UDC 621.391.7:621.396
" Indexing Terms: Cryptographic systems, Speech scrambling, Time

alamant enaanh cnramhlin~
SLOTNENT CR22CD, SUAMTVNG

A classification of time element speech

scramblers

C.J. MITCHELL, BSc, PhD*
and

Professor F. C. PIPER, PhDt

* Formerly with Racal Comsec Ltd, Milford Industrial Estate, Tollgate
Road, Salisbury, Wiltshire SP1 2JG; now at Hewlett-Packard
Laboratories, Filton Road, Stoke Gifford, Bristol, BS12 6Q2Z

t Royal Holloway and Bedford New College, University of London,
Egham Hill, Egham, Surrey TW20 OEX

SUMMARY

This paper contrasts four methods of time element speech
scrambling (t.e.s.), which remains an extremely important
cryptographic technique for narrow band channels, not least
because of its robustness in poor transmission conditions
such as that experienced on h.f. One method, hopping
window t.e.s., although currently widely used, is increasingly
being replaced by sliding window t.e.s. systems such as the
other three methods described here. The importance of
synchronization is-emphasized, and three of the four systems
described allow continuous synchronization, an
overwhelming advantage except in the case when most
transmissions are very brief and missing synchronization is
not such a disadvantage.

1 Introduction

The spoken word is man’s most commonly used form of
communication. But for many of the numerous communi-
cation channels, such as radio, telephone and satellite, the
interception of conversations is both simple and wide-
spread. Consequently if the communicators are discussing
confidential information they use some form of scrambling
device to make the transmitted signal unintelligible to an
unauthorized interceptor. If the transmitter is using a
particular scrambler then the authorized receiver must
know precisely how it is being used and must have a
descrambler to enable him to obtain the genuine message.

Speech scramblers have been used for many years and
there are many different types available. For a broad
classification they can be divided into two fundamentally
different types: ‘analogue’ and *‘digital’. The basic
difference between these two types is the form in which the
scrambled speech is transmitted. For an analogue
scrambler, the output is an analogue signal which is a
transform of the original speech signal where this
transform normally takes place in the time and/or
frequency domains. The output from a digital scrambler,
on the other hand, is simply a sequence of binary digits. It
is perhaps worth emphasizing that the distinction is in the
form of the transmitted signal. For a number of analogue
scramblers the speech is ‘digitized’ prior to being
scrambled and the scrambled signal is then converted back
to analogue form for transmission. For a general
discussion of the various scrambling techniques and their
applications we refer the reader to Refs 3 or 4.

In this paper we shall discuss a number of different types
of analogue scramblers where the transform is performed
in the time domain. In this type of scrambler, often called a
time element scrambler, the speech signal is usually divided
into time ‘segments’ (typically of 30-50 ms duration)
which are rearranged before transmission. In particular we
shall look at some of the mathematical problems
associated with the design of these devices and the
implementation problems which arise when using them.

One of the main problems associated with the use of

Journal of the Institution of Electronic and Radio Engineers, Vol. 55, No. 11/12, pp. 391-396, November/December 1985

time element scramblers (and in fact with any time domain
scramblers) is that they necessarily impose a significant
delay on the communications channel. This delay, which
might be of the order of one second, may pose a serious
problem and it is often necessary to take steps to reduce it.
This is one of the problems which we shall discuss. The
other problem is that of ensuring that the scrambler offers
a high level of security. To do this it is necessary to ensure
that the scrambler is able to use a large number of different
rearrangement patterns for the segments. We shall discuss
a number of the strategies currently used to ensure a large
number of possible rearrangements while, at the same
time, minimizing the time delay.

Although we shall not discuss them in this paper, we
must point out that there are a number of other important
techniques for speech scrambling, e.g. frequency domain
scrambling and reversed time segmentation. The security
level of devices using these techniques vary considerably
but each one can be combined with a time element
scrambler to increase the cryptographic strength.

2 A Classification of Time Element Scramblers
Time domain scrambling techniques can be divided into
three broad categories:

(a) Reversed time segmentation
(b) Time clement scrambling
(c) Time sample scrambling.

The most commonly used of these is undoubtedly the
time element scrambling (or t.e.s.) and this is the method
which we discuss. In other publications t.e.s. is also
frequently called time division multiplexing (t.d.m.) or time
segment permutation (t.s.p.).

In a time element scrambler, the analogue speech signal
is digitized and stored prior to being processed. The
digitized speech is then divided into short time ‘segments’
which are rearranged within the device and converted back
to analogue form before being output. There are three

major practical implementation problems associated with

© 1985 IERE

this type of scrambler. They are:

(i) Time delays
(if) Choice of the rearrangement patterns
(iii) Synchronization.

We consider each of them in turn.

2.1 Time Delays

A time delay is an inevitable consequence of using any type
of time domain scrambler. The reason is clear. The
scrambler needs time to accept some of the speech
segments and to rearrange them before transmission.
Similarly the descrambler needs time to rearrange the seg-
ments back into their original order. The precise length of
this delay will vary according to the design of the scrambler
and the various parameters chosen for a particular
application. We shall be looking at this problem in
considerable detail. However, we must point out that this
problem cannot be considered in isolation. The parameters
which affect the time delay are also likely to have a
significant effect on the security level offered by the device.

2.2 Choice of the Rearrangement Patterns
Although the choice of the type of time element scrambler
to be used affects the range of rearrangement patterns
available, they all require some form of selection process to
choose a set of ‘good’ patterns. For any type of time
element scrambler there are a large number of rearrange-
ment patterns which, if used, result in a transmitted signal
that is not sufficiently different to the original speech
signal. If one of these is used then an interceptor can,
simply by listening very carefully to the scrambled signal,
understand (or at least guess fairly accurately) some of the
original message. This is a consequence of a phenomenon
known as ‘residual intelligibility’. It is sometimes very
difficult to predict the level of residual intelligibility of a
particular rearrangement. In fact it is often necessary to
scramble a message using the given arrangement and to
subject the scrambled signal to ‘listener tests’ in order to
see how much of the message is intelligible.

There are many different methods for generating usable

| permutations. Devising and implementing a method for a
| given system is almost always a major part of the

development program for a time element scrambler.

‘ 2.3 Synchronization

Apart from a few very simple, and usually minimally
secure, scramblers (such as, for instance, bandsplitters),
most analogue scramblers are affected by synchronization
problems. There are, in general, two separate but related
problems: one concerns initial synchronization and the

. other involves late entry synchronization.

As its name suggests the initial synchronization problem
is concerned with the beginning of a transmission. Before

| they can conduct a secure conversation the communicators

must synchronize their scrambling and descrambling
devices. One way of achieving this is to include a special
signal at the beginning of each transmission. So, for

. example, on a half-duplex system, this signal will be

transmitted after every ‘over’. While initial synchron-
ization is needed for all systems, late entry synchronization
is necessary if, for instance, it is desirable to enable a third
party to join an existing conversation, if one of the original
communicators has lost synchronization or, possibly most
importantly, if the initial synchronization has been
‘missed’. It is necessary for this synchronization signal to
be present more or less continuously so that the receiver

- may commence descrambling at any stage of the message.

U

| Late entry synchronization can pose real problems for the
de51gner but offers significant advantages to the user.

392

In Section 3 we discuss Hopping Window scramblers.
They are probably the most simple type of time element
scrambler but have the disadvantage of causing an
unavoidably long time delay. To try to overcome this
problem various types of Sliding Window scramblers have
been introduced. Sections 4, 5 and 6 are devoted to three
different sliding window systems. First, in Section 4, we
look at the well-known frameless sliding window systems
which have been described in a number of recent papers,
see for example Refs 9, 10 or 11. These systems can offer a
higher security level than most time element scramblers
but, in practice, present a number of serious implemen-
tation problems. In an attempt to overcome these
difficulties the overlapping frame sliding window
scramblers of Section 5 and the disjoint sliding window
systems of Section 6 were introduced.! The overlapping
frame systems offer a very large number of ‘good’
rearrangements for a relatively short time delay. However,
the only current known practical implementations of this
type of scrambler involve repeated use of the same
rearrangement pattern and this limits the level of security
available. It was this fault which led to the introduction of
the disjoint frame scramblers discussed in Section 6. They
are, in some sense, a cross between hopping window
scramblers and frameless sliding window ones. They can
be implemented as easily as hopping window scramblers
but have the advantage that they cause less delay.

3 Hopping Window Scramblers

There are numerous descriptions of these systems in the
literature; see, for example Refs. 3,4, 5,8, 11, 12 and 13. We
will give only a brief description of how they work and
refer the reader to Ref. 4 for more details.

The analogue signal is first divided into equal time
periods called frames. Each frame is then further
subdivided into a fixed number n of smaller equal time
periods called segments, where the length of a segment
would typically be of the order of 30-50 ms. The scrambler
then permutes the segments within each frame and they are
transmitted in the new, permuted order. For each frame,
the receiver knows the permutation used by the scrambler
and is able to recover the original speech by applying the
inverse permutation.

Frame length
P Segment length

Analogue

input

output

Fig. 1. Hopping window t.e.s.

A typical system with n =8 is illustrated in Fig. 1.

There are many decisions to be made when designing
and/or using a hopping window scrambler. Amongst them
are the choice of n, the length of a segment and the
selection of permutations to be used in the scrambler. Each
of these decisions is likely to affect the others and they all
have serious consequences for the entire system. One
important fact, for instance, is that if the segment length is
T seconds, then the total time delay for the system is
2nTs. So, for example, if n=8 and the segment length is
50 ms the system delay will be 0-8 s. This is certainly long
enough to be noticeable and for any larger choices for n or
T the delay is likely to become unacceptably long. Yet,

J. IERE, Vol. 85, No. 11/12, November/ December 1985

clearly, the total number of permutations available to the
scrambler is n!, and so if we make n too small we will
seriously restrict the choice of permutations and, as a
consequence, severely limit the security offered. Trying to
choose n large enough to give a wide choice of
permutations and small enough to keep the system delay
acceptably short is a delicate problem! Despite this,
hopping window scramblers have the great advantage
that they are easy to implement. Furthermore, it is not
difficult to arrange for a hopping window scrambler to
have a continuous synchronization system allowing late
entry at any time.

A typical system might involve using frames with 8
segments. Prior to its wuse, a number of ‘good’
permutations would be selected and stored. A pseudo-
random number generator would then be used to choose
the particular permutation to be used for the current
frame. Every frame time (typically, say, 250-500 ms) the
sequence generator would be reloaded with two different
portions of key material. One part of this material, the
base key, would be chosen by the user and would be fixed
for a set period of time. The other, the message key, would
be machine generated and be transmitted at the same time
as the scrambled speech. Since the receiving unit obtains a
full set of message key material during any frame time, it is
able to start descrambling with the second complete frame
of scrambled speech which it actually receives. This means
that the facility of late entry causes a time lapse of the
order of one second between switching on and being able
to obtain the message. In most circumstances this is totally
acceptable.

4 Frameless Sliding Window Scramblers

As we have already observed, although the delay for late
entry is short, the major problem with hopping window
scramblers is their inherent overall time delay. This is twice
the frame length and is necessary because (i) the
transmitting device needs to receive an entire frame before
it can begin to scramble it and (ii) the receiver needs to
receive an entire frame before
descrambling it.

and (ii) are removed and, as a consequence, the delay

sliding window scramblers and one of their characteristics
is that the notion of a frame is dispensed with altogether.
There are many possibilities for implementing a frameless
system and we will describe one of them. We first choose a
small positive integer k which, as we shall see, determines
the system’s time delay. At any given time the transmitter
will then store the most recent k segments that it has
received. At the start of each segment a pseudo-random
number generator is used to select one of the k stored
elements for transmission. This selection process is subject
to the following two constraints:

(a) if the ‘oldest’ segment in the store, i.e. the segment
received k segment times earlier, has not been sent,
then it must be transmitted now

(b) no segment is ever sent twice.

It should be clear that (b) is necessary and that (a) has the
effect of limiting the possibilities for the delay. In fact the
inherent time delay in this type of implementation is
(k+ 1)T seconds, where the length of a segment is T's.

By using a frameless sliding window scrambler we can
obtain a system which, for a time element scrambler,
obtains an impressively high security level. There are a
number of techniques for improving this level. One is to
impose extra conditions on the usable permutations and
only use those which ensure that the scrambled order of

C. J. MITCHELL & F. C. PIPER: A CLASSIFICATION OF TIME ELEMENT SPEECH SCRAMBLERS

it can commence
We now describe a system in which the requirements (i) |

time can be shortened. We call these systems frameless

. b Overlapping Frame Sliding Window

the segments is not too close to the original one. This can
be achieved without putting too severe a restriction on the
choice of rearrangement patterns and considerably reduces
the level of residual intelligibility.

As we saw in Section 3, the time delay for a hopping
window system is 2nTs, where n is the number of
segments per frame. The value k for a frameless system can
be chosen to be of the same order as this n to obtain a
system which offers roughly the same security level as a
hopping window system and at least as'large a range of
possibilities for the rearrangement patterns. Thus we have
a system which offers the same level of security as a
hopping window system, but with roughly half the time
delay. However, these systems have a number of practical
implementation problems. One major problem is
synchronization; in particular, late entry synchronization.

If, in a system like the one we have just described, one
wants to synchronize a receiver midway through a
transmission, then it is necessary to send not only the key
data which relate to the pseudo-random number generator
(i.e. the message key), but also sufficient information to
determine precisely which segments have already been
transmitted at that particular time. This is a great deal of
information and, in order to appreciate the difficulties of
sending it, it is necessary to understand how data are sent
simultaneously with the speech signal. '

One common method of sending extra data simul-
taneously with the speech is to employ suitable filters to
remove a specific small part of the frequency band. This
small gap, which is often called the ‘notch’, is then used to
transmit f.s.k. data at a low bit rate, typically 50 bits/s.
(The precise bit rate is, of course, limited by the bandwidth

Scramblers -
The system described in this Section uses the basic idea o
a sliding window scrambler but, in a slightly different
context, reintroduces the notion of a ‘frame’ consisting of a
number of speech segments. Thus, as in a hopping window
system, the speech is divided into frames of n segments,
where each segment is T seconds long. However, our
choice of permutations is now severely restricted and we
use the permutations in a slightly different way.

Before designing the scrambler we choose an integer k
which must be less than n. As we shall see, the total system
delay will be equal to (k+ 1)T s and this is a relevant factor
in the choice of k. Thus if k=16 and T = 30 ms, then the
system delay will be 0-51 s. Note that the choice of n does

393

not affect this delay. Having chosen k we then choose our
permutations in such a way that each segment is
transmitted within kT seconds of entering the scrambler.
This is achieved by limiting the scrambling permutations
to those permutations ¢ satisfying:

@e{i—l,i—Z, ..., i—k} for each i with 1 <i<n,

where 7 denotes the residue class of i modulo n.

Time (t) t=8T t=16T
Frame A . Frame B
) !
Speech T T T T T T T T T
input to ..[Al|A2|A3|A4|AS|AGIAT|AB|BL1|B2|B3|B4|BS5|B6|B7|B8|C1]|
transmitter ~—1t P P I R S
T T T T T T T T T T T T T T
Transmitted Al|..|A3|AZIAS|A4|A7|A6|B)|AB|B3|B2|BS|B4|B7|B6].
speech I S R S S S S S S TR R S T
Speech T LIRS I S S e s T T
output at [AL|AZ |A3|A4|AS|AG|AT|AB|BL1|B2|B3|B4|B5].
P e i L

receiver i
|

—_—
System delay = 4T s

Fig. 2. Overlapping frame sliding window t.e.s.

In Fig. 2 we illustrate a system with n=8, k=3 and
t =[61832547]. (There are many different ways for writing
down permutations. In the one adopted here the order
represents the order of the segments after scrambling.
Thus, for our example, t(1) =6, t(2) =1 etc.) In the
Figure we have used different letters to distinguish between
frames. So, for instance, A1 is the first segment of the first
frame while B1 is the first segment of the second.

The condition imposed in the permutation means that
we know that each segment will be transmitted at most 37T
seconds after it has been received. Thus the receiver can
begin to scramble 4T seconds after the beginning of the
message and the overall delay is 4T seconds.

By using frames this system allows the use of finite
permutations on a fixed number of elements. However, we
have lost the restriction that each complete frame must be
transmitted before the scrambling of the next can begin,
and it is this which enables us to decrease the time delay.
Unfortunately, the system has a number of practical
limitations. Most implementations - are restricted to
systems which reuse the same (albeit base key dependent)
permutation of the segments and this limits the level of
security provided. We will now describe one possible way
in which such a system might operate.

First, we must choose values for k, n and T and, of
course, when making these choices we must consider the
effect of each decision on the total system. Once these
choices are made we enter a base key, consisting of a set of
bits, which is then used to select one of the permitted
permutations. This permutation is then used to encrypt the
speech in the way we have just described and decryption is
achieved by using the inverse permutation.

Apart from the need to indicate to a receiving unit the
beginning of a frame of speech data, this implementation
removes the need to send any synchronization
information. However, the repeated use of the same
permutation imposes obvious security limitations. If the
permutation is ever discovered by an interceptor, then he
will be able to descramble the rest of the message as easily
as the legitimate receiver. Although it is not easy to
discover the permutation, especially if n and k are
sufficiently large, this threat means we should regard our
implementation as providing a fairly high level of privacy

394

rather than full security.

Obviously, it would be nice to remove the restriction of
having to use the same permutation, but there are two
main reasons why this is not easy. The first arises from the
fact that it is necessary to start transmitting one frame
before transmission of the previous one has been
completed. This means that, if we try to use different
permutations for successive frames, the second
permutation must be chosen so that it ‘interlocks’ with the
first, i.e. it must not send a segment of the second frame
into a position needed for one from the earlier frame. This
poses extremely difficult implementation problems. The
second reason concerns synchronization. In our little
example, the repeated use of the same permutation made
late entry easy. As soon as we try to use different
permutations we need to send extra synchronization
information. The ‘interlocking’ problem causes the volume
of this information to be comparable to that needed for the
frameless sliding window system of Section 4.

In the next Section we look at systems which are similar
to the one we have just described except that they prevent
the ‘overlap’ of the frames. Thus we will be looking at
systems which have the ease of implementation associated
with hopping window systems but have the shorter time
delay of the sliding window systems.

6 Disjoint Frame Sliding Window Scramblers
For this type of scrambler we first determine our segment
length, T seconds, and then choose a positive integer h.
(The value of this integer will, as we shall see, affect the
system delay.) We then choose a second positive integer n,
which must be at least as large as h, and this determines
the size of our permutations. We then use only those
permutations ¢t on {1,2,...,n} with the property that
li—t()| < h for all i; we call the set of all such permutations
C(n, h). The speech is divided into frames of n segments
and, for each frame, one of the permitted permutations is
then used to determine the order in which the segments of
that particular frame are transmitted. An important
characteristic of this system is that all the segments of one
frame are transmitted before any segment of the
subsequent frame is sent. One possible implementation is
the following.

Suppose that a frame of speech commences at time ¢ =0
and ends at t=nT. Suppose, also, that an appropriate
permutation p has been chosen to re-order the segments of
this frame. For convenience we will label the segments
1,2,..., nso that segment i lasts from time (i—1)T to iT.
The segments of the frame are transmitted between times
hT and (n+h)T in such a way that, for any i between 1
and n, the segment transmitted between times (h+i—1)T
and (h+i)T is p(i). It should be clear that, for any i, the
receiver will have received segment i by the time (2h+i)T,
and so the receiver will be able to start outputting the
speech (in its original order) at time t =2hT and that the
frame will be totally output by the time t = (2h+n)T. Thus
the total delay is 2hT seconds.

As an illustration of this type of system we consider an
example with n=8 and k=2 Suppose that
p =[21354768] is used to permute the segments of the first
frame, and q =[13254687], is used for the second. Just as
in Fig. 2, let A1, A2, ..., A8 be the segments of the first
frame and B1, B2, ..., B8 be the segments of the second.
Then Fig. 3 shows how the system works.

Note that if we use this system without changing the
permutation, then we merely have a special type of
overlapping system with k = 2h—1. On the other hand we
can also regard this system as a special type of hopping
window system, with the same value of n, where the added
restriction involving h means that the transmission of the

J. IERE, Vol. 55, No. 11/12, November/ December 1985

Time (£) t=0 t=2T t=4T t=8T t=16T

| (=hT) (=2hT) ’

+ 1

| 1 t { |
Speech LN RN SN IO S DS S L J SO, S DURR SO SRS B S S
input to ..{Al{A2|A3|A4|A5|A6|A7|AS|B1|B2|B3|B4|BS|B6|B7{B8|C1|
transmitter & vl i S St S S S St A e I et Sl intl Rt

T

Transmitted |AZ|A1|A3|AS{A4|A7|A6|AB|B1|B3|B2|B5|B4|B6|BS|
speech VA S S OO S SORS S A S S et
Speech T T T T T T T T T T T T T
output at {AL|A2|A3{A4|AS|A6|AT7|AB|BL|B2|B3|B4|B5].
receiver RN DU ARG il Rt et e Dot Pt et S e Rt

'~ L
System delay = 4T s

Fig. 3. Disjoint frame sliding window t.e.s.

segments of a frame can commence before the entire frame
has been spoken. The implementation problems involved
in this system are essentially the same as those of the
hopping window scramblers.

One possible method of implementation might be to
store a preselected set of permissible permutations within
the device and then allow a pseudo-random number
generator to select which one is to be used for the next
frame. This is, of course, the method suggested for hopping
window systems and we can also use the synchronization
method which we suggested for them. Thus the synchron-
ization signal involves the transmission of message key
material only. The advantage of these systems over
hopping window scramblers is that, for the same choice of
n, h can be chosen to decrease the delay or, alternatively,
for the same delay n can be increased so as to increase the
number of permutations and, as a consequence, offer more
security.

7 Permutation Selection and Enumeration

One problem which is common to all the scramblers
discussed here is the choice of usable permutations. Once
one has decided the limitation to be placed upon them,
then it is necessary to enumerate the available
permutations. '

For hopping window systems, any permutation can be
used and there are, therefore, n! possible permutations. Of
course, they are not all equally effective and some of them,
for instance the identity, leave too much residual
intelligibility. This last comment applies to all the
enumerations and it must not be forgotten that after we
have found all the available permutations they must be
subjected to listener tests to determine the level of security
they provide. 7

For frameless sliding window scramblers the rearrange-
ment patterns are, essentially, infinite. Thus the number of
available permutations cannot be evaluated in the same
way. However, some assessments of the variety of
rearrangement patterns over a specified period of time are
given in Ref. 9.

For overlapping frame sliding window scramblers we
must only use permutations ¢t on {1,2, ..., n} such that,
for each i, t(i) e {i—1 i—2, ..., i—k}. This set is denoted
by A(n, k) and, if we denote the number of permutations in
A(n, k) by a(n, k), then it'is very hard to determine a(n, k)
for arbitrary values of n and k. In fact, a(n, k) is equal to
the permanent of the cyclic (0, 1) n by n matrix having
(11...100...0) as its first row, where the number of 1’s in
this vector is k. It is well known, see for example Ref. 7,
that evaluating permanents is a difficult problem. The
specific problem of evaluating a(n, k) is discussed in Ref. 2.

For disjoint frame sliding window scramblers the

C. J. MITCHELL & F. C. PIPER: A CLASSIFICATION OF TIME ELEMENT SPEECH SCRAMBLERS

enumeration problem is once again equivalent to the
problem of evaluating the permanent of an n by n (0, 1)
matrix. This matrix has 1 in its (i, j) position if and only if
li—jl <h. The evaluation of this permanent is again a
difficult problem and is the subject of current research.

As we have already observed, these enumerations
determine the number of permutations which can be used .
in theory. In practice the number of them which scramble
the speech effectively is considerably smaller. This problem
is discussed in considerable detail in Ref. 4. Practical
experiments suggest, see for example Ref. 6, that the most
important extra constraint to put on the permutations is
that no two segments which were consecutive in the
original speech should: remain consecutive after
scrambling. Obviously the imposition of this extra
restraint will decrease the number of usable permutations.
We now consider how the number decreases.

For hopping window scramblers the permutations
excluded by this new condition are precisely those
permutations t for which, for some i, t(i)+1=1t(i+1).
(Note that this claim is not quite accurate. If we were to
use two permutations p and ¢ on consecutive frames where
p(n)=n and g(1)=1, then the last element of the first
frame and the first segment of the second would remain
consecutive in the scrambled signal. However, having
observed this possibility we will ignore it!) The number of
usable permutations is now equal to D(n)+D(n—1), where
D(n) is the number of ‘derangements’ on n letters, i.e. the
number of permutations of n objects having no fixed
elements. This assertion is well known and easily
established (see, for example, exercise 20 on page 160
of Ref. 14). Since D(n) is easily evaluated, one
simple recurrence being D(n) = nD(n—1)+(—1)", our
enumeration is simple.

For a discussion of the variety of rearrangements for
frameless sliding window scramblers, the reader is referred
to Ref. 9.

For overlapping frame sliding window scramblers, in
order to enumerate the number of permutations which
satisfy our extra condition, we introduce a new set of
permutations- B(n, k). This set B(n, k) consists of all those
permutations t from A(n, k) such that, for all i<n,
t(i+1) #4i)+1 and t(n)+1+#1¢t(1) where, as before, the
bars denote residue classes modulo n. If, as in the
implementation described in Section 5, the same
permutation ¢ is used repeatedly, then using permutations
from B(n, k) ensures that no segments which were
consecutive in the original speech, even at the frame
boundaries, will be transmitted consecutively. So, in this
case, we have solved the ‘boundary’ problem which we
ignored for hopping window scramblers. For general n and
k, the size of B(n, k) is unknown but, for small values of k,
some recurrences are given in Ref. 2.

Finally, for the disjoint frame sliding window time
element scramblers, the number of permutations which
satisfy the adjacency restriction is equal to the size of the
set D(n, h), where D(n, h) is the set of permutations ¢ in
C(n, h) such that t(i)+1#t(i+1). (The set C(n, h) was
defined in the last Section.) Note that, since most
implementations of these systems involve using a different
segment with each frame,' even if we restrict our
permutations to D(n, h), we still cannot guarantee that
segments which are consecutive but lie in different frames
will not be transmitted consecutively. The evaluation of
|D(n, h)| is a problem which needs to be investigated.

Clearly the enumeration problems raised in this paper
have an important relation to the security level of various
types of scrambler which we have discussed. Thus these
combinatorial problems are of sufficient interest and |
application to merit continued research. ‘

395

Table 1. Comparison of four types of time element speech
scrambiing

Level of security Continuous sync Typical system

Type of t.e.s. available possible? delay -
Hopping potentially yes relatively
window good long—
typically 1s
Frameless potentially no relatively
sliding window good short—
typically 0-5s
Overlapping limited—fixed yes relatively
frame sliding permutation short—
window only typically 0-5s
Disjoint frame potentially yes relatively
sliding window good short—
typically 0-6s

8 Comparison

We summarize the comparison of the four types of t.e.s. in
Table 1. Note that in this context the term ‘good’ means
good for a time element scrambler. We make no attempt
to compare t.e.s. with other cryptographic techniques.

9 References

| Beker, H. J., ‘Analogue speech security systems’, ‘Cryptography’.
(Proceedings Burg Feuerstein, March/April 1982) Springer-Verlag
Lecture Notes in Computer Science, 149, pp. 13046, 1983.

2 Beker, H. J. and Mitchell, C. J., ‘Permutations with restricted

displacement’, (Under consideration for publication in SI4M J. on
Algebraic and Discrete Methods.)

3 Becker, H. J. and Piper, F. C., ‘Cipher Systems’ (van Nostrand,
UK, 1982).

4 Beker, H. J. and Piper, F. C., ‘Secure Speech Communications’
(Academic Press, New York, 1985).

5 Beth, T., Hess, P. and Wirl, K., ‘Kryptographie’ (Leitfaden der ang.
Informatik, Teubner, Stuttgart, 1983).

6 Bromfield, A. J. and Mitchell, C. J., ‘Permutation selector for a
sliding window time element scrambler’, (Under consideration for
publication in J. Instn Electronic & Radio Engineers.)

7 Garey, M. R. and Johnson, D. S., ‘Comptiters and Intractability: A
Guide to the Theory of NP-Completeness’ (Freeman, Oxford,
1979).

8 Hess, P. and Wirl, K. ‘A voice scrambling system for testing and
demonstration’, ‘Cryptography’. (Proceedings Burg Feuerstein,
March/April 1982) Springer-Verlag Lecture Notes in Computer
Science, 149, pp. 147-56, 1983.

9 Hong, S. T. and Kuebler, W., ‘An analysis of time segment
permutation methods in analog voice privacy systems’, Proc. 1981
Carnahan Conf. on Crime Countermeasures, University of
Kentucky, 1981, pp. 167-71.

10 Jayant, N. S., ‘Analogue scramblers for speech privacy’, Computers
and Security, 1, pp. 275-89, 1982. .

I1 Jayant, N. S., Cox, R. V., McDermott, B. J. and Quinn, A. M.,
‘Analogue scramblers for speech based on sequential permutations
in time and frequency’, Bell Syst. Tech. J., 62, pp. 25-46, 1983.

12 Jayant, N. S., McDermott, B. J., Christensen, S. W. and Quinn,
A. M., ‘A comparison of four methods for analog speech privacy’,
IEEE Trans on Communications, COM-29, pp. 18-23, 1981.

13 MacKinnon, N. R. F., ‘The development of speech encipherment’,
The Radio and Electronic Engineer, 50, pp. 147-55, 1980.

14 Tucker, A., ‘Applied Combinatorics’ (Wiley, New York, 1980).

Manuscript first received by the Institution on 21st March 1985 and in final
form on 2nd May 1985
Paper No. 2211/COMM401

396

J. IERE, Vol. 55, No. 11/12, November/ December 1985

