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Abstract

Trusted Computing technology has been put forward as a potentially
revolutionary addition to the field of information security. In this chapter
we examine how Trusted Computing may be used to defend against the
ever-growing threat posed by crimeware. We also highlight a counterin-
tuitive but important use of Trusted Computing, as a possible facilitator
of cybercrime.

1 Introduction

The anonymous and international nature of the Internet makes cybercrime a po-
tentially low risk, high-return activity. Traditionally, the appropriation of user
data through “phishing” attacks has been reliant on social engineering tech-
niques in which a user is tricked into performing an action that results in the
revelation of sensitive information. However, as attacks become more sophisti-
cated, social engineering is being superseded by techniques that directly target
vulnerabilities in end-user platforms. These vulnerabilities, once exploited, al-
low crimeware to be surreptitiously installed, leaving the platform prone to
data exposure. Crimeware such as keystroke loggers, viruses, worms, rootkits
and trojan horses can execute silently in the background and can monitor, log
and report keystrokes entered by a user, steal commercially sensitive data or be
used in the furtherance of additional criminal activities.

Recent studies that examine the evolution, proliferation and propagation of
crimeware illustrate a marked and steady rise in both the number and complex-
ity of applications used in the commission of cybercrime [20, 36]. Crimeware is
beginning to combine characteristics of viruses, worms, trojan horses with server
and Internet vulnerabilities, fusing numerous methods for compromising end-
user systems with multiple means of propagation to other networked machines
[36]. Additionally, it is predicted that mobile devices (such as smart phones
and PDAs) will increasingly become targets of crimeware in the coming years,
especially as organisations begin to allow corporate data to be stored on these



devices [36, 45]. Crimeware technology represents a serious and viable threat to
both consumer and corporate data.

As a consequence of the perpetual increases in the volume, complexity and
scope of crimeware attacks, the natural question arises, how can users trust the
software environments with which they interact? Trusted Computing technol-
ogy partially addresses this question by providing a means for end-users (and
third-parties) to derive increased confidence in the platforms with which they
interface, as well as providing standardized mechanisms to protect user data
and information from software attack. In this chapter we examine how Trusted
Computing technologies can be used to impede the distribution, infection and
execution of crimeware applications. In doing so, we note a counterintuitive but
important use of Trusted Computing, as a possible facilitator of cybercrime.

This chapter is structured as follows. In section 2, we examine the lifecycle
of a crimeware attack. Section 3 provides an overview of Trusted Computing
related concepts and examines how Trusted Computing enhanced platforms
can be used to impede crimeware at each stage of its lifecycle. This section also
examines how Trusted Computing may actually compound the threat posed by
crimeware. In section 4, we examine two case studies. The first looks at the use
of Trusted Computing in combatting on-line credit card fraud. The second looks
at how Trusted Computing can aid rights management for content protection
on mobile platforms.

2 Anatomy of an Attack

Cybercrime can broadly be defined as any “crime that is facilitated or com-
mitted using a computer, network, or hardware device”, where the computer,
network or device may be the agent of the crime, the facilitator of the crime,
or the target of the crime [19]. More specifically, the Council of Europe’s Con-
vention on Cybercrime uses this term to refer to criminal activity ranging from
offences against computer data and systems to digital content and copyright
infringements [26]. However, irrespective of the actual motivation for such ac-
tivity, a crimeware attack, or more generally a malware attack, must typically
pass through three stages to fulfil its goal [46]. These are distribution, infection
and ezecution.

e Distribution: Distribution refers to the means by which malware arrives
at a platform. Traditionally, malware has been heavily reliant on social
engineering as a means of distribution. Here a user is tricked into down-
loading malware from a compromised server, opening an email or instant
message attachment containing malware, or indeed, installing malware
that has been integrated into an apparently useful application. However,
such distribution methods are being displaced by methods that directly
target and exploit vulnerabilities on a platform.

e Infection: Infection is the process by which malware penetrates a plat-
form. Malware may be ephemeral and leave behind no lasting executable,



as is the case with system reconfiguration attacks, such as DNS poisoning.
Alternatively, malware may persistently reside in memory or be executed
upon loading an infected component. The infection may target user-space
objects, as is the case with malicious browser help objects and application
programs, or kernel objects, as is the case with device drivers.

In order to disguise an infection, rootkits are sometimes deployed. Ba-
sic rootkits simply replace user-level executables with trojanized versions,
for example, replacing the Linux Processes Status command with a ver-
sion that incorrectly reports running processes. However, such attacks are
trivially detectable given current anti-virus technology. Unfortunately,
more recent rootkits are becoming adept at circumventing anti-viral de-
fenses, such as variants of the FU rootkit [15] or new rootkits that ex-
ploit hardware-based virtualization, such as Microsoft’s proof of concept
rootkit, Subvirt [23]. Subvirt attempts to modify a system’s boot sequence
so that the legacy Operating System (OS) is loaded into a virtual machine
monitor. This allows any system-call made by the OS to be observed and
modified by the Subvirt application.

o Execution: It is during this stage that the malicious objectives of the
malware are revealed. The malware may attempt to gain unauthorized
access to information, capture user-entered details or steal proprietary
data. For example, the Bankash.G trojan horse attempts to steal user ac-
count details such as user names and passwords or credit card information
from a compromised computer [34]. This data is collated by the crimeware
and transmitted back to the attacker for processing. As a further exam-
ple, another trojan horse called Archiveus [35] (classified as ransomware)
bundles randomly selected files on the platform on which it is executing
into a password-protected archive and deletes the original files. The plat-
form user is then requested to purchase any product from a specified site
in exchange for the password required to retrieve their files.

3 Combating Crimeware with Trusted Comput-
ing

Trusted Computing as discussed here, relates directly to the types of system
proposed by the Trusted Computing Group (TCG). Namely, a Trusted System
is one that will behave in a particular manner for a specific purpose.

The current documentation from the TCG encompasses a vast set of spec-
ifications ranging from Personal Computer (PC) [38] and server systems [37]
to specifications for trusted networking [42] and trusted mobile platforms [43].
However, it is the TCG’s specifications for microcontroller design that have per-
haps become most synonymous with Trusted Computing. The Trusted Platform
Module (TPM) specifications [39, 40, 41] form the core of all Trusted Com-
puting implementations. These specifications describe a microcontroller with



cryptographic coprocessor capabilities that provides a platform with the follow-
ing functionality: A number of special purpose registers for recording platform
state; a means of reporting this state to remote entities; secure volatile and
non-volatile memory; random number generation; a SHA-1 hashing engine; and
asymmetric key generation, encryption and digital signature capabilities. How-
ever, the specification set produced by the TCG is by no means the only work
on Trusted Computing. Trusted Computing also encompasses new processor
designs [21, 2] as well as OS support [32, 33]. For the interested reader, intro-
ductory texts on Trusted Computing include [25, 31].

Since its release, Trusted Computing has become synonymous with three
fundamental concepts: Integrity measurement and storage, attestation, and
protected storage. However, recently the definition of what constitutes Trusted
Computing functionality has been revised and extended to incorporate the con-
cepts of secure boot and software isolation. In this section, we consider how
these fundamental Trusted Computing concepts can be used to impede the dis-
tribution, infection and execution of crimeware.

3.1 Integrity Measurement and Storage

An integrity measurement as defined in [33] is the cryptographic digest or hash
of a platform component (i.e., a piece of software executing on the platform).
For example, an integrity measurement of a program can be calculated by com-
puting a cryptographic digest of its instruction sequence, its initial state (i.e.,
the executable file) and its input. An integrity metric is a digest of one or more
integrity measurements [31]. Integrity metrics are stored in special purpose
registers within the TPM called Platform Configuration Registers (PCRs).

During a platform’s boot sequence, the entire platform state can be reliably
captured and stored, as shown in figure 1. During this process, the integrity
of a pre-defined set of platform components (typically the POST BIOS, option
ROMs, the OS loader and OS) are measured and the resulting measurements
stored in the TPM’s PCRs.

In isolation, integrity measurement and storage functionality do not provide
a means of defending against crimeware. They do, however, provide the foun-
dation for a number of services useful in combating the distribution, infection
and execution of crimeware, as described in sections 3.2-3.5 below.

3.2 Attestation

Platform attestation enables a TPM to reliably report information about the
current state of the host platform. On request from a challenger, a Trusted
Platform can, using a private attestation key, sign integrity metrics reflecting
(all or part of) the platform’s software environment. The challenger uses this
information to determine whether it is safe to trust the platform from which the
statement has originated and (all or part of) the software environment running
on the platform. This is achieved by validating the integrity metrics received
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Figure 1: Integrity Measurement and Storage

from the Trusted Platform against software integrity measurements provided by
a trusted third party, such as a software vendor.

Attestation provides a powerful technique to combat crimeware distribution
and infection. A platform, upon requesting access to a company’s intranet, may
be required to demonstrate through attestation that it has up-to-date anti-virus
software with the latest signature definitions, that its spam filters are operating
correctly and that it has installed the latest OS security patches. Similarly, a
client could request that a server attests to its operating environment prior to
the disclosure of sensitive data.

Attestation features form an important focus of the TCG’s Trusted Network
Connect (TNC) specifications [42]. TNC offers a way of verifying an endpoint’s
integrity to ensure that it complies with a particular predefined policy before
being granted network access. The process of assaying end-point integrity for
compliance with policy occurs in three distinct phases: Assessment, isolation
and remediation. The assessment phase primarily involves a platform that re-
quires access to a restricted network, attesting to its current state. A server
examines this attestation and compares the platform’s integrity metrics to its
network access policies. Based on the outcome of this comparison the server will
allow access, deny access or place the platform in an quarantined network (iso-
lation). In this isolated network, a platform would typically be able to obtain
the requisite integrity-related updates that will allow it to satisfy the server’s
access policy and be granted access.



3.3 Protected Storage — Binding and Sealing

Protected storage functionality uses asymmetric encryption to protect the con-
fidentiality of data on a TPM host platform. Protected storage also provides
implicit integrity protection for TPM objects. Both data and keys can be asso-
ciated with a string of 20 bytes of authorization data before being encrypted.
When decryption is requested, the authorization data must be submitted to the
TPM. The submitted authorization data is then compared to the authorization
data in the decrypted string, and the decrypted object is only released if the
values match.

The notions of binding and sealing are of fundamental importance to Trusted
Computing. Binding refers to the encryption of data with a public key for which
the corresponding private key is non-migratable from the recipient’s TPM. In
this way only the TPM that manages the non-migratable private key will be ca-
pable of decrypting the message. Sealing takes binding one step further. Sealing
is the process by which sensitive data can be associated with a set of integrity
metrics representing a particular platform configuration, and encrypted. The
protected data will only be decrypted and released for use by a TPM when the
current state of the platform matches the integrity metrics to which the data is
sealed.

Using sealed storage, an end-user can protect their private data (e.g., credit
card numbers) by making revelation of that data contingent on a platform being
in a particular state. For example, a user can seal credit card data to a state that
requires a particular banking application to be running on the platform, and
nothing more. The presence of crimeware would change the platform state. This
feature would therefore ensure that malicious software, such as the Bankash.G
Trojan horse, could not gain access to security sensitive data that has been
sealed.

In [1], Alsaid and Mitchell attempt to address the problem of a user un-
knowingly revealing sensitive data to a phishing site using the TPM’s protected
storage capabilities. They propose SSL client-side authentication to establish
a mutually authenticated SSL tunnel over which a username/password can be
communicated. In this approach the SSL private key (for which the public
key has received certification) is non-migratable from the client’s TPM. Con-
sequently, when a user visits a phishing site and is tricked into revealing a
username and password, a phisher will not be able to impersonate the user as
the phisher will not have access to the private key used to complete client-side
SSL authentication. Unfortunately, such an approach does not prevent crime-
ware resident on the TPM-host platform from capturing the username/password
and using the TPM-protected private key to establish illegitimate sessions and
fraudulently impersonate a user. This approach could be enhanced by sealing
the TPM-protected private key to a trustworthy platform state.



3.4 Secure Boot

A secure boot process extends the integrity measurement and storage function-
ality described in section 3.1. During a secure boot, a platform’s state is reliably
captured, compared against measurements indicative of a trustworthy platform
state and stored. If a discrepancy is discovered between the computed mea-
surements and the expected measurements then the platform halts the boot
process.

Secure boot functionality can detect the malicious or accidental modifica-
tion or removal of security-critical software at boot time. For example, the
Subvirt rootkit, which modifies a system’s boot sequence, could be detected by
such functionality. In a similar way, secure boot functionality could be used
to prevent a maliciously modified server from helping to distribute crimeware;
this would reduce the effectiveness of a server modification attack to a denial of
service.

Secure boot functionality is not currently described as part of the TPM
specifications. However, there is a TCG specification describing how it can be
enabled on a trusted mobile platform [43]. Secure boot has also been indepen-
dently studied by Tygar and Yee [44], Clark [9], Arbaugh, Farber and Smith [3]
and Itoi et al. [22].

3.5 Hardware-enforced Isolation

Isolation technologies have evolved from OS-hosted virtual machine monitors
(VMMs) [47] through stand-alone VMMs [18] to para-virtualization techniques
[8]. More recent developments in isolation technology, such as Microsoft’s Next
Generation Secure Computing Base (NGSCB) [32, 33], incorporate the concept
of an isolation layer designed to take advantage of CPU and chipset extensions
described in Intel’s LaGrande [21] and AMD’s Presidio initiatives. An isolated
execution environment, independent of how it is implemented, should provide
the following services to hosted software [33]:

e No interference: Ensures that the program is free from interference from
entities outside its execution space.

e Trusted path: Ensures the presence of a trusted path between a program
and an input device.

e Secure inter-process communication: Enables one program to communi-
cate with another, without compromising the confidentiality and integrity
of its own memory locations.

e Non-observation: Ensures that an executing process and the memory lo-
cations it is working upon are free from observation by other processes.

Hardware-enforced software isolation enables the segregation of security-
critical software and data so that they cannot be observed and/or modified



in an unauthorized manner by software executing in parallel execution envi-
ronments. Additionally, the presence of isolated execution environments can
ensure that any infection is contained within the execution environment which
the crimeware has infected.

In [16], Gajek et al. use isolated execution environments to protect a secure
wallet application from any legacy OS or other applications running on the
platform. In this approach, user credentials are sealed (as described in section
3.3) to the isolated secure wallet application. Only when the secure wallet is in
the pre-requisite state will credentials be unsealed and used to authenticate the
user to sensitive services. The authors also suggest the use of visual cues, such
as a colored status bar, to enable the user to assess the trustworthiness of the
secure wallet application with which they are interacting, an idea originating in
[5].

Hardware extensions, as developed as part of Intel’s LaGrande [21] and
AMD’s Presidio initiatives, support the establishment of trusted channels be-
tween input and output devices and programs running within isolated execution
environments. In this way, user I/O data can be secured in transit to protect it
from crimeware, such as keyloggers, which may have infiltrated the platform.

We are yet to see, however, the ubiquitous presence of hardware-enabled
trusted channels. In the absence of such support, McCune et al. [24] have pro-
posed the use of a trusted mobile device to establish an encrypted and authen-
ticated channel between the user and a TPM host. Their approach, however,
only considers the issue of user-level malware and does not effectively address
problems relating to kernel-level subversion.

3.6 Trusted Computing — A Panacea?

We have briefly examined a range of Trusted Computing functionality and how
it may be used to reduce the impact of crimeware. In reality, Trusted Comput-
ing, as currently deployed, can do little to protect an end-user platform from
crimeware attack. It will be several years before we begin to see the ubiqui-
tous presence of enhanced processors, chipset extensions, BIOS modifications
and augmented Operating Systems necessary to implement the fundamental
Trusted Computing concepts identified in sections 3.1-3.5. The capabilities
offered by currently deployed Trusted Platforms are more akin to those of a
high-end smartcard; thus Trusted Computing, as it currently stands, provides a
limited, but useful, set of cryptographic functionality. We expect that this will
be extended over time to provide a more secure operating environment.

In addition, it is important to note that problems associated with software
vulnerabilities will not be ameliorated by the presence of Trusted Computing.
Neither is Trusted Computing designed to prevent a platform from being in-
fected. Instead, it provides a set of services that can be used to detect if a plat-
form has been modified from a known “good” state. Unlike the way in which
signature-based anti-virus mechanisms operate, a Trusted System has a known
“good” configuration and any deviation from this configuration is perceived as
a possible breach of security. Such an approach tells a user that something is



awry but not necessarily what.

An abundance of information exists on the potential positive applications
of Trusting Computing. However, as the technology becomes more widely de-
ployed, it seems likely that Trusted Computing functionality will be increasingly
targeted by crimeware. Proof-of-concept rootkits that exploit Intel’s VT-X and
AMD’s SVM virtulization technologies, cornerstones of Intel’s LaGrande and
AMD’s Presidio initiatives, have already been developed by Dino Dai Zovi (Vit-
riol) [28] and Joanna Rutkowska (Blue Pill) [27].

In addition, Trusted Computing mechanisms may also be used as a means of
enhancing crimeware functionality. For example, Trusted Computing provides
trivial means for crimeware to launch denial of service attacks, of various types,
against a platform. If a crimeware application can be installed on a platform,
thereby altering the system state, then:

e In the case of attestation, access to networked services may be denied,
since the platform will (correctly) not be considered trustworthy.

e In the case of sealing, access to data may be denied, since the current state
of the platform will not match the integrity metrics to which the data has
been sealed.

e In the case of secure boot, system startup may be suspended if the presence
of crimeware is detected during the boot sequence.

Finally, ransomware (such as Archieveus, as described in section 2), could
abuse the TPM’s sealing mechanism to encrypt data to a platform state that is
contingent on the malware being present on the platform. This could potentially
be used as a method to extort money from the platform owner.

4 Case Studies

In this section we look at two case studies that examine the use of Trusted
Computing as a means of protecting sensitive data from malicious applications.
In the first case study, we look at the issue of on-line credit card fraud and
the potential use of Trusted Computing as a means of protecting credit card
transactions. In the second case study, we look at how Trusted Computing
can be used to enable a robust implementation of Open Mobile Alliance Digital
Rights Management (OMA DRM) v2 on mobile platforms.

4.1 Securing Credit Card Transactions

Over the past ten to fifteen years, the Internet has been transformed from a
research-oriented tool into a global platform for electronic commerce. With this
transformation, the use of one particular method of Internet-based payment has
emerged as the predominant means through which on-line goods are purchased.
This method, often referred to as a Card Not Present (CNP) transaction, uses



data from a customer’s physical card (typically the Personal Account Number
(PAN) and the corresponding Card Security Code (CSC)) to purchase on-line
goods and services. Unfortunately, Internet-based CNP transactions provide a
particularly attractive target for phishers and crimeware authors, as the ability
to provide card details is typically deemed a sufficient form of transaction au-
thorization. Once this data is captured, it allows a fraudster to impersonate a
legitimate cardholder and purchase items on-line.

Balfe and Paterson examine how the staged roll-out of Trusted Computing
technology, beginning with ubiquitous client-side TPMs [6] and culminating in
Trusted Computing with processor, chipset and OS support [7], can be used
to enhance the security of Internet-based CNP transactions. In [7], a system is
described that makes use of the full spectrum of Trusted Computing technologies
to securely emulate point-of-sale Integrated Circuit Cards (ICCs) compliant
with the Europay Mastercard and Visa (EMV) specifications [11, 12, 13, 14].
Emulation of EMV-compliant cards confers “tamper resistant” properties that
are normally associated with physical EMV card use at point-of-sale terminals
making it possible to demonstrate card ownership and authentication.

In order to enroll in the virtual EMV architecture, a customer must for-
mally register as a legitimate cardholder. During the enrollment process, the
customer’s platform generates an attestation key pair (internal to their TPM)
specifying an authorization requirement for the private key usage, as per section
3.3. The customer’s card issuer certifies the public component of the customer’s
newly generated TPM-resident attestation key pair and the customer downloads
an e-EMV application to his/her platform. This application replicates the func-
tionality of a standard EMV payment card (that has been personalized to the
customer) as well as certain aspects of merchant terminal processing.

During merchant enrollment, the merchant’s acquirer certifies the public
component of a merchant’s TPM-resident attestation key pair and downloads
a small application bundle to the merchant server that replicates the merchant
terminal commands for interacting with an EMV ICC. This software bundle
enables the merchant to communicate with a customer’s e-EMV card. In addi-
tion, the merchant application bundle implements any additional requirements
for payment processing as laid down by the acquirer’s Merchant Operator Guide-
lines (MOGs). The MOG lays out the procedures that should be followed when
processing CNP transactions. An example of such a procedure would be a re-
quirement to use an Address Verification Service (AVS) which compares the
billing address, as entered by the customer, to that of the card issuer’s records.

Prior to transaction initiation, a customer launches his e-EMV application
in an isolated execution environment. At this point, the customer and the mer-
chant platform mutually attest to their respective states using their respective
private attestation keys, the public keys corresponding to which have been cer-
tified during the enrollment process. This provides a guarantee that, at this
particular point in time, both the customer’s e-EMV application and the mer-
chant’s plug-in are operating as intended.

In addition, by using Trusted Computing functionality, PIN authentication
and authorization can be made intrinsic to transaction processing, just as with
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EMYV in PoS transactions. A trusted path between the keyboard and TPM,
enabled by chipset extensions (as outlined in section 3.5), can be used to se-
curely transfer authorization data in the form of a PIN or a passphrase from
the customer’s keyboard to the TPM. A correctly entered PIN/passphrase then
assures the TPM of the physical presence of the cardholder and “unlocks” the
TPM'’s private attestation key. The assurance of physical presence can be trans-
ferred to the merchant through the TPM’s subsequent use of this attestation
key to attest to the state of the customer’s platform. This combined function-
ality provides a much stronger form of authentication and authorization than is
currently employed for CNP payments. The mechanism used to prevent crime-
ware from launching a dictionary attack against key authorization data would
be TPM vendor specific. However, the TPM specifications [39] detail an exam-
ple mechanism where a a count of failed authorization attempts is recorded. If
this count exceeds a threshold, the TPM is locked and remains non-responsive
to further requests for a predetermined time out period.

In conjunction with this, by allowing a customer to inspect a merchant’s
platform state prior to transaction authorization, a customer will be able to
satisfy himself that the merchant will behave in a manner that will protect his
sensitive card data. Likewise for a merchant, any divergence from intended
operating state (due to unwanted memory resident applications, such as key-
loggers) will be detected on verification of a customer’s attestation, allowing
merchant risk management routines to terminate a transaction. Once mutual
attestation is complete, transaction processing can continue as defined in the
EMV specifications [11, 12, 13, 14]. This work builds upon the pre-existing
EMYV infrastructure to provide a secure and extensible architecture for CNP
payments.

4.2 Content Protection

Our second case study relates to DRM in a mobile environment. As highlighted
in [36, 45], it is predicted that mobile devices (hosting sensitive corporate data)
will increasingly become the target of crimeware. Current third generation (3G)
mobile telecommunications systems are already capable of delivering a wide
range of digital content to subscribers’ mobile telephones. As network access
becomes more ubiquitous and content becomes more easily accessible, media
and data objects are exposed to increased risks of illegal consumption and use.
DRM facilitates the safe distribution of various forms of digital content in a wide
range of computing environments, and gives assurance to the content providers
that their media objects cannot be illegally accessed.

The model under consideration is taken from [29] and is summarized in
figure 2. A user requests a media object from a content issuer. The requested
content, which is packaged in order to prevent unauthorized access, is then sent
to the user’s device. The packaging of the content may either be completed by
the content issuer or by the content owner, before it is dispatched to the content
issuer. The rights object associated with the requested media object is delivered
to the user by the rights issuer. In practice, this rights issuer may be the same
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entity as the content issuer.

Content issuer Rights issuer

Rights object
Protected content
f=
User X
Protected content Protected content Other devices
A network store ) . ini
A mobile device containing DRM
and removable o agents
media containing a DRM
agent

Figure 2: OMA DRM system model

With respect to crimeware, the protection of content can be examined from
two contrasting perspectives. From the content provider’s perspective, an end-
user may deploy crimeware in order to circumvent rights that have been assigned
to digital content. From a corporate perspective, DRM solutions can be used
to prevent the unauthorized or inadvertent disclosure of corporate data. This is
particularly relevant in light of the recent trend towards an increasing reliance
on mobile devices for storing corporate data [45].

The OMA was founded in June 2002. Version 1 (v1) of the OMA specifica-
tions [48, 49], released in 2004, represents the OMA’s initial attempt to define
a DRM solution for a mobile environment. Three main goals were specified
for OMA DRM v1. The solution was required to be timely, easy to implement
and inexpensive to deploy. Finally, it was required that the initial OMA DRM
solution did not necessitate the roll-out of a costly infrastructure. In the de-
velopment of OMA DRM vl a trade-off was made, so that the objectives listed
above could be met at the expense of certain security requirements. OMA DRM
version 2 (v2) builds upon the version 1 specifications to provide higher security
and a more extensive feature set. Devices other than mobile phones are also
supported by OMA DRM v2. The OMA DRM v2 specification set defines [29]:

e the format and the protection mechanism for protected content;

e the format and the protection mechanism for rights objects;
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e the security model for the management of encryption keys; and

e how protected content and rights objects may be transferred to devices
using a range of transport mechanisms.

The term “DRM agent” refers to the DRM functionality of a device re-
sponsible for enforcing permissions and constraints associated with protected
content. A DRM agent must be trusted with respect to its correct behavior
and secure implementation [29]. The OMA DRM v2 specification set defines
the protocols (the Rights Object Acquisition Protocol (ROAP) suite), messages
and mechanisms necessary to implement a DRM system in a mobile environ-
ment [29, 30]. Stipulation of a trust model, within which robustness rules are
defined, is one method of specifying how secure a device implementation of a
DRM agent must be, and what actions should be taken against a manufacturer
that builds devices that are insufficiently robust. It is the responsibility of the
Content Management Licensing Administrator for Digital Rights Management
(CMLA DRM), or a similar organization, to provide such a model.

In order to comply with the definition of a “robust” OMA DRM v2 imple-
mentation, as defined by the CMLA [10], a number of requirements must be
met, as summarized below.

e It is required that “an OMA DRM v2 agent can perform self-checking of
the integrity of its component parts so that unauthorized modifications
will be expected to result in a failure of the implementation to provide the
authorized authentication and/or decryption function” [10].

e A robust implementation of OMA DRM v2 must protect the confidential-
ity and integrity of an OMA DRM v2 agent’s private key when loaded,
stored or used on a device.

e OMA DRM v2 security-critical data must be either integrity-protected or
integrity and confidentiality-protected when loaded, stored or used on a
device.

e OMA DRM v2 security-critical data and the OMA DRM v2 agent’s private
key should only be accessible by authorized entities, namely the correctly
functioning OMA DRM v2 agent.

e A robust OMA DRM v2 implementation must incorporate a DRM time-
source synchronization mechanism which is reasonably accurate and resis-
tant to malicious modifications by the end user.

e Finally, nonces generated on the OMA DRM v2 device, and used in the
ROAP protocols, must be both non-repeating and unpredictable.

As described in [17], Trusted Computing functionality can be used to help
meet the CMLA requirements for a robust implementation of OMA DRM v2,
therefore making it, and the content it protects, less susceptible to crimeware
attacks. While Trusted Computing functionality cannot guarantee the integrity
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of the OMA DRM v2 agent in storage, secure boot functionality can be used to
help detect its malicious or accidental modification or removal. Security-critical
data associated with the OMA DRM v2 agent can also be verified as part of a
secure boot process.

Sealing can be used to store data which needs to be confidentiality and/or
integrity-protected against crimeware attack. It can also ensure that sensitive
data is only accessible by authorized entities when the mobile device is in a pre-
defined state, for example, when a legitimate OMA DRM v2 agent is executing
in an isolated execution environment. In addition, the TPM can be used to
generate the required OMA DRM v2 agent asymmetric key pair.

Trusted Computing functionality also enables the isolation of security-critical
software and data in a secure execution environment so that it cannot be ob-
served and/or modified in an unauthorized manner by software executing in
parallel execution environments.

A good quality random number generator is provided by a TPM, enabling
the generation of non-repeating unpredictable nonces for use in the ROAP suite
protocols, thereby mitigating replay and preplay attacks. The TPM may also
be used to provide accurate time source synchronization, as described in [39].
A comprehensive examination of this use case can be found in [17].

5 Conclusions

In this chapter we have explored the use of Trusted Computing technologies as
both a defence against, and enabler of, crimeware. We initially described the
lifecycle of a crimeware attack and subsequently investigated how the technolo-
gies examined could be used to disrupt crimeware distribution, infection and
execution. We also investigated how Trusted Computing may potentially be
exploited to facilitate cybercrime. We finally considered two use-cases in which
this technology may be used in the prevention of crimeware attacks.
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