + 6qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 2 (mod 4),

qn − 10qn−1 + 15qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 3 (mod 4),

for all q ≥ 12, and n ≥ 2.

Proof. Suppose q ≥ 12 and n ≥ 2.

� If q ≡ 0 (mod 4) then r = q−2
2 is odd, and by Corollary 5.5 there exists

a good SOSq(n) with period 2qn−2(r(r−1)−3)+ qn−2−1
q−1 . Substituting

in r = (q − 2)/2 the result follows.

� If q ≡ 1 (mod 4) then r = q−3
2 is odd, and by Corollary 5.5 there exists

a good SOSq(n) with period 2qn−2(r(r−1)−3)+ qn−2−1
q−1 . Substituting

in r = (q − 3)/2 the result follows.

� If q ≡ 2 (mod 4) then r = q−2
2 is even, and by Corollary 5.5 there exists

a good SOSq(n) with period 2qn−2(r(r−2)−3)+ qn−2−1
q−1 . Substituting

in r = (q − 2)/2 the result follows.

� If q ≡ 3 (mod 4) then r = q−3
2 is even, and by Corollary 5.5 there exists

a good SOSq(n) with period 2qn−2(r(r−2)−3)+ qn−2−1
q−1 . Substituting

in r = (q − 3)/2 the result follows.

6 Concluding remarks

In this paper we have constructed orientable sequences with the additional
property that they are also negative orientable. We used an approach pro-
posed in [2] to generate orientable sequences with large period of any order
over an alphabet of any size using ‘starter’ sequences with this additional
property. Whilst this yields sequences with shorter periods than general
orientable sequences, the periods remain asymptotic to the optimal as the
alphabet size increases and the additional property could be a benefit in
some applications.

It remains an open problem to find constructions of orientable sequences
with optimal periods.

24



References

[1] A. Alhakim and M. Akinwande. A recursive construction of nonbinary
de Bruijn sequences. Des. Codes Cryptogr., 60(2):155–169, 2011.

[2] A. Alhakim, C. J. Mitchell, J. Szmidt, and P. R. Wild. Orientable se-
quences over non-binary alphabets. Cryptogr. Commun., 16:1309–1326,
2024.

[3] J. Burns and C. J. Mitchell. Coding schemes for two-dimensional position
sensing. Technical Report HPL–92–19, January 1992. https://www.

chrismitchell.net/HPL-92-19.pdf.

[4] Z.-D. Dai, K. M. Martin, M. J. B. Robshaw, and P. R. Wild. Orientable
sequences. In M. J. Ganley, editor, Cryptography and Coding III, pages
97–115. Oxford University Press, Oxford, 1993.
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