

Legacy versus security: A cryptographic dilemma

Chris Mitchell www.chrismitchell.net

1

Information Security Group

Agenda

- 1. DES a brief history
- 2. Double and triple DES
- 3. The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- Generalising the van Oorschot-Wiener attack
- 6. Legacy and the future
- 7. Concluding matters

Agenda

- 1. DES a brief history
- 2. Double and triple DES
- 3. The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- Generalising the van Oorschot-Wiener attack
- 6. Legacy and the future
- 7. Concluding matters

3

Information Security Group

Ciphers – terminology

- A cipher (or encryption system) is a technique for transforming readable data (plaintext) into an unreadable form (ciphertext).
- Ciphers are designed so that if the ciphertext falls into the wrong hands, it does not reveal anything useful about the plaintext.
- A cipher method is always used in conjunction with a secret key, which tells the sender and receiver of the data how to encrypt and decrypt.

Analysing ciphers

- It is widely accepted that, when analysing the security of the cipher, you should assume its design is known to your opponent.
- You must also assume the opponent will have matching plaintext and ciphertext.
- In practice this will often be true.
- Security rests on the secrecy of the key and the strength of the design.

5

Information Security Group

Before 1977

- Before 1977, there were almost no 'state of the art' ciphers in the public domain.
- Until the mid-1970s, cryptography was something only looked at by historians and government agencies.
- Historians tended to look only at long-outmoded systems.
- Information on 'modern' cryptography was very hard to find.
- DES changed all that.

DES

- DES (Data Encryption Standard) is a 64-bit block cipher, first published as a US federal standard in 1977 (NBS FIPS PUB 46).
- It was chosen as the result of a competition for a standard cipher.
- DES is a refined version of an IBM submission to the competition.
- The introduction of a modern, apparently well-designed, cipher into the public domain was revolutionary.


7

Information Security Group

Block ciphers

- A block cipher is a very widely used type of cipher.
- A block cipher encrypts data a block (e.g. 64 or 128 bits) at a time.
- A well-designed block cipher is a very powerful tool – it has many uses (beyond just data encryption).
- The block length is vital for security must be 64, or preferably 128, bits long (or more).

Block ciphers

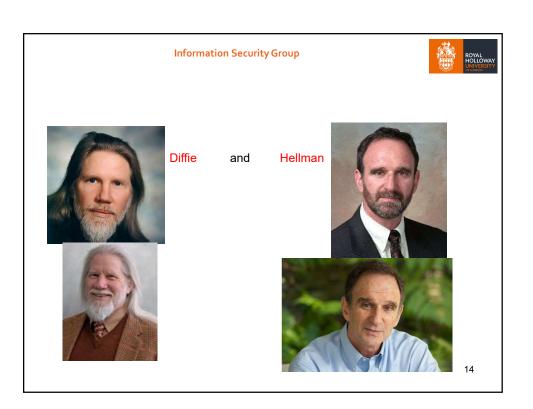
- For encryption we write: C = e_K(P), where P is the plaintext block, K is the secret key, and C is the ciphertext block.
- We must also have a decryption function d which satisfies $P = d_{\kappa}(C)$.
- The block size n needs to be reasonably large (e.g. $n \ge 64$) to prevent dictionary attacks.
- DES has n=64, which is why it is called a 64-bit block cipher.

Adoption

- DES was originally intended for use by the federal government.
- However, it was adopted much more widely (it was the 'only game in town'):
 - ANSI made it a US standard (ANSI X3.92);
 - it was widely adopted for retail banking security internationally;
 - for a number of years it was the only prominent standardised cipher.

11

Information Security Group


DES and 56-bit keys

- From the beginning, there was heavy criticism of its 'short' key length (56 bits).
- Because keys are 56 bits (binary digits) long, there are 2⁵⁶ possible keys.
- 2⁵⁶ is a big number (roughly 72 thousand million million), but not big enough!
- That is, even in 1977, 2⁵⁶ trial encryptions, as necessary to do a search for the key using a known plaintext/ciphertext pair, seemed just about possible.

Early work on breaking DES

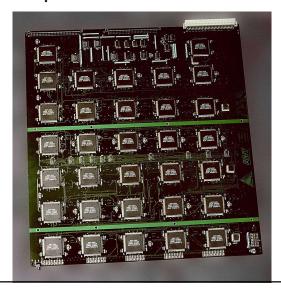
- In 1977, Whit Diffie and Martin Hellman published a very critical paper, sketching the design of a device which they claimed could find a key in a day and could be built at a cost of around \$10 million.
- This device would work through all 2⁵⁶ possible keys, encrypting a known plaintext to see if it gave the correct ciphertext this is called a *brute force* attack.

Breaking DES in software

- It was some 20 years before breaking DES became a reality, at least in public.
- In June 1998, a 3-month distributed search organised by the DESCHALL project found the DES key for a 'challenge' plaintextciphertext pair.
- More recent, similar, efforts have completed much more quickly.

15

Information Security Group



Breaking DES in hardware

- A few months after the DESCHALL break, the Electronic Frontier Foundation (EFF) announced the completion and successful use of *Deep Crack*.
- Deep Crack was a special-purpose hardware device containing nearly 2000 custom chips designed to do brute force DES key searches, a complete search taking around a week.
- The claimed cost was less than \$250,000.
- Similar, but cheaper and faster, machines have since been designed.

Deep Crack circuit board

17

Information Security Group

The end of single DES

- By 1998, the use of single DES was already widely seen as insecure, and the software and hardware breaks confirmed this.
- The breaks accelerated the replacement of DES by other schemes, notably by triple DES (three iterations of DES using at least two different keys).
- Why not use a completely new cipher instead?
- Well, legacy made triple DES much easier to adopt.

The success of DES

- Despite issues with the key length, the design of DES has been a great success.
- It was clearly designed with great care, using understanding of design and cryptanalysis principles only rediscovered (sometimes decades) later.
- Whilst attacks are known which are 'in theory' slightly faster than the 256 brute force search, in practice brute force is still the most effective way to break DES.
- This is a huge compliment for a 40-year old design.

Information Security Group

Agenda

- DES a brief history
- 2. Double and triple DES
- The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- 5. Generalising the van Oorschot-Wiener attack
- 6. Legacy and the future
- 7. Concluding matters

Multiple iterations

- The idea of using multiple iterations of DES using more than one key has been around since the 1970s.
- The idea is mentioned in the 1977 Diffie-Hellman paper.
- This is an 'obvious' way of increasing the effective key length for a cipher.
- It also allows simple upgrades to existing 'legacy' systems (no new cipher to add).

21

Information Security Group

Why not double DES?

- The most obvious approach is simply to encrypt twice, using two distinct keys.
- However, this is not much more secure than single DES because there is a simple meet-inthe-middle attack on double DES.
- This attack was known back in the 1970s, and is outlined by Diffie and Hellman in their 1977 paper.

Meet-in-the-middle I

- Suppose we have a plaintext-ciphertext pair (P, C); then we know $C = e_{K_2}(e_{K_1}(P))$, where K_1 and K_2 are DES keys.
 - 1. Make a table of the values of $e_L(P)$ for every possible key L, which is sorted or hashed for easy searching (costs 2^{56} DES encryptions). Each table entry contains $e_L(P)$ and L.
 - 2. Go through all the possible DES keys again, and for each key M compute $d_M(C)$ and check if it is in the table. If it is, then the corresponding value of L, together with M, are a candidate for (K_1, K_2) . Check every candidate using one more plaintext-ciphertext pair.

23

Information Security Group

Meet-in-the-middle II

- Candidates will arise for one value of M in every 2⁸=256
 instances of step 2, and so the cost of checking is dwarfed by
 the other costs of the scheme.
- The total attack cost is 2⁵⁷ DES encryptions (just twice as many as for a single DES brute force).
- The main extra cost will be for the table, which has 2⁵⁶ entries, each containing 15 bytes, i.e. around 10¹⁸ bytes, i.e. 1 million terabytes.
- Even today, this is non-trivial, but attack trade-offs can be achieved to reduce the storage cost while correspondingly increasing the computational cost.

Triple DES and E-D-E

- Because of the meet-in-the-middle attack, at least three iterations of DES is the minimum effective multiple-iteration version of DES.
- In practice, instead of three encryptions, the 'standard' approach is to first encrypt, then decrypt, and then encrypt again.
- That is, $C = e_{K_3}(d_{K_2}(e_{K_1}(P)))$, where K_1 , K_2 and K_3 are DES keys.
- This is backwards-compatible with single DES if $K_1 = K_2 = K_3$ this greatly simplifies migration for **legacy** systems.

Information Security Group

2-key triple DES

- If K_1 , K_2 and K_3 are all independently chosen, then this is known as 3-key triple DES.
- However, in the late 1970s a variant in which $K_1 = K_3$ was proposed.
- This is known widely as 2-key triple DES.
- The 2-key version has the advantage of a shorter key, but still offers greater security than double DES (the simple meet-in-themiddle no longer works).

Triple DES standards

- Triple DES (both variants) has been widely standardised, both in the US by NIST and ANSI, and also internationally in ISO/IEC 18033-3.
- Both 2-key and 3-key triple DES remain in wide use today.
- Triple DES is also an industry standard, e.g. in the EMV specifications and in ISO banking standards, and so 2-key triple DES is probably implemented in credit and debit cards in your wallet.

27

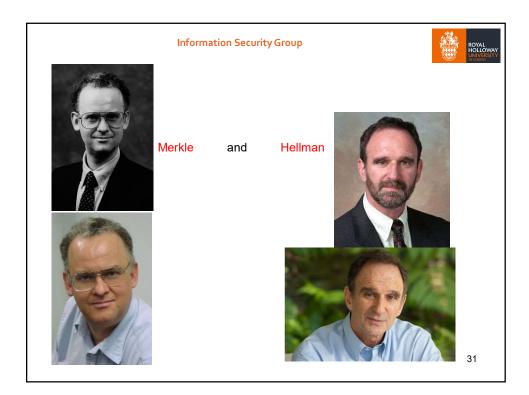
Information Security Group

Agenda

- 1. DES a brief history
- 2. Double and triple DES
- 3. The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- Generalising the van Oorschot-Wiener attack
- 6. Legacy and the future
- 7. Concluding matters

Key lengths and security

- Neither 2-key nor 3-key triple DES are as secure as one might expect from their key lengths.
- That is, in an ideal world, the most effective attacks against a cipher with a k-bit key would be a size 2k brute force search (or one of the brute force time-space trade-off attacks with product complexity 2k.
- In such a case a cipher is said to offer *k* bits of security.
- However, neither 2-key nor 3-key triple DES offer as many as 112 (or 168) bits of security.
- Big question: 'How many bits of security do they offer?'


29

Information Security Group

Early doubts ...

- In 1981, Merkle and Hellman described a certificational attack against 2-key triple DES which they suggested meant it should not be used.
- They claimed that their attack, whilst unrealistic (hence certificational), showed that 2-key triple DES was not much more secure than double DES.
- However, this did not stop widespread use of the 2key variant.

Attack requirements

- As before, we suppose 2-key triple DES operates as: $C = e_{K_1}(d_{K_2}(e_{K_1}(P)))$, where K_1 and K_2 are DES keys.
- The attacker needs to be able to get chosen plaintexts encrypted using the genuine triple DES key (i.e. the genuine pair of DES keys).
- That is, it is a chosen plaintext attack.
- In fact, the attacker needs the ciphertext for as many as 2⁵⁶ chosen plaintexts.

Attack idea I

- As described in the 1981 paper, a simple brute force attack requires going through all possibilities for K_1 , and for each such possibility, checking all possible value for K_2 .
- That is, the attack complexity is $2^{56} \times 2^{56} = 2^{112}$.
- However, if there was a way to check K_2 quickly independently of the choice of K_1 , then the attack complexity would go down to $O(2^{56})$.

33

Information Security Group

Attack idea II

- Merkle and Hellman also noted that, if the attacker knew $A = e_{K_1}(P)$ as well as P and C, then (A,C) would essentially be a known plaintext-ciphertext pair for double DES, and the double DES attack could be used.
- This led them to the attack in which they choose a possible A, and make sure that $A = e_{K_1}(P)$ for **one** of a set of available plaintext-ciphertext pairs.
- They just don't know which one ...

Attack operation

- The attack operates as follows:
 - 1. The attacker chooses a 64-bit value A (which can be anything) and computes $P_L = d_L(A)$ for every DES key L.
 - 2. The attacker now obtains the triple DES encryption of P_L for every L call the result C_L and for each such C_L then computes $d_I(C_I)$ call this B_I .
 - 3. The values (B_L, L) are tabulated, sorted or hashed on the values of B_I for easy searching.
 - 4. For every possible DES key M, the attacker computes $d_M(A)$ and looks it up in the table; if there is a match, then the pair (L, M) is a candidate for (K_1, K_2) , and can be checked using another plaintext /ciphertext pair.

Information Security Group

Complexity

- The attack complexity very closely resembles that of the meet-in-the-middle attack on double DES.
- The attacker has to perform 2⁵⁷ DES calculations, and a table is needed containing 2⁵⁶ entries, each of 15 bytes.
- The 'only' extra is the need for the ciphertexts for 2⁵⁶ chosen plaintexts, which of course makes the attack completely unrealistic.
- However it is interesting and worrying that the attack complexity looks like only O(2⁵⁶).

Agenda

- 1. DES a brief history
- 2. Double and triple DES
- 3. The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- Generalising the van Oorschot-Wiener attack
- 6. Legacy and the future
- 7. Concluding matters

37

Information Security Group

A more realistic attack


- The Merkle-Hellman attack, although interesting, did not pose a serious threat to 2-key triple DES, which was rapidly adopted.
- However, almost ten years after Merkle-Hellman, in 1990 van Oorschot and Wiener described an attack (vOW) which only requires known plaintext-ciphertext pairs.
- The idea is rather similar to that of the Merkle-Hellman attack.

van Oorschot

Wiener

39

Information Security Group

Attack idea

- Their idea is to obtain a large-ish set of known plaintext-ciphertext pairs (P,C), choose an A, and hope that by random chance $A = e_{K_1}(P)$ for at least one of the values P.
- If the attacker is lucky, then the Merkle-Hellman attack applies.
- If the attacker is unlucky, then try with another value of A, and go on until he/she gets lucky.

Attack requirements

- The attack requires a set of matching known plaintext-ciphertext pairs (P,C), the more the better!
- To simplify complexity calculations we suppose the attacker has 2^t pairs, for some t.
- The attacker keeps the 2^t pairs (*P*,*C*) in Table 1, sorted or hashed on *P* for easy searching.
- The attack operates in a series of **phases** where, in each phase, the probability of successfully finding the triple DES key (K_1, K_2) is approximately $1/2^{64-t}$.
- That is, the attack will require around 2^{64-t} phases to be performed before the key is found.

Information Security Group

Attack operation

- One phase of the attack operates as follows:
 - 1. The attacker chooses a 64-bit value A (which can be anything) and computes $P_L = d_L(A)$ for every DES key L.
 - 2. If P_L = one of the P values in Table 1, then the attacker computes B_L = $d_L(C)$ for the corresponding value of C from Table 1.
 - 3. The values (B_L, L) are tabulated in Table 2, sorted or hashed on the values of B_I for easy searching.
 - 4. Once Table 2 is complete, the attacker computes $d_M(A)$ for every possible DES key M, and looks it up in the table; if there is a match, then the pair (L, M) is a candidate for (K_1, K_2) , and can be checked using another plaintext /ciphertext pair.

Complexity

- As mentioned previously, the chances of one phase successfully finding the key is $1/2^{64-t}$. So $O(2^{64-t})$ attack phases will need to be performed.
- A phase involves 2⁵⁷ DES calculations, and Table 1 contains 2^t entries, each of 16 bytes. Table 2 is much smaller than Table 1 so can be ignored.
- That is, the attack complexity is:

 (# of phases)×(cost of one phase) = 2^{64-t}×2⁵⁷ = 2^{121-t} DES calculations
 with storage only as necessary to store the known
 plaintext/ciphertext pairs.

43

Information Security Group

Implications

- If the attacker has as many as 2³² known plaintext-ciphertext pairs, this means that the attack complexity is 2⁸⁹ DES computations.
- This is large, but not really large enough.
- Of course, getting 2³² known plaintextciphertext pairs all created using the same key is unlikely, but ...
- This fact has led to pressure to move away from 2-key triple DES.

NIST and de-standardisation

- Indeed, in late 2015 NIST announced that it could no longer support continued use of 2key triple DES, recommending a move to either 3-key triple DES or a newer and more secure algorithm such as AES.
- This is in line with previous announcements.
- NIST has always stated that 2-key triple DES should be regarded as giving only 80 bits of security.

45

Information Security Group

The ISO/IEC response

- ISO/IEC 18033-3:2010 (a standard devoted to block ciphers) gives both 2-key and 3-key triple DES, and there are no current plans to withdraw support for the 2-key version.
- However, an ISO 'standing document' on key lengths states that (for 2-key triple DES):
 - 'depending on the required security level, the maximum number of plaintexts encrypted under a single key should be limited'; and
 - 'the effective key-length of two-key Triple-DES in specific applications can only be regarded as 80 bits (instead of 112 bits)'.

A lack of clarity?

- That is, there is a lack of consistency in the message from standards bodies.
- NIST says stop using the scheme, whereas ISO/IEC still says 'use with care'.
- The most obvious conclusions are that:
 - the scheme is probably safe if you keep changing the key regularly; and
 - '80 bits' seems like a safely conservative lower bound for the security of 2-key triple DES.
- In the remainder of this talk we challenge these assumptions.

47

Information Security Group

Agenda

- DES a brief history
- 2. Double and triple DES
- 3. The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- Generalising the van Oorschot-Wiener attack
- 6. Legacy and the future
- 7. Concluding matters

An observation

- An apparently novel observation is that the vOW attack still works even if the plaintext-ciphertext pairs have not all been generated using the same key.
- In the attack, each plaintext/ciphertext pair is used independently of all the others, except when checking candidate key pairs.
- Checking can be done as long as the attacker knows which plaintext-ciphertext pairs 'belong together', i.e. have been created using the same key.

49

Information Security Group

Generalising the attack

- In the scenario where the plaintext-ciphertext pairs have been created using a range of keys, the attack works with one minor modification.
- In Tables 1 and 2, a label needs to be kept with each entry, indicating which key has been used (to enable checking of candidate keys).

Complexity

- The attack complexity is identical to the regular vOW attack, except the two tables are slightly larger.
- That is, if 2^t known plaintext-ciphertext pairs are available, even generated with many different keys, one of the keys can be found in 2^{121-t} DES operations.
- The possibility that as many as 2³² pairs are available in this scenario seems much more plausible than in the single key scenario.

51

Information Security Group

Implications

- This means that the ISO/IEC advice:
 - ... depending on the required security level, the maximum number of plaintexts encrypted under a single key should be limited ...

has limited value!

 Of course, it is always good to change keys regularly, but changing keys will not prevent the attack.

Using partially known plaintext

- In 'real life', it is often the case that ciphertext will be available for which only partial information about the plaintext is known.
- For example, we might know 56 out of the 64 plaintext bits for a 64-bit ciphertext block, but not the other eight.
- Such information cannot be used in the 'vanilla' vOW attack.

53

Information Security Group

Modifying the attack

- We build again on the observation that the attack treats each plaintext-ciphertext pair independently.
- We can generate a set of all possible plaintextciphertext pairs consistent with a partially known pair.
- As long as enough partial information is available (e.g. 48 out of 64 bits), surprisingly this does not affect the overall computational complexity (although it does increase the storage complexity).

Implications I

- Suppose have 2^t known plaintext-ciphertext pairs, where some of the plaintext blocks may not be completely known, and the pairs may have been generated using multiple keys.
- We can discover one of the keys with 2^{120-t}
 DES computations.
- If t=40, then this means we can find a key pair in only 2^{80} DES computations.

55

Information Security Group

Implications II

- The ISO statements:
 - 'depending on the required security level, the maximum number of plaintexts encrypted under a single key should be limited'; and
 - 'the effective key-length of two-key Triple-DES in specific applications can only be regarded as 80 bits (instead of 112 bits)'.

both now look very shaky.

 Whilst 2-key triple DES still has 80 bits of security, this is no longer a conservative estimate with a margin of error.

Sometimes it pays to go back ...

- The most recent paper on the security of 2-key triple DES (prior to the work described in this talk) was published in 1990.
- The subject seemed 'dead'.
- However, reviewing prior art revealed the new attack variants we just looked at which significantly weaken the practical security of 2-key triple DES.
- Sometimes it pays to not take established wisdom for granted ...

57

Information Security Group

Agenda

- 1. DES a brief history
- 2. Double and triple DES
- 3. The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- Generalising the van Oorschot-Wiener attack
- 6. Legacy and the future
- 7. Concluding matters

Legacy and DES

- Because DES was the only obvious options back in the 1970s/80s, it was very widely adopted in commercial systems.
- System architectures were built around its 64-bit block length.
- This made switching to triple DES relatively simple, as the block length is the same, and there is even a 'backwards compatible' option.

59

Information Security Group

Alternatives to DES

- We have had a good alternative for DES since 2002 – the Advanced Encryption Standard (AES) allows for long keys, e.g. of 256 bits and is believed to be secure.
- While it is incorporated in new systems, triple DES (and even single DES) has remained in very wide use.
- This is because of legacy systems, and the difficulty (cost and complexity) in replacing a cipher.

What does this mean?

- Triple DES will likely stay in use for years to come, despite its relative weakness.
- Sometimes it is simply impossible to replace it without completely redesigning a system.
- This suggests that we have major problems round the corner ...

61

Information Security Group

Quantum computing

- Many organisations and governments are trying to develop general purpose quantum computers.
- Such computers if they can be built could solve problems which are insoluble using current computers.
- The implications for modern cryptography are profound, since quantum computers will be able to break many currently used ciphers.

Effects of quantum computing

- Key lengths for block ciphers should be doubled to make them safe
- This is fine for AES (256-bit keys are allowed).
- However, all versions of triple DES will be easily broken.
- Even worse, the public key ciphers (including something called RSA) that underlie credit card transaction security will be completely broken and will need replacing.

63

Information Security Group

Legacy

- The fact that we have struggled to replace triple DES suggests that moving to 'quantum safe' cryptography is going to be very difficult and costly.
- This is quite apart from the fact that we are still struggling to decide which public key ciphers we should use in a post-quantum world.

Agenda

- 1. DES a brief history
- 2. Double and triple DES
- 3. The Merkle-Hellman attack
- 4. The van Oorschot-Wiener attack
- Generalising the van Oorschot-Wiener attack
- 6. Other issues
- 7. Concluding matters

65

Information Security Group

For further information ...

- C. J. Mitchell, 'On the security of 2-key triple DES', IEEE Transactions on Information Theory
 62 (2016) 6260-6267.
- The text of this paper is available from my home page (<u>www.chrismitchell.net</u>).

Thank you and questions?