
Using CardSpace as a Password-based
Single Sign-on System

Haitham S. Al-Sinani and Chris J. Mitchell

Technical Report
RHUL–MA–2011–14
23 August 2011

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports



Abstract

In this paper we propose a simple scheme that allows Card-Space
to be used as a password-based single sign-on system, thereby both
improving the usability and security of passwords as well as encour-
aging CardSpace adoption. We describe three related approaches to
achieving password-based single sign-on using CardSpace. In each case
users are able to store their credentials for a set of websites in a per-
sonal card, and use it to seamlessly single sign on to all these websites.
The approaches do not require any changes to login servers or to the
CardSpace identity selector and, in particular, they do not require web-
sites to support CardSpace. We also describe three proof-of-concept
prototypes and give usability, security and performance analyses.

Keywords: CardSpace, Single sign-on, Browser Extension

1 Introduction

Single sign-on (SSO) involves a user authenticating only once and thereby
gaining access to multiple systems without the need to sign on separately
at each of them. The notion of SSO is clearly attractive, not least from a
user convenience perspective, particularly as the number of on-line services
requiring authentication continues to grow. Furthermore, SSO helps to re-
duce the risk of exposure of passwords to malicious parties, including via
key logging, shoulder surfing, etc. In this paper, we explore three different
approaches to building a password-based SSO system on top of CardSpace.

CardSpace is a user-friendly tool supporting user authentication. To
sign on to a website, a CardSpace user selects a virtual card, known as an
information card (InfoCard), from an interface provided by the CardSpace
identity selector (referred to below simply as the selector), instead of pro-
viding a username and password.

Despite the introduction of CardSpace (and other similar systems), the
vast majority of websites still use username-password for authentication,
and this is likely to continue for at least the next few years [9]. One major
problem with CardSpace, and with other similar systems providing more
secure means of user authentication, is that the transition from username-
password is extremely difficult to achieve. Service providers will not wish
to do the work necessary to support CardSpace if very few users employ it;
equally, users are hardly likely to use CardSpace if it is only supported by
a tiny minority of websites. The scheme proposed here is designed to help
overcome this barrier to change by allowing an evolutionary deployment of
CardSpace, initially as a password-based SSO system, and, subsequently,

1



once users are familiar with its interface, as a more sophisticated means of
user authentication.

In this paper, we describe three simple approaches that all take ad-
vantage of the selector interface to offer SSO functionality. The goal is to
develop a visual approach to SSO that is transparent to both the selector
and relying parties (RPs). The techniques we discuss work with existing
(unmodified) web servers, and, in particular, RPs are not required to sup-
port CardSpace. The scheme we describe here is related to a scheme called
PassCard [3, 6] which allows CardSpace to be used as a password manager
through the storage of user credentials in a CardSpace personal card. The
main novel feature is the storage and subsequent use of multiple sets of cre-
dentials in a single InfoCard, allowing the provision of SSO functionality.
An example use-case would involve a user storing the login credentials of
their favourite (or most frequently-visited) websites, e.g. a university portal,
G-mail/Hotmail, Facebook, YouTube and Twitter, in a single CardSpace
personal card; selection of such a card will automatically sign on the user to
all the relevant sites.

The remainder of the paper is organised as follows. Section 2 presents
an overview of CardSpace, and section 3 presents the proposed scheme. In
section 4 we describe three prototype implementations, and in section 5 we
compare them. Section 6 underlines possible features and section 7 outlines
potential issues. Section 8 highlights possible areas for related work, and,
finally, section 9 concludes the paper.

2 CardSpace

2.1 Introduction

CardSpace is Microsoft’s implementation of a digital identity metasystem,
which provides a secure and consistent way for users to control and manage
personal data, to review personal data before sending it to a website, and
to verify the identity of visited websites. It also enables websites to obtain
personal information from users, e.g. to support user authentication and
authorisation.

The selector enables users to manage digital identities issued by a variety
of identity providers (IdPs), and use them to access on-line services. Dig-
ital identities are visually represented to users as InfoCards, implemented
as XML files that list the types of claim made by one party about itself or
another party. Users can employ one (virtual) InfoCard to identify them-
selves to multiple websites. Alternatively, separate InfoCards can be used

2



in distinct situations. A website can specify which types of InfoCards are
accepted and the types of claim which must be asserted.

There are two types of InfoCards: personal cards and managed cards.
Personal cards are created by users themselves, and the claims listed in such
an InfoCard are asserted by the self-issued identity provider (SIIP) that co-
exists with the selector on the user machine. In this paper we describe a way
of using personal cards to enable CardSpace to function as a password-based
SSO system. Managed cards, on the other hand, are obtained from remote
IdPs.

InfoCards, personal or managed, do not contain any sensitive informa-
tion; instead an InfoCard carries metadata that indicates the types of per-
sonal data associated with this identity, and from where assertions regarding
this data can be obtained. The data referred to by a personal card is stored
on the user machine, whereas the data referred to by a managed card is held
by the IdP that issued it [1, 4, 7, 10, 12].

CardSpace is supported in Internet Explorer (IE) from version 7 on-
wards. Extensions to other browsers, e.g. Firefox1 and Safari2, also exist.
An updated version, CardSpace 2.0 Beta 2, was released, although Microsoft
announced in early 2011 that it will not ship; instead Microsoft has released
a technology preview of U-Prove3. In this paper we refer throughout to the
CardSpace version that is shipped by default as part of Windows Vista and
Windows 7, that is available as a free download for XP and Server 2003,
and which has been approved as an OASIS standard [11].

2.2 CardSpace Personal Cards

Since the proposed scheme builds on personal cards, we next outline their
use. Prerequisites for use of a personal card include a CardSpace-enabled
RP and a CardSpace-enabled user agent (UA), e.g. a web browser capable
of invoking the selector. Personal cards can contain claims of the following
14 (editable) types: First Name, Last Name, Email Address, Street, City,
State, Postal Code, Country/Region, Home Phone, Other Phone, Mobile
Phone, Date of Birth, Gender, and Web Page.

When using personal cards, CardSpace adopts the following protocol.
We describe the case where the RP does not employ a security token ser-
vice (STS), a software component responsible for security policy and token

1https://addons.mozilla.org/en-US/firefox/addon/cardspace-support-for-firefox/
2http://hccp.org/safari-plug-in.html
3http://blogs.msdn.com/b/card/archive/2011/02/15/

beyond-windows-cardspace.aspx

3



management within an IdP and, optionally, within an RP.

1. UA → RP: HTTP/S Request (Get a login page).

2. RP → UA: HTTP/S Response. A login page is returned containing
CardSpace-enabling tags in which the RP security policy is embedded.

3. User → UA: Selector Invocation. The UA offers the user the option
to use CardSpace (e.g. via an RP-embedded logo on the login page),
and selection of this option causes the agent to invoke the selector and
pass it the RP policy. If this is the first time that this RP has been
contacted, the selector will display the RP identity and give the user
the option to either proceed or abort the protocol.

4. Selector → InfoCard: Displaying Cards. After evaluating the RP pol-
icy the selector highlights the InfoCards matching the policy, and greys
out the rest. InfoCards previously used for this RP are displayed in
the upper half of the selector screen.

5. User → Selector: Card Selection. The user chooses a personal card.
(Alternatively, the user could create and choose a new personal card).
At this point the user can check the requested claim types and decide
whether or not to proceed. The selected InfoCard may contain several
claims, but only the claims explicitly requested in the policy will be
passed to the requesting RP.

6. Selector 
 SIIP: Exchange of RST-RSTR. The selector creates and
sends a SAML-based request security token (RST) to the SIIP, which
responds with a SAML-based request security token response (RSTR).

7. Selector → UA → RP: RSTR. The RSTR is passed to the UA, which
forwards it to the RP.

8. RP→ User: Grant/Deny Access. The RP validates the received token,
and, if satisfied, grants access.

The use of managed cards is covered in the relevant specifications [7, 10, 12,
11].

3 SingleSigner

We now describe the SSO scheme, which we call ‘SingleSigner’. The idea
behind SingleSigner is to store a set of user credentials in a special per-
sonal card, which, if selected, will transparently and automatically sign in

4



the user to a pre-defined set of websites. The parties involved are an RP,
a CardSpace-enabled UA (e.g. a suitable web browser such as IE), and a
browser extension installed on the user PC implementing the protocol de-
scribed below.

Whenever a user visits a website requiring username-password authenti-
cation, the SingleSigner functionality can be invoked by clicking on a special
icon added to the website by SingleSigner. This causes the selector to run,
at which point the user must select a special personal card containing the
credentials for the visited site (encoded in a SingleSigner-specific format).
The user will be automatically logged in to the visited site and also to all
the other sites whose credentials are stored in the selected card.

The version of the system described in section 3.2 and the prototypes
described in section 4 only work if the visited site does not use HTTPS4.
This limitation is shared by the original version of PassCard [3]. However,
as discussed in section 7, this limitation can be removed in exactly the same
way as it is in the current version of PassCard [2, 6].

3.1 Prerequisites

The scheme has the following operational requirements.

• Either prior to or during use of the scheme, the user must create a
special personal card, referred to as an SSOcard, containing the (URL,
username, password) triples for the websites supported by this card.
These triples must be stored using a specific encoding in pre-defined
card fields5. For ease of identification, the user can give the SSOcard
a meaningful name, e.g. of the corresponding websites. The user can
also upload an image for the SSOcard, e.g. containing the logos of the
sites whose credentials it contains.

• A special browser extension must be installed on the user PC. This
must be able to implement the protocol described in section 3.2, in-
cluding reading and modifying browser-rendered web pages, reading
CardSpace-issued RSTR tokens, and adding a special icon to RP web
pages6 to enable the user to invoke the scheme. To maximise accept-
ability, a user should also be able to enable or disable it at will.

4Note that only the visited site must not use HTTPS; other sites included on the same
SSOcard can use either HTTPS or HTTP (see section 7).

5The credential sets could alternatively be stored in a single card field, separated using
a special character. However, this might make using the scheme more difficult for the end
user.

6Regardless of whether or not an RP already supports CardSpace, the browser exten-

5



3.2 Protocol Flow

The protocol steps are as follows; a summary of the protocol is shown in
Fig. 1.

1. UA → RP: HTTP GET Request (a login page is requested).

2. RP → UA: HTTP Response (the login page is returned).

3. Browser extension→ UA: Preprocessing. The browser extension per-
forms the following processes using the login page provided by the
RP.

(a) It scans the page for a login form containing username and pass-
word fields and a submit button. If all are found, it continues; if
not it aborts.

(b) It adds CardSpace-enabling tags to the login page, including em-
bedding a security policy. The embedded policy must request all
the card fields used by the implementation of SingleSigner, where
the (editable) fields must be marked as optional. If all fields were
marked as mandatory then only those cards containing data in
every SSOcard field would be highlighted by the selector.

(c) It adds a function to the login page to intercept the RSTR token
that will later be returned by the selector.

(d) It causes a special icon to appear above the submit button, in
such a way that clicking it invokes the selector.

4. User → UA: Icon Clicking. The user clicks on the added icon and the
selector lights up.

5. User → Selector: Card Selection. The user selects and submits an
SSOcard. Alternatively, the user could create and choose a new SSO-
card. The selector creates and sends an RST to the SIIP, which re-
sponds with an RSTR.

6. Selector → UA: RSTR. The selector passes the RSTR to the UA.

7. Browser Extension [Intercepts] RSTR. The browser extension per-
forms the following tasks.

sion will always add the special icon to the RP page as long as it detects username-password
prompts on the page. Informal tests on the prototype implementations suggest that this
will not disrupt the normal operation of CardSpace.

6



(a) It intercepts and parses the RSTR.

(b) It extracts the URL for the visited site together with the user-
name and password associated with this URL from one of the
pre-specified fields.

(c) It auto-populates and auto-submits the login form using the ex-
tracted username and password.

(d) The website server verifies the credentials it receives, and, if sat-
isfied, grants access.

8. Browser Extension [Performs] SSO. The browser extension repeats
steps 7b–7d for every other website included in the user-selected SSO-
card, invoking a new browser window for each site7. Note that the
detailed operation of this step will vary depending on the method be-
ing used (see below).

There are a variety of ways in which the user credentials could be sent to
a website in step 8. We next discuss three possible approaches to achieving
this, namely: URL query parameters, client-side cookies, and hidden html
form variables. Note that the choice of approach only affects step 8. As
discussed in sections 4.4.3 and 5, the URL query parameters approach is
more usable than the other two approaches, and is hence described first as
the primary approach.

3.2.1 Primary Approach

For each site listed in the SSOcard, the browser extension creates a URL
containing the site’s address and the user credentials for this site (as taken
from the SSOcard). The browser extension then creates a browser window
for each site. Finally, the browser extension reads the credentials from the
URL, and auto-populates and submits the login form.

The fact that SingleSigner automatically creates a browser window for
each site included in an SSOcard could be somewhat intrusive for the user8.
We therefore also propose a slightly different method of operation. This

7A new browser window is invoked in order to maintain the established authenticated
session with each of the websites. Following a successful login process, most websites
typically create a short-lived cookie (a session cookie — see http://en.wikipedia.org/

wiki/HTTP_cookie) which will be deleted if the browser window is closed or if a certain
period of inactivity elapses.

8Whether or not this is a problem in practice depends partly on the number of sets of
credentials included in a single SSOcard.

7



alternative method operates as in step 8, except that, after invoking a new
browser window for each site in the SSOcard, the browser extension stores
(e.g. in a cookie) the URL of the page to which the user is granted access
following a successful authentication. The browser extension then attempts
to close (but not sign out) each page it has invoked; the user-visited page
will, of course, remain open since it was not invoked by the extension. When
a user later visits a website included in the submitted SSOcard, the browser
extension will auto-redirect the user to the logged-in page that the extension
stored earlier9 and then terminate. As long as the main browser session is
still live, the user logged-in session at each site included in the SSOcard
should still be valid; however, the session may be invalid if the main browser
session is closed or if a certain period of inactivity (as determined by the
site server) has elapsed. This method has been successfully tested with the
URL query parameters approach.

3.2.2 Other Approaches

We next describe two other approaches to implementing step 8 of the pro-
tocol, namely the use of either cookies or hidden form variables.

Cookies. From a user perspective this approach is similar to the URL query
parameters approach, except that the user must append a ‘flag’ word
to each credential triple when the SSOcard is created; this word must
be manually removed once the SSOcard has been used.

The browser extension first examines the RSTR message to detect if
the flag word is present at the end of each set of credentials; if so, it runs
in the exact same way as the URL query parameters protocol, except
that before the browser extension auto-populates and submits the login
form, it sets a persistent cookie10 in order to store the username and
password values for future logins. A cookie is thus created for each
website whose credentials are stored in the SSOcard. If the flag word
is not present, then the extension invokes a browser window for each
site whose credentials are included in the SSOcard. It then recovers

9If such a page was not stored, then some website servers would prompt the user to
re-authenticate.

10Persistent cookies can survive across a number of sessions, including after exiting the
browser and/or after a machine reboot. Such cookies have an expiry date; if a cookie
expires it is deleted.

8



the user credentials from the appropriate cookie11, and uses them to
auto-populate the site login form, which it auto-submits.

Note that, unlike the other approaches, here the user credentials are
not retrieved from a hidden HTML form or from a URL, thereby re-
ducing the exposure of username-password values (since the values will
not be shown in the browser URL address). This provides protection
against shoulder-surfing attacks.

Hidden Form Variables. In this approach the browser extension creates
a separate invisible HTML form (containing hidden variables) for each
site listed in the SSOcard. Each form is auto-filled using the user cre-
dentials and then auto-submitted. The extension opens a new browser
window for each site contained in the SSOcard.

To make this approach work, certain RP-specific information (notably
the URL of the login server and the names given to the username and
password fields) must be available to the browser extension indepen-
dently of the SSOcard. This means that every time a new SSOcard is
created (or an existing SSOcard is modified to include a new creden-
tial set) the browser extension must be modified to incorporate this
information.

4 Implementation

We now describe three proof-of-concept prototypes implementing the Sin-
gleSigner scheme presented in section 3.2, one for each of the three de-
scribed approaches to realising step 8. The prototypes operate with both
the CardSpace and the Higgins12 identity selectors without any modifica-
tion.

4.1 Shared Properties

The prototypes are all coded as JavaScript [15] plug-ins, chosen because its
wide adoption should simplify the porting task for other browsers. They
use the Document Object Model (DOM) to inspect and manipulate HTML

11If the cookie expires or is removed, the browser extension will fail to find an appropriate
cookie and will then prompt the user to add the flag word to the end of each set of
credentials in the relevant SSOcard.

12http://wiki.eclipse.org/GTK_Selector_1.1-Win

9



Figure 1: Protocol Flow

pages and XML documents. The JavaScript code is executed using a C#-
driven browser helper object (BHO), a DLL (Dynamic-Link Library) module
designed as a plug-in for IE. Once installed, the BHO attaches itself to IE,
thus gaining access to the current page’s DOM. In each case, SingleSigner
can readily be enabled or disabled using the add-on manager in the IE ‘Tools’
menu.

4.1.1 SSOcard Format.

The prototype permits credential sets to be stored in any of the 14 personal
card fields with the exception of the Birthday and Gender fields (which
cannot contain arbitrary strings). Credential sets must be stored in the
format:

<URL> <username> <password>
where the three fields are separated by a single space character.

4.1.2 Operation.

In step 3 of the protocol (see section 3.2) the plug-in processes the RP web
page in the following way.

10



3.1 It scans the web page for a login form containing a pair of username and
password fields and a submit button. More specifically, the following
procedure is used.

(a) It scans the web page for a form tag.

(b) If a form tag is found, it searches the form for three input tags
referring to username, password, and submit, as follows:

(i) it searches for an input tag of type ‘text’;

(ii) if found, it searches for another input tag of type ‘password’;
and

(iii) if found, it searches for another input tag of type ‘submit’;
if not found, it searches for an input tag of type ‘image’ and,
if unsuccessful, searches for an event-based input tag of type
‘button’.

(c) If all three fields are detected, then it highlights the username
and password fields in green for ease of identification13.

The above process involves the following detailed processing.

• Scanning does not terminate successfully unless both the user-
name and password fields and the submit button have been de-
tected in a single form, as a web page could potentially contain
more than one input tag of type ‘text’, such as those used for
searching.

• To differentiate between registration and login web pages, the
plug-in terminates if it detects more than one password field be-
tween the username and submit fields. Whereas it appears com-
mon for a login page to only have a single password field before
the submit button, registration pages typically have two password
fields (before the submit button): the first for the user to enter
their password, and the second to confirm their password. Ex-
amples include the registration and login pages hosted by major
websites such as Google, YouTube, Yahoo, Microsoft Research,
SpringerLink14, etc.

• When searching for the form submission button, if no submitting
input tag is found then the plug-in searches for an ‘image’ tag.

13A potential advantage of this step is that if the wrong fields are highlighted, then the
user will know that the scheme should not be used.

14Websites most recently checked on 24/11/2010.

11



This is because, instead of a submit button, some websites display
a clickable image15 with similar functionality.

• Whereas it appears common for a username field to be immedi-
ately followed by a password field, a submit button may not al-
ways immediately follow a password field. For example, some ma-
jor websites (such as Google, YouTube, Yahoo, Gmail, Springer-
Link) add a ‘Stay signed in’ or ‘Remember me’ check box be-
tween the password field and the submit button16. The plug-in
addresses this issue by skipping all tags between the password
field and the submit button, including those of type ‘checkbox’.

3.2 It adds an HTML object tag that allows the user to invoke the selector.
Within the object tag, it sets the param tags to indicate that the RP
security policy requires SSOcards to contain at least one (compulsory)
field17, namely the First Name field, and to also include 11 (optional)
fields, namely Last Name, Email Address, Street, City, State, Postal
Code, Country/Region, Home Phone, Other Phone, Mobile Phone,
and Web Page.

3.3 It adds a function to the head section of the RP login page to intercept
the XML-based RSTR message returned by the selector.

3.4 It inserts the SingleSigner logo (see Fig. 2) in the login page, in such
a way that it appears just before the submit button. The logo is
associated with an ‘on-click’ event, so that, if clicked, the selector is
invoked (after calling the added function). To cater for users with
sight difficulties or web browsers configured not to display images, a
text field can replace the logo. This text is also displayed when the
mouse is held over the SingleSigner logo, indicating that SingleSigner
can be used to sign on.

In step 7, the plug-in performs the following steps.

15This includes an image tag embedded in a hyperlink (anchor) tag, an image tag on
its own, an image tag embedded inside a button tag, an event-based button tag, etc.

16Websites most recently checked on 24/11/2010.
17From a user perspective, marking at least one field as mandatory means less compu-

tation (as explained below) and, ultimately, a faster authentication process, hence helping
user acceptability. In the SSOcard selection step, if the SSOcard only contains one creden-
tial set in a mandatory field then the user only needs to choose an SSOcard and click the
‘Send’ button. If the field was not mandatory but instead optional, then the user would
first need to tick the optional field before clicking the ‘Send’ button. From an operational
perspective, an RP security policy must contain at least one required/mandatory claim;
of course this claim could be the Personal Private Identifier (PPID) claim [7].

12



Figure 2: SingleSigner Logo

7.1 It intercepts the XML-based RSTR message using the added function.

7.2 It parses the intercepted token and extracts the value of the First
Name field as well as the values of any other optional fields present,
thus learning the set of websites supported by the SSOcard.

The plug-in uses an XML parser built into the browser to read and
manipulate the intercepted XML token. The plug-in passes the token
to the parser, which reads it and converts it into an XML DOM object
that can be accessed and manipulated by JavaScript.

7.3 It auto-fills the username and password fields and auto-submits the lo-
gin form of the currently visited website18 using the JavaScript ‘click()’
method.

4.2 The URL Query Parameters Prototype

4.2.1 Operation.

Steps 3.1–7.3 are precisely the same as those described in section 4.1.2.

7.4 For each other site included in the SSOcard:

(a) the plug-in invokes a new browser window (using the JavaScript
built-in method ‘open.window()’), that retrieves the site’s login-
page (using the URL provided in the SSOcard). Note that it
sends the username-password values embedded in the URL (i.e.
URL query parameters) as part of this HTTP request; and

(b) using the login-page returned in the previous step, the plug-in:

18It detects the correct username-password values for the visited site by comparing its
domain name with the URLs contained in the ‘credential’ fields of the RSTR message.

13



(i) parses the URL query parameters to obtain the values of the
username and password;

(ii) locates the username, password, and submit fields;

(iii) auto-populates the username and password fields with the
username and password values; and

(iv) auto-submits the login form using the JavaScript ‘click’ method.

4.2.2 Protecting Credentials.

This approach involves embedding the username and password in the URL.
Thus, if they are embedded in clear text, they will be vulnerable to shoulder-
surfing attacks. To address this potential problem, in step 7.4a the prototype
encrypts these values using AES in CBC mode [13], and decrypts them in
step 7.4b.

The AES key used for username/password encryption is stored in the
plug-in. This would be a security issue if the same key was used by every
copy of the plug-in, but a unique random key could be generated at the
time the plug-in is installed. The presence of the key on the PC does not
significantly increase the risks to credential secrecy, since the credentials
must in any event be stored on the PC.

Embedding the credential values in a URL could also cause problems
because of the URL size limitations; however, such drawbacks are not likely
to be a major problem here since the amount of data involved is relatively
small (see [2]). The use of cryptography also results in a slight performance
delay.

4.3 The Cookies Prototype

4.3.1 SSOcard Format.

The format of the SSOcard is identical to that described in section 4.1.1,
except that, at the time of card creation, a flag word must be appended to
each credential triple (see also section 3.2.2). The prototype expects to find
a string of the form ‘cookie9’, where ‘9’ indicates the lifetime (in days) of the
persistent cookie created by the plug-in. After first use, this flag word must
be removed by the user (and added back if the credential cookie expires).

4.3.2 Operation.

Steps 3.1–7.3 are precisely the same as those described in section 4.1.2. Step
7.4 is precisely as in section 4.2.1, except that the following step is added

14



between steps 7.4.b.iii and 7.4.b.iv:

• the plug-in (as described in section 3.2.2) first examines the RSTR
for the flag word; if present it creates a persistent cookie containing
the username and password. If it is not present then it recovers the
username and password from the cookie.

4.3.3 Protecting Credentials.

This approach involves embedding the username and password in a cookie.
Thus, if they are stored in clear text, they will be readable by anyone with
temporary access to the machine. As in section 4.2.2, this threat can be
reduced by encrypting the data in the cookie, e.g. using a key only known
to the browser plug-in.

4.4 The Hidden Form Fields Prototype

4.4.1 Initialisation.

In this approach, the user must make certain modifications to the plug-in
source code. The user must first obtain the URL of the login server for each
website included in an SSOcard; this can be found by viewing the login-page
HTML source and retrieving the ‘action’ URL of the login form. The user
must also obtain the ‘names’ given to the username and password input
fields19, which could also be found from the page HTML source. The user
must then insert the URL and the names of the username and password
fields into the plug-in source code, following the plug-in instructions.

4.4.2 Operation.

Steps 3.1–7.3 are precisely the same as those described in section 4.1.2.

7.4 For each other site included in the SSOcard, it:

(a) creates an invisible HTML form containing at least two hidden
‘input’ variables, and then auto-fills each variable with the corre-
sponding username or password;

(b) creates a new browser window using the JavaScript built-in method
‘open.window()’; and

(c) auto-submits the invisible HTML form.

19This is important since the site’s login server will use these names to retrieve username-
password values from the HTTP POST array.

15



4.4.3 Operational Issues.

Protoype testing reveals that some website login servers impose restrictions
on externally posted/submitted forms for security reasons. That is, if a
user is currently visiting site a.com and the browser plug-in submits/posts
a login form to site b.com, then access to a protected resource in domain
b.com will not be granted even if the user credentials are correct.

5 Comparison

We next compare the three approaches in terms of usability, security, and
performance.

• Usability. The primary approach only requires entry of (username,
password, URL) triples into SSOcards, and hence is clearly the most
usable. The other two methods either require manual modifications to
the plug-in source code (likely to be completely beyond most users) or
the additional overhead of adding/removing flag words to/from SSO-
card entries.

• Security. The primary approach involves adding encrypted creden-
tials to the URL; recovering the encryption key from the browser plug-
in may be slightly simpler than recovering the credentials from the
CardSpace store. The cookies approach reduces credential exposure
to first card use, and the hidden form variables approach avoids this
risk.

• Performance. The hidden forms approach has the advantage that,
once the browser windows are opened, no further processing is re-
quired. Less processing is required for the primary approach than the
cookies approach.

Table 1 below summarises the comparison.

Table 1: Comparison
URL Params Cookies Hidden Forms

Usability ++ + -

Security + ++ +++

Performance ++ + +++

16



6 Features of SingleSigner

6.1 Security.

SingleSigner uses the functionality of the CardSpace identity selector, and is
supported by its built-in security features. For example, the selector runs in
a separate private desktop session, mitigating the risk of other applications,
e.g. malware, from interacting or interfering with it. In addition, all values
inserted in the fields of an SSOcard are stored in encrypted form on the user
machine.

Furthermore, the selector identifies the visited RP to the user, and indi-
cates whether or not they have visited that particular RP before; if the user
is visiting this RP for the first time, CardSpace requests the user’s permis-
sion to proceed20. This helps to support mutual authentication, since the
user and the RP are both identified to each other.

Unlike many other SSO systems, SingleSigner avoids the need for trusted
third parties. In addition, the automatic form-filling feature reduces expo-
sure to shoulder-surfing attacks and also helps to thwart key loggers.

SingleSigner helps to mitigate the threat of phishing attacks by only
passing a user password to the corresponding URL in the SSOcard. Single-
Signer also helps to support the use of strong site-unique passwords, since
users do not need to memorise them. In addition, SingleSigner makes the
periodic update/change of passwords easier and more often.

Finally, compromise of any one password does not threaten the confiden-
tiality of other passwords, or compromise user authentication at other sites
(as would be the case, for example, if a password for an OpenID/Liberty
identity provider was compromised).

6.2 Usability.

We now consider the usability features of SingleSigner.

• User Experience. SingleSigner provides a simple, intuitive and con-
sistent user experience through its use of the CardSpace identity selec-
tor interface. At the same time, it familiarises users with CardSpace,
thereby potentially facilitating future adoption of more secure means of
authentication. SingleSigner credentials are stored in SSOcards which
can be equipped with a readily recognisable image, and users can ac-
cess their favourite set of password-protected websites using a single

20This enhances security by comparison with ‘conventional’ password-based authenti-
cation, where the RP is not identified to the user.

17



card. In addition, the automatic form-filling feature reduces the time
and effort required for username-password authentication.

• Transparency. SingleSigner operates transparently to external par-
ties, and hence does not require any changes to RPs or to identity selec-
tors. In particular, it does not require websites to support CardSpace.

• Flexibility. SingleSigner is flexible, since users can choose whether
or not to use it simply by electing to click the SingleSigner logo (or
not). In addition, each SSOcard can be used with any site included
in the SSOcard. SingleSigner can also be used with multiple identity
selectors, including those provided by Microsoft CardSpace and Eclipse
Higgins.

• Availability. SingleSigner does not possess any single points of fail-
ure; failing to access a site whose credentials are included in an SSO-
card will not impede access to other sites covered by the same card.

• Costs. The SSO functionality is likely to reduce organisational IT
costs as a result of fewer password-related help desk calls.

• Roaming. By making use of CardSpace features, SingleSigner sup-
ports a degree of roaming. A user can transfer SSOcards from one
PC to another using the CardSpace backup facilities. Indeed, if the
CardSpace backup file (which holds data in encrypted form) is stored
on a portable storage medium (e.g. a USB drive) then full mobility is
provided, as well as robustness in the form of protection against loss
of credential data.

7 Potential Issues

Perhaps the most obvious limitation of the SingleSigner system is that any-
one with access to a Windows user account can access the SSOcards and use
the stored credentials. This is a fundamental limitation of CardSpace itself
which, by default, does not impose any additional password protection on
the use of the selector. To address this issue, we observe that CardSpace
allows individual InfoCards to be PIN-protected, which should be seriously
considered for SSOcards stored on machines accessible to other users. In
addition, it may be possible to cause CardSpace to run under UAC (User
Account Control), so that running CardSpace causes Windows to prompt

18



the user for an administrator password. Moreover, CardSpace-based authen-
tication could be enhanced by using a mobile device. During the process
of user authentication on a PC using CardSpace, a random and short-lived
one-time password is sent to the user’s mobile device; this must then be
entered into the PC by the user when prompted [5].

The version of the SingleSigner prototype described in this paper does
not work as intended, if the website at which the initial authentication takes
place uses HTTPS. This is because, if such a website has a certificate, then
the selector will, by default, encrypt the SAML-based RSTR message using
the public key of the requesting site. The plug-in does not have access to the
site’s private key, and hence will be unable to decrypt the token. As a result,
SingleSigner will not be able to perform automatic form-filling as it cannot
obtain the username/password values. However, if the site at which the
initial authentication takes place uses HTTP, then SingleSigner will work as
intended even if all other sites included on the same SSOcard use HTTPS.

A more satisfactory solution to this issue would be to configure Single-
Signer to redirect the user to an (arbitrary) HTTP-based website if the first
site uses HTTPS (as discussed in [2]). In this case, SingleSigner could read
the SAML token returned from the selector as it would not be encrypted.
SingleSigner could then submit the credentials automatically to the target
HTTPS-based site using any of the three discussed methods.

The browser extension must scan every browser-rendered web page to
detect whether it supports username-password authentication, and this may
affect system performance. However, informal tests on the SingleSigner
prototype suggest that this is not a serious issue. In addition, the browser
extension can be configured so that it only operates with certain websites.

Use of SSO systems in general, including SingleSigner, may lead to pri-
vacy violations. User interactions on the web could be linked to build a
unique user profile. For example, the HTTP referrer field and cookies might
help to build such a profile. Whilst it is common for the profile builders
to insist that the profiles are only used for advertising purposes, such ac-
tions, particularly when conducted in the absence of informed user consent,
remains a likely threat. However, modern browsers help to minimise such a
threat.

Finally, older browsers (or browsers with scripting disabled) may not be
able to run SingleSigner, as it was built using JavaScript. However, most
modern browsers support JavaScript (or ECMAscript), and so this seems
unlikely to be a major usability obstacle.

19



8 Related Work

A very wide range of Internet SSO schemes21 have been proposed [8, 14].
We observe that, using the taxonomy of [14], SingleSigner is a local pseudo-
SSO scheme in that the credentials are stored locally and the RPs are not
aware of the operation of the scheme. Other examples of such schemes
include Novell’s SecureLogin22, Passlogix V-GO23 and Protocom’s SecureL-
ogin24. Automatic form-fillers, e.g. the automatic form completion functions
of popular web browsers such as IE and Firefox, can also be regarded as local
pseudo-SSO schemes [14].

Perhaps the most distinctive feature of SingleSigner is its dependence
on CardSpace, whereas other SSO systems are independent applications.
SingleSigner can thus benefit from the CardSpace security features, which
may give users greater confidence in its use.

9 Conclusions and Future Work

In this paper we have proposed SingleSigner, a simple scheme that allows
CardSpace to be used as a password-based single sign-on system. Three re-
lated approaches to achieving password-based single sign-on using CardSpace
were discussed. In each case users are able to store their credentials for a
set of websites in a personal card, and use it to seamlessly single sign on
to them all. The approaches do not require any changes to login servers or
to the CardSpace identity selector and, in particular, they do not require
websites to support CardSpace.

The schemes use the CardSpace identity selector to seamlessly single
sign on users to password-protected websites. It extends the use of personal
cards to allow for transparent password-based single sign-on, thereby both
improving the usability and security of passwords as well as encouraging
CardSpace adoption.

Planned future work includes building a portable version of the CardSpace
password-based single sign-on system to help roaming users who might not
have installation privileges or might not be able to use their personal ma-
chines, e.g. in Internet cafes, airport lounges, etc. In addition, we plan
to investigate the possibility of extending the proposed scheme to support
single sign-off.

21http://en.wikipedia.org/wiki/List_of_single_sign-on_implementations
22http://www.novell.com/products/securelogin/
23http://www.passlogix.com/sso
24http://www.protocom.cc

20



Acknowledgements

The first author is sponsored by the Diwan of Royal Court, Sultanate of
Oman.

References

[1] Haitham S. Al-Sinani, Waleed A. Alrodhan, and Chris J. Mitchell.
CardSpace-Liberty integration for CardSpace users. In Ken Klingen-
stein and Carl M. Ellison, editors, Proceedings of the 9th Symposium on
Identity and Trust on the Internet, (IDtrust’10), Gaithersburg, Mary-
land, USA, April 13–15, 2010, pages 12–25. ACM, New York, 2010.

[2] Haitham S. Al-Sinani and Chris J. Mitchell. Implementing PassCard —
a CardSpace-based Password Manager. Technical Report: RHUL–MA–
2010–15 (Department of Mathematics, Royal Holloway, University of
London), 2010. http://www.ma.rhul.ac.uk/static/techrep/2010/

RHUL-MA-2010-15.pdf.

[3] Haitham S. Al-Sinani and Chris J. Mitchell. Using CardSpace as a
password manager. In Elisabeth de Leeuw, Simone Fischer-Hübner, and
Lothar Fritsch, editors, Proceedings of IFIP IDMAN 2010 — 2nd IFIP
WG 11.6 Working Conference on Policies and Research in Identity
Management, November 18–19 2010, Oslo, Norway, volume 343 of IFIP
Advances in Information and Communication Technology, pages 18–30.
Springer, Boston, 2010.

[4] Haitham S. Al-Sinani and Chris J. Mitchell. Client-based CardSpace-
OpenID interoperation. In Proceedings of ISCIS 2011 — the 26th In-
ternational Symposium on Computer and Information Sciences, 26–
28 September 2011, London, UK (to appear). To be published in
the Springer Lecture Notes on Electrical Engineering (LNEE), 2011.
[See also the full version at: Royal Holloway, University of Lon-
don, Mathematics Department Technical Report RHUL-MA-2011–
12, May 2011, 23 pages, http://www.ma.rhul.ac.uk/techreports/

2011/RHUL-MA-2011-12.pdf].

[5] Haitham S. Al-Sinani and Chris J. Mitchell. Enhancing CardSpace au-
thentication using a mobile device. In Yingjiu Li, editor, Proceedings
of the 25th IFIP WG 11.3 Conference on Data and Applications Se-

21



curity and Privacy (DBSEC’11), Richmond, Virginia, USA, 11-13 of
July 2011, volume 6818, pages 201–216. Springer (LNCS), 2011.

[6] Haitham S. Al-Sinani and Chris J. Mitchell. Extending the scope of
cardspace. In Proceedings of the 4th International Conference on Secu-
rity of Information and Networks (SIN’11), 14–19 of November 2011,
Sydney, Australia (to appear). To be published in ACM, 2011.

[7] Vittorio Bertocci, Garrett Serack, and Caleb Baker. Understanding
Windows CardSpace: An Introduction to the Concepts and Challenges
of Digital Identities. Addison-Wesley, Reading, Massachusetts, 2008.

[8] Jan De Clercq. Single sign-on architectures. In George I. Davida,
Yair Frankel, and Owen Rees, editors, Proceedings of Infrastructure
Security, International Conference, InfraSec’02, Bristol, UK, October
1–3, 2002, volume 2437 of Lecture Notes in Computer Science, pages
40–58. Springer-Verlag, Berlin, Heidelberg, 2002.

[9] Cormac Herley, Paul C. van Oorschot, and Andrew S. Patrick. Pass-
words: If we’re so smart, why are we still using them? In Roger Din-
gledine and Philippe Golle, editors, Financial Cryptography and Data
Security, 13th International Conference, FC 2009, Accra Beach, Bar-
bados, February 23–26, 2009. Revised Selected Papers, volume 5628 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidel-
berg, 230–237, 2009.

[10] Michael B. Jones. A Guide to Using the Identity Selector Interoper-
ability Profile V1.5 within Web Applications and Browsers. Microsoft
Corporation, 2008.

[11] Michael B. Jones and Michael McIntosh (editors). Identity Metasystem
Interoperability Version 1.0 (IMI 1.0). OASIS Standard, 2009. http:

//docs.oasis-open.org/imi/identity/v1.0/identity.html.

[12] Marc Mercuri. Beginning Information Cards and CardSpace: From
Novice to Professional. Apress, New York, 2007.

[13] National Institute of Standards and Technology (NIST). Announcing
the Advanced Encryption Standard (AES), FIPS 197, 2001. http://

csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[14] Andreas Pashalidis and Chris J. Mitchell. A taxonomy of single sign-on
systems. In Rei Safavi-Naini and Jennifer Seberry, editors, ACISP’03:

22



Proceedings of the 8th Australasian conference on Information security
and privacy, Wollongong, Australia, July 9–11 2003, volume 2727 of
Lecture Notes in Computer Science, pages 249–264. Springer-Verlag,
Berlin, Heidelberg, 2003.

[15] Thomas A. Powell and Fritz Schneider. Javascript: The Complete Ref-
erence. McGraw-Hill Osborne Media, Berkeley, CA, 2nd edition, 2004.

23


