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1. Introduction: What are orientable sequences?

I A k-ary de Bruijn sequence of order n is an infinite periodic
sequence of elements from {0, 1, ..., k − 1} in which every
possible k-ary n-tuple occurs exactly once in a period.

I The period must be kn, and there are many known methods
of construction.

I Earliest known reference to constructing (and enumerating)
such sequences is due to Sainte-Marie (1894), but better
known work is by de Bruijn (1946) and Good (1947).

I Examples for k = 2 are: [0011] (n = 2), and [00010111]
(n = 3).

I There are many applications, for example in stream ciphers,
position location, and genome sequencing.

I De Bruijn sequences are examples of n-window sequences,
periodic sequences in which any n-tuple occurs at most once
in a period.



Orientable sequences

I An orientable sequence of order n (an OSk(n)) is a k-ary
n-window sequence with the added property that an n-tuple
occurs at most once in a period of a sequence or its reverse.

I First introduced in 1992, they have potential application in
certain position location applications.

I For the binary case, a simple example for n = 5 has period 6
— a single period is [001011].

I The sequence and its reverse contain twelve distinct 5-tuples:
00101, 00110, 01001, 01011, 01100, 01101, and the
complements of these 5-tuples.

I Examples for k = 3 are: [012] (n = 2) and [001201122]
(n = 3).



The de Bruijn digraph

I The de Bruijn digraph is a key tool for analysing and
constructing both de Bruijn and orientable sequences.

I This graph, otherwise known as the de Bruijn-Good graph,
Bk(n) is a directed graph with vertex set {0, 1, . . . , k − 1}n.

I An edge connects (a0, a1, . . . , an−1) to (b0, b1, . . . , bn−1) iff
ai+1 = bi for every i (0 ≤ i ≤ n − 2).

I It is simple to see that Bk(n) is Eulerian, i.e. it is connected
and every vertex has in-degree equal to its out-degree.

I If we identify an edge from (a0, a1, . . . , an−1) to
(b0, b1, . . . , bn−1) with the (n + 1)-tuple
(a0, a1, . . . , an−1, bn−1), then a de Bruijn sequence of order
n + 1 corresponds to an Eulerian circuit in Bk(n) — which
must exist given Bk(n) is Eulerian.

I There are, of course, efficient algorithms for finding such
circuits.



The Lempel Homomorphism

I The Lempel D-function, originally defined only for k = 2,
maps B2(n) to B2(n − 1).

I D maps any binary n-tuple (a0, a1, . . . , an−1) to
(a1 − a0, a2 − a1, . . . , an−1 − an−2).

I D is a graph homomorphism from B2(n) to B2(n − 1).

I Can extend definition to k-ary case, where D maps the k-ary
n-tuple (a0, a1, . . . , an−1) to
(a1 − a0, a2 − a1, . . . , an−1 − an−2), where computations take
place modulo k .

I The inverse of D has been widely used, e.g. to recursively
construct de Bruijn sequences, observing that D−1 maps a
circuit in Bk(n − 1) to a set of k circuits in Bk(n).



Upper bounds on the period of orientable sequences
I Since any n-tuple can only occur once in a period in either

direction, and symmetric n-tuples cannot occur, a trivial
bound on the period of an OSk(n) is

kn − kb(n+1)/2c

2
.

I However, apart from when n = 2 and k is odd, this bound is
not sharp.

I The binary case is different from k > 2 — in particular,
constant (n − 1)-tuples and (n − 2)-tuples cannot occur in a
binary sequence, whereas they can for k > 2, so an OS2(n)
cannot exist for n < 5.

I Dai, Martin, Robshaw & Wild (1993) gave a bound for the
binary case which is significantly sharper than the trivial
bound.

I A bound for the k > 2 case which is a little sharper than the
trivial bound was established a couple of years ago (Alhakim
et al., 2024).



2. New upper bounds on the period

I In recent work (M and Wild, 2025b) we have established new
upper bounds on the period of a k-ary orientable sequence
(for k > 2), sharper than the 2024 bound.

I These bounds all derive from simple observations regarding
the subgraph of the de Bruijn graph defined by the edges of
an orientable sequence.

I If S is a k-ary orientable sequence of order n — an OSk(n)
— then we define BS to be the subgraph of Bk(n − 1) with
edges corresponding to the n-tuples appearing in either S or
SR (where SR is the reverse of S).

I The n-tuples appearing in either S or SR are, of course, all
distinct since S is orientable.

I Since S and SR define edge-disjoint (but not vertex-disjoint)
Eulerian circuits in BS , it follows that BS must be Eulerian.

I This simple observation leads to the improved bounds, given
we can identify cases where certain edges cannot occur in BS .



Bounds — new and (old) — on the period of an OSk(n)

n k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
2 3 4 10 12 21 24

(3) (4) (10) (12) (21) (24)
3 9 20 50 84 147 216

(9) (22) (50) (87) (147) (220)
4 30 112 280 612 1134 1984

(33) (118) (290) (627) (1155) (2012)
5 99 452 1450 3684 8085 15896

(105) (478) (1490) (3777) (8211) (16124)
6 315 1958 7550 23019 58065 130332

(336) (2014) (7680) (23217) (58464) (130812)
7 972 7844 38100 138144 408072 1042712

(1032) (8062) (38640) (139317) (410256) (1046524)
8 3096 32390 193800 837879 2876496 8382492

(3189) (32638) (194630) (839157) (2879835) (8386556)
9 9423 129572 971350 5027304 20149437 67059992

(9645) (130558) (974390) (5034957) (20166027) (67092476)



3. Methods of construction
I As described in (Alhakim et al., 2024), can use the inverse

Lempel homomorphism to go from an OSk(n) of period m to
an OSk(n + 1) of period km.

I However, it is non-trivial to ensure that D−1 yields a single
sequence of period km rather than a set of
(n + 1)-tuple-disjoint sequences with periods summing to km.

I Moreover, some variants of the (inverse) Lempel
homomorphism only yield ‘negative’ orientable sequences, in
which the collection of all n-tuples and reverse negative
n-tuples in a period are all distinct.

I Various approaches have been devised to fix this in recent
work (Gabrić & Sawada, 2025) and (M & Wild, 2025a).
Gabrić & Sawada showed how to join the multiple cycles
produced, and in (M & Wild, 2025a) we constructed ‘starter
sequences’ with special properties enabling repeated use of the
Lempel homomorphism.

I The Gabrić & Sawada sequences have asymptotically maximal
period.



A different approach: Antisymmetric subgraphs of the de
Bruijn digraph

I This approach is described in (M & Wild, 2025b).

I A subgraph T of the de Bruijn digraph Bk(n) is said to be
antisymmetric if the following property holds.

I Suppose x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) are
k-ary n-tuples, i.e. vertices in Bk(n).

I Then if (x, y) is an edge in T , then (yR , xR) is not an edge in
T .



From subgraph to sequence

I If S is an OSk(n) of period m, then BS is an antisymmetric
Eulerian subgraph of Bk(n − 1) containing m edges.

I Antisymmetry follows from the definition of orientable.

I More importantly, if T is an antisymmetric Eulerian
subgraph of Bk(n − 1) with m edges, then there exists an
OSk(n) S of period m with edge set T .

I Why? Since T is Eulerian there exists an Eulerian circuit.
This Eulerian circuit corresponds to an n-window sequence,
which is orientable since T is antisymmetric.



Antinegasymmetry

I A subgraph T of the de Bruijn digraph Bk(n− 1) is said to be
antinegasymmetric if the following property holds.

I Suppose x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) are
k-ary n-tuples, i.e. vertices in Bk(n).

I Then if (x, y) is an edge in T , then (−yR ,−xR) is not an
edge in T .



From antinegasymmetry to antisymmetry

I If T is an antinegasymmetric subgraph of the de Bruijn
digraph Bk(n − 1) with edge set E , then D−1(E ), of
cardinality k |E |, is the set of edges for an antisymmetric
subgraph of Bk(n), which, abusing our notation slightly, we
refer to as D−1(T ).

I If every vertex of T has in-degree equal to its out-degree, then
the same applies to D−1(T ).

I If T is connected and its edge set contains the all-one tuple,
then D−1(T ) is connected, i.e. in this case if T is Eulerian
then so is D−1(T ).



Constructing antinegasymmetric subgraphs

I If 0 ≤ u ≤ k − 1, set

f (u) =

{
u if u 6= 0

k/2 if u = 0

I If u = (u0, u1, . . . , un−1) is a k-ary n-tuple then the
pseudoweight of u is defined to be the sum

w∗(u) =
n−1∑
i=0

f (ui )

where the sum is computed in Q.

I If E is the set of all k-ary n-tuples with pseudoweight less than
nk/2, then E is the set of edges for an antinegasymmetric
Eulerian subgraph of the de Bruijn digraph Bk(n − 1).



From antinegasymmetric to antisymmetric

I If, as in the previous slide, E is the set of all k-ary n-tuples
with pseudoweight less than nk/2, then E contains the all-one
n-tuple.

I Hence D−1(E ) is a antisymmetric Eulerian subgraph of Bk(n).

I This approach yields orientable sequences with largest possible
period for n = 3 (all k) and n = 4 (k odd).



An example
Suppose k = 3 and n = 3. The ten 3-ary 3-tuples having
pseudoweight less than 4.5 are listed below — this is E .

111
011 101 110
001 010 100
112 121 211

D−1(E ) consists of the 30 4-tuples given below.

0120 1201 2012
0012 1120 2201 0112 1220 2001 0122 1200 2011
0001 1112 2220 0011 1122 2200 0111 1222 2000
0121 1202 2010 0101 1212 2020 0201 1012 2120

An OS5(3) of period 30 containing these 4-tuples is:

[01201 21202 01012 22011 20011 12200]

.



Adding more n-tuples

I In recent (as yet unpublished) work, Peter Wild and I have
looked at adding more n-tuples to E while preserving
antinegasymmetry.

I Idea originates from observation that excluding all n-tuples
with pseudoweight exactly kn/2 (the ‘middle’ value) is
unnecessary.

I The set of n-tuples with pseudoweight exactly kn/2 can be
divided into edge-disjoint circuits with period dividing n.

I If (a0, a1, . . . , an−1) is a k-ary n-tuple, i.e. an edge in
Bk(n − 1), then let [a0, a1, . . . , an−1] be the circuit in
Bk(n − 1) consisting of edges

(a0, a1, . . . , an−1), (a1, a2 . . . , an−1, a0), . . . , (an−1, a0, a1, . . . , an−2).

I The plan is to join the edges in some of these circuits to E
while preserving antinegasymmetry (it is easy to show the
result is Eulerian).



Negasymmetric circuits

I One of these circuits is said to be negasymmetric if there are
edges, a and b say (not necessarily distinct), in the circuit
such that a = −bR .

I A negasymmetric circuit may contain a negasymmetric
n-tuple, but it may not.

I The non-negasymmetric circuits come in complementary pairs.
We can add one of each of these pairs to E , while preserving
antinegasymmetry and the Eulerian property.

I Using the inverse Lempel Homomorphism, this yields a larger
antisymmetric set of (n + 1)-tuples — which is Eulerian —
and hence orientable sequences with greater period.



Enumeration issues

I It is important to know how many of these complementary
pairs there are, to know the period of the sequences obtained.

I We do this by enumerating negasymmetric circuits made up of
n-tuples with pseudoweight nk/2 — in fact we enumerate
negasymmetric circuits containing 0, 1 or 2 negasymmetric
n-tuples, having shown these are the only possibilities.

I Assuming these all have the maximum period, this gives a
lower bound on the number of edges we can add to E (which
is sharp if n is prime).

I We can show that the orientable sequences generated this way
have asymptotically optimal period (as both k →∞ and
n→∞), and the periods are in practice larger than those in
(Gabrić & Sawada, 2025).



An example
I Suppose n = 5 and k = 3. There are 51 3-ary 5-tuples with

pseudoweight exactly nk/2 = 7.5.
I The 51 edges corresponding to these 5-tuples can be

partitioned into 11 circuits, all but the first of which have
period 5:

[00000], [00012], [00021], [00102], [00201], 01122], [01212],

[02211], [02121], [01221], [02112].

I The first nine of these circuits are negasymmetric and contain
one negasymmetric 3-tuple, but the last two, i.e. [01221] and
[02112], are not negasymmetric.

I The edges from one of these two circuits can be added to give
an antinegasymmetric set of 96 + 5 = 101 5-tuples (there are
96 5-tuples with pseudoweight less than 7.5).

I The set of 101 5-tuples can be used to construct an
antisymmetric set of k × 101 = 303 6-tuples, yielding an
OS3(6) of period 303 (greater than the previous record of 288
and close to the best known upper bound of 315).



4. Open questions

I A year ago at Sequences 2025, the only cases where the
largest period was known was for n = 2 and n = 3 (odd k
only).

I The new bounds and new construction methods mean we
have now resolved the maximum period question for n = 3 (all
k) and n = 4 (odd k).

I However, apart these small values of n, there remains a gap
between the period of the longest known OSk(n) and the
best upper bound.

I This suggests further research is needed on two main
problems:
I tightening the upper bounds;
I constructing sequences with periods closer to the upper

bounds;

so that (ideally) there is no gap.

I Eliminating the gap altogether seems difficult.



Largest known periods for k = 2

Order (n) Maximum known period Dai et al. bound

5 6 6
6 16 17
7 36 40
8 92 96
9 174 206

10 416 443

I Figures in bold represent maximal lengths as verified by
search.

I For further details see the excellent website maintained by Joe
Sawada: http://debruijnsequence.org/db/orientable

http://debruijnsequence.org/db/orientable


Largest known periods for k > 2 — as of Sequences 2025

Table: Largest known periods for OSk(n) (and bounds) as of 2025

n k = 3 k = 4 k = 5 k = 6 k = 7
2 3 4 10 12 21

(3) (4) (10) (12) (21)
3 9 20 50 72 147

(9) (22) (50) (87) (147)
4 30 84 275 522 1127

(33) (118) (290) (627) (1155)
5 90 368 1385 3360 7756

(105) (478) (1490) (3777) (8211)
6 285 1608 7155 21150 56049

(336) (2014) (7680) (23217) (58464)
7 879 7308 36890 135450 403389

(1032) (8062) (38640) (139317) (410256)
8 2688 30300 187980 821940 2844408

(3189) (32638) (194630) (839157) (2879835)

I Upper bound values are given in brackets.

I Figures in bold represent maximal lengths.



Largest known periods for k > 2 — latest results

Table: Largest known periods for an OSk(n) (and bounds)

n k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
2 3 4 10 12 21 24

(3) (4) (10) (12) (21) (24)
3 9 20 50 84 147 216

(9) (20) (50) (84) (147) (216)
4 30 88 280 552 1134 1872

(30) (112) (280) (612) (1134) (1984)
5 93 404 1420 3546 8022 15640

(99) (452) (1450) (3684) (8085) (15896)
6 303 1744 7510 22272 57981 128544

(315) (1958) (7550) (23019) (58065) (130332)
7 954 7480 37980 136848 407736 1039568

(972) (7844) (38100) (138144) (408072) (1042712)
8 3006 31000 193140 830772 2874018 8359984

(3096) (32390) (193800) (837879) (2876496) (8382492)

I Upper bound values are given in brackets.

I Figures in bold represent maximal lengths.
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I (Gabrić & Sawada, 2025): Des Codes Cryptogr 93(7) (2025)
2349–2367.

I (Mitchell & Wild, 2025a): Discret Appl Math 377 (2025)
242–259.

I (Mitchell & Wild, 2025b): arXiv.2507.02526.



Other resources

I Joe Sawada’s page:
http://debruijnsequence.org/db/orientable

I The Combinatorial Object Server: http://combos.org/

http://debruijnsequence.org/db/orientable
http://combos.org/
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