
Cryptanalysis of Two Variants of PCBC Mode
when used for Message Integrity

Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

http://www.isg.rhul.ac.uk/~cjm

Abstract. The PCBC block cipher mode of operation has many vari-
ants, of which one, due to Meyer and Matyas, dates back over 20 years.
Whilst a particularly simple variant of PCBC has long been known to
be very weak when used for data integrity protection, the Meyer-Matyas
variant has not previously been attacked. In this paper we cryptanal-
yse this mode, and show that it possesses a serious weakness when used
for data integrity protection. Specifically, we show how to construct an
existential forgery using only a single known ciphertext message and a
modest amount of known plaintext (this could be as little as three plain-
text blocks). We also describe a ciphertext-only existential forgery attack
against another, recently proposed, PCBC-variant called M-PCBC.

1 Introduction

Traditionally, the recommended way to use a block cipher to provide both in-
tegrity and confidentiality protection for a message has been to compute a CBC-
MAC and also encrypt the data, using two distinct secret keys. This approach is
rather unattractive for some applications because it requires each block of data
to be processed twice. This observation has given rise to a number of proposals
for combining encryption and integrity protection, including a particular way of
using the so called PCBC mode (see, for example, Section 9.6 of [1]).

At the same time, two major problems have recently been identified which
have highlighted the need for better-defined integrity and confidentiality modes.
Firstly, issues have been identified with certain combinations of encryption and
use of a CBC-MAC — see, for example, Bellare, Kohno and Namprempre [2].
That is, it is vital to define precisely how the two operations are combined,
including the order of the computations; otherwise there is a danger of possible
compromise of the data. Secondly, even where integrity is not explicitly required
by the application, if integrity is not provided then in some cases padding oracle
attacks may be used to compromise secret data (see, for example, [3–6]).

This has given rise to a number of proposals for well-defined authenticated-
encryption modes, including OCB [7], EAX [8] and CCM [9, 10]. These tech-
niques are also the subject of ongoing international standardisation efforts —
the first working draft of what is intended to become ISO/IEC 19772 on authen-
ticated encryption was published early in 2004 [11] (see also Dent and Mitchell,

[12]). OCB is to some extent analogous to the use of PCBC to provide integrity,
in that it involves only a single pass through the data; unlike PCBC, it also
possesses a proof of security.

In this paper we examine two different PCBC variants. We first examine a
variant, identified below as PCBC+, which was one of the first ever proposals
for a block cipher mode of operation designed to provide both integrity and con-
fidentiality protection. We show that this variant is subject to a known plaintext
attack, and hence does not provide adequate integrity protection. We go on to
examine a newly proposed variant called M-PCBC [13] which is also claimed to
provide both integrity and confidentiality protection when used appropriately.
Unfortunately, as shown below, this claim is not correct.

It is important to note that the term PCBC is used by different authors to
means slightly different things, and hence we first describe what we mean by
PCBC. This is followed by analyses of PCBC+ and M-PCBC.

2 PCBC mode and variants

The precise origin and definition of PCBC, is unclear. In fact, the acronym
PCBC has been used to mean two different things, and we define them both.

2.1 The more general definition

Section 9.6 of [1] (Example 9.91) defines the Plaintext-Ciphertext Block Chaining
mode of operation as follows (note that a special case of this definition goes back
at least to 1982, since it is contained in the third and subsequent printings of
Meyer and Matyas’s 1982 book [14]).

First suppose that the data is to be protected using an n-bit block cipher, i.e.
a block cipher operating on plaintext and ciphertext blocks of n bits. We write
eK(P) for the result of block cipher encrypting n-bit block P using the secret
key K, and dK(C) for the result of block cipher decrypting the n-bit block C
using the key K. Suppose the plaintext to be protected is divided into a sequence
of n-bit blocks (if necessary, first having been padded): P1, P2, . . . , Pt.

Then, if the n-bit Initialisation Vector (IV) is S, the PCBC encryption of
the plaintext P1, P2, . . . , Pt is defined as:

Ci = eK(Pi ⊕Gi−1), 1 ≤ i ≤ t,

where G0 = S, Gi = g(Pi, Ci), 1 ≤ i ≤ t, and g is a simple function that maps
a pair of n-bit blocks to a single n-bit block.

Menezes, Van Oorschot and Vanstone [1] make two remarks regarding the
choice of g. Firstly they suggest the use of g(P, C) = P + C mod 2n, where
the n-bit blocks P and C are treated as integers by regarding them as binary
representations, and the modulo 2n sum is converted back to an n-bit block by
taking the binary representation (left-padded as necessary with zeros). Secondly
they suggest that g should not be equal to the bit-wise exclusive-or of the two

inputs when the mode is to be used to protect the integrity of data (a precaution
which they point out is necessary to avoid a known-plaintext attack).

The first choice for g listed above is the technique that is also described by
Meyer and Matyas [14]. For convenience we call this mode PCBC+. It is this
mode that we consider in detail in this paper. Despite the fact that it has been
included in two well known books on cryptography, there would not appear to
be any literature at all discussing the security of PCBC+.

We should, at this point, explain how PCBC+ mode (or any other variant
of PCBC) can be used to provide both encryption and integrity-protection. The
idea is very simple. First divide the data to be encrypted into a sequence of n-bit
blocks, padding as necessary. Then append an additional n-bit block to the end
of the message, where this block can be predicted by the decrypter (e.g. a fixed
block). When the message is decrypted, a check is made that the final block is
the expected value and, if it is, then the message is deemed authentic.

Before proceeding observe that this general approach possesses an intrinsic
weakness. That is, suppose that a fixed final block (the terminator block) is used
to detect message manipulations (as above). Then an attacker might be able to
persuade the legitimate originator of protected messages to encrypt a message
which contains the fixed terminator block somewhere in the middle of the mes-
sage. The attacker will then be able to delete all ciphertext blocks following the
encrypted terminator block, and such a change will not be detectable. Despite
this weakness, using an appropriate encryption mode combined with a method
for adding verifiable redundancy to a message is still used for message integrity
protection — e.g. in Kerberos (see, for example, [12]). As far as this paper is
concerned we note that such an attack could be prevented by ensuring that the
legitimate encrypter refuses to encrypt any plaintext message containing the ter-
minator block. We further note that such an attack requires chosen plaintext,
and the attacks we demonstrate later in this paper require only either a limited
amount of known plaintext, or just known ciphertext.

2.2 The more specific definition

PCBC is also sometimes defined [15, 16] to mean Plaintext Cipher Block Chain-
ing. In this case PCBC mode is a special case of PCBC as defined above, i.e.
where g(P,C) = P ⊕ C and where ⊕ represents the bit-wise exclusive-or of the
blocks P and C. To avoid any confusion we refer to the version of PCBC de-
fined in Menezes et al. [1], and Section 2.1 above, as G-PCBC (for Generalised
PCBC), and the specific case where g is equal to exclusive-or simply as PCBC.

PCBC in this more specific sense was used in Kerberos version 4 [16] to
provide encryption and integrity protection. This was achieved by the means
described above, i.e. by checking the final decrypted block of the message.

It is important to observe that PCBC is precisely the version of G-PCBC that
Menezes, van Oorschot and Vanstone [1] state should not be used to protect the
integrity of data! The weakness of PCBC for use as an integrity-protection mode
was first pointed out by Kohl [15]. As is simple to verify, Kohl pointed out that
if two of the ciphertext blocks of a PCBC-encrypted message are interchanged,

then this does not affect the decryption of the final block, i.e. it is extremely
simple to make undetectable changes to messages. Note that this is actually a
stronger attack than is implied by [1] who refer only to the danger of known-
plaintext attacks. Finally note that yet another variant of PCBC was proposed
by Gligor and Donescu [17]; however, this scheme, known as iaPCBC, was shown
to possess serious vulnerabilities by Ferguson et al. [18].

3 IV management strategy for G-PCBC

In the definition of G-PCBC in Section 2.1, the encrypter and decrypter are
required to have access to the same n-bit IV, S. However, it is not completely
clear from the discussions in [1, 14] how this is meant to be achieved, although
it is clear that S should be different for each message. One possible approach is
for the sender to choose S and send it in plaintext with the encrypted message.
In such a case S might either be chosen at random or generated by a simple
counter. In the latter case S will potentially be predictable to an intercepting
attacker, and we next point out that this would be a potentially dangerous
option, regardless of the choice of g.

Suppose C1, C2, . . . , Cs are the first s blocks of an intercepted ciphertext
message, encrypted using PCBC+, for which the attacker knows the plaintext
Ps (corresponding to Cs). Suppose also that message integrity is protected by
appending the fixed terminator block P ∗ to the end of the message prior to en-
cryption. If we further suppose that the attacker has access to a chosen plaintext
encryption oracle (a strong assumption, admittedly), then the attacker submits
for encryption a message with first block S⊕P ∗⊕g(Ps, Cs), where S is the ‘pre-
dicted’ IV to be used by the oracle. The first block of the encrypted message will
be C∗ = eK(P ∗ ⊕ g(Ps, Cs)). The attacker now knows that the ciphertext mes-
sage C1, C2, . . . , Cs, C

∗ will be accepted as genuine by the legitimate decrypter,
since it is easy to check that the decryption of C∗ will yield P ∗.

For the remainder of this paper we therefore assume that the IV S is unknown
to any attacker — e.g. as would be the case if it is chosen by the sender and sent
in encrypted form with the encrypted message. This will nevertheless enable an
attacker to force the decrypter to re-use an IV employed to encrypt an inter-
cepted message, without knowing what the value of the IV is — we (implicitly)
assume that this attack model applies in the remainder of this paper.

4 An existential forgery attack on PCBC+

We now describe an attack which requires one known ciphertext message, some
partial known plaintext corresponding to this ciphertext, and computation with
complexity of the order of 2n/2 operations, where each operation is very sim-
ple (much simpler than an encryption operation). Here, as above, n is used to
denote the plaintext/ciphertext block length. We also use ¢ to denote addition
modulo 2n; similarly, ¯ denotes subtraction modulo 2n. We first make a trivial
observation, whose proof follows immediately from the definition of PCBC+.

Observation 1 Suppose an attacker knows C1, C2, . . . , Ct, a PCBC+ ciphertext
message (where Ci is an n-bit block for every i). Suppose also that the attacker
knows two consecutive plaintext blocks corresponding to this message: (Ps−1, Ps)
say, where 1 < s ≤ t. Then the attacker can compute dK(Cs) as

dK(Cs) = Ps ⊕ (Ps−1 ¢ Cs−1).

We can now give our main result.

Theorem 1. Suppose, for some r ≥ 2, an attacker knows r pairs of blocks:

{(Bi, Di) : 1 ≤ i ≤ r, Di = dK(Bi)},
where K is a key used to compute one or more PCBC+ ciphertexts. (Such a
set can be obtained using r pairs of consecutive known plaintext blocks — see
Observation 1). Suppose also that C1, C2, . . . , Ct is a PCBC+ encrypted version
of the message P1, P2, . . . , Pt, where the final plaintext block Pt is equal to a
fixed pattern P ∗ used to detect changes in the ciphertext and thereby guarantee
message integrity. Further suppose that the attacker knows plaintext block Ps for
some s satisfying 1 ≤ s < t.

Then, if the integer sequence (u1, u2,. . . , uw), w ≥ 1, 1 ≤ ui ≤ r, satisfies

Ei = (Ei−1 ⊕Dui) ¢ Bui , 1 ≤ i ≤ w

where E0 = Ew = Ps ¢ Cs, then the PCBC+ decrypted version of the ciphertext

C1, C2, . . . , Cs, Bu1 , Bu2 , . . . , Buw , Cs+1, Cs+2, . . . , Ct

is equal to

P1, P2, . . . , Ps, E1 ¯ Bu1 , E2 ¯ Bu2 , . . . , Ew ¯ Buw , Ps+1, Ps+2, . . . , Pt.

That is, the modified message is an existential forgery, since the final recovered
plaintext block is P ∗.

Proof. By definition, the decryption of C1, C2, . . . , Cs will clearly yield the first
s plaintext blocks P1, P2, . . . , Ps. Next consider the decryption of Bu1 . By defi-
nition of PCBC+, the recovered plaintext block will equal

dK(Bu1)⊕ (Cs ¢ Ps) = Du1 ⊕ E0 = E1 ¯ Bu1

as required. Working inductively, the decrypted version of Bui (1 < i ≤ w) is
equal to

dK(Bui)⊕ (Bui−1 ¢ (Ei−1 ¯ Bui−1)) = Dui ⊕ Ei−1 = Ei ¯ Bui ,

again as required. The decrypted version of Cs+1 is equal to

dK(cs+1)⊕ (Buw ¢ (Ew ¯ Buw)) = dK(Cs+1)⊕ Ew

= dK(Cs+1)⊕ (Ps ¢ Cs)
= Ps+1,

and the result follows immediately. 2

Thus to find an existential forgery we simply need to find a sequence of
positive integers (u1, u2,. . . , uw), w ≥ 1, 1 ≤ ui ≤ r, with the property that:

(i) E0 = Ew = Ps ¢ Cs, and
(ii) Ei = (Ei−1 ⊕Dui) ¢ Bui , 1 ≤ i ≤ w.

Such a sequence can be constructed using the ‘standard’ Birthday Paradox ar-
guments (see, for example, Section 2.1.5 of [1]). The procedure is as follows.

First choose a positive integer v such that brvc = 2n/2. For example, if
n = 64 and r = 4 then v = 16. Then generate all rv possible sequences (u1,
u2,. . . , uv), 1 ≤ ui ≤ r, and for each such sequence compute E0, E1, . . . , Ev

using the equations E0 = Ps ¢ Cs and Ei = (Ei−1⊕Dui
) ¢ Bui

, 1 ≤ i ≤ v. Sort
and store all the Ev values.

Now repeat the same process working ‘backwards’ from Ps ¢ Cs. That is,
generate all rv possible sequences (u1, u2,. . . , uv), 1 ≤ ui ≤ r, and for each
such sequence compute F0, F1, . . . , Fv using the equations Fv = Ps ¢ Cs and
Fi−1 = (Fi ¯ Bui

) ⊕ Dui
, 1 ≤ i ≤ v. If any of the values F0 equal any of the

Ev values then the corresponding two sequences can be concatenated to yield a
sequence with the desired properties. Because of the choice of the parameter v,
there is a good chance of such a match occurring. The attack is now complete.

5 Remarks on the attack on PCBC+

We now analyse the existential forgery attack on PCBC+ presented in Section 4.

5.1 Effectiveness of the attack

The discussion above of the use of a Birthday Paradox search makes the implicit
assumption that the values of Ev and F0 will be randomly distributed across
the range of all possible n-bit values. This is clearly not a completely sound
assumption, since there is no rigorous evidence that recursively adding and then
ex-oring pairs of values from a fixed (small) set of pairs will result in the desired
random distribution. Indeed, in some ways this process will clearly not give a
random distribution, since if the least significant values of B and D are the same,
and E′ = (E ⊕D) ¢ B, then E and E′ will have the same least significant bit.
The precise effectiveness of the attack thus remains to be determined. However,
regardless of the choices of D and B, the function f(X) = (X ⊕ D) ¢ B is a
permutation on the set of all n-bit values X. Hence it does seem reasonable to
assume that the birthday attack will have a good chance of working.

5.2 Attack complexity

First observe that the known plaintext block Ps used in the attack could be one of
those used to deduce a value of dK(C), as per Observation 1. Hence the minimum
number of known plaintext blocks necessary to perform the attack is just three,
as long as they are all consecutive (since three consecutive blocks will yield

two pairs of consecutive plaintext blocks). Second note that the computations
required to perform the attack involve purely comparisons of bit strings, ex-ors
of bit strings, and modulo 2n additions of bit strings. All these operations can
be computed very quickly. The total number of operations is clearly O(2n/2).

The attack could be performed using a number of known ciphertext messages
created using the same key, as long as a plaintext block is known for each. In
this case, the first half of one ciphertext message could be joined to the second
half of a different ciphertext message (with some intermediary blocks inserted).

5.3 Other integrity protection measures

The above attack assumes that a final plaintext block P ∗ is used for integrity
protection. However, precisely the same approach would work if either the last
r blocks of plaintext were set to a fixed pattern, or the final block (or r blocks)
were set equal to the first block (or r blocks) of the message.

If the message length is fixed, e.g. by including a string indicating the message
length as the first or last plaintext block, then the described attack apparently
fails. However, a slightly more complex version of the attack will still work if
the attacker knows two plaintext blocks in a ciphertext message C1, C2, . . . , Ct

at a distance of precisely w blocks apart: Cr and Cr+w say. After a search of the
same complexity as described above, a string of w replacement ciphertext blocks
can be inserted into the message to replace blocks Cr+1, Cr+2, . . . , Cr+w, without
altering the decryption of any subsequent blocks. (The details are straightforward
— the main difference is that E0 and Ew will be different).

In fact, even if the final plaintext block is a CRC computed as a function
of all the previous plaintext blocks, an attack along similar lines is still proba-
bly possible. In this case, only strings of ciphertext blocks E0, E1, . . . , Ev and
F0, F1, . . . , Fv that do not affect the CRC computations should be considered.
This will increase the attack complexity to some extent, but otherwise it seems
that everything should still work.

5.4 Generalisations of the attack

Finally note that the entire attack strategy outlined in Section 4 could be gen-
eralised to other variants of G-PCBC, i.e. to other choices of the function g.
Re-examination of the attack reveals that it will still work in exactly the same
way as long as g has the following ‘invertibility’ property. That is, if, given any n-
bit blocks X and Y , it is possible to find an n-bit block Z such that X = g(Y,Z),
then precisely the same attack strategy will work.

To see this, we outline how to modify the arguments in section 4 to this new
scenario. First let g−1 be defined such that g−1(g(X,Y), Y) = X for any n-bit
blocks X and Y . This ‘inverse function’ exists by our assumption immediately
above. Observation 1 generalises trivially, yielding

dK(Cs) = PS ⊕ g(Pi−1, Ci−1).

Next, as in Theorem 1, suppose (u1, u2,. . . , uw), w ≥ 1, 1 ≤ ui ≤ r, satisfies

Ei = g(Ei−1 ⊕Dui , Bui), 1 ≤ i ≤ w

where E0 = Ew = g(Ps, Cs). Note that this means that

Ei−1 ⊕Dui
= g−1(Ei, Bui

).

Then the G-PCBC decrypted version of the ciphertext message

C1, C2, . . . , Cs, Bu1 , Bu2 , . . . , Buw
, Cs+1, Cs+2, . . . , Ct

is equal to

P1, P2, . . . , Ps, g
−1(E1, Bu1), g

−1(E2, Bu2), . . . , g
−1(Ew, Buw), Ps+1, Ps+2, . . . , Pt.

This follows since:

– the decryption of Bu1 yields dK(Bu1)⊕g(Ps, Cs) = Du1⊕E0 = g−1(E1, Bu1),
– the decryption of Bui , (i > 1) yields dK(Bui)⊕g(Bui−1 , g

−1(Ei−1, Bui−1)) =
Dui ⊕ Ei−1 = g−1(Ei, Bui), and

– the decrypted version of Cs+1 equals dK(cs+1) ⊕ g(Buw , g−1(Ew, Buw)) =
dK(Cs+1)⊕ Ew = dK(Cs+1)⊕ g(Ps, Cs) = Ps+1.

These observations suggest that it is probably dangerous to use any variant
of G-PCBC for message integrity, almost regardless of how redundancy is added
to the message prior to encryption.

6 M-PCBC

PCBC is appealingly simple to implement, and this motivated recent work by
Sierra et al. [13], who define a PCBC variant they call M-PCBC (for Memory
PCBC). Like G-PCBC and PCBC, M-PCBC requires the message to be divided
into a sequence P1, P2, . . . , Pt of n-bit blocks prior to encryption. M-PCBC uses
a pair of Initialisation Vectors, which we denote by SW and SP , and also a series
of intermediate values W0, W1, . . . ,Wt. Encryption then operates as follows:

Ci = eK(Pi ⊕Wi ⊕ Pi−1), 1 ≤ i ≤ t,

where W1 = SW , P0 = SP and Wi = G(Wi−1, Ci−1), (1 < i ≤ t).
The function G maps a pair of n-bit blocks to a single n-bit block, and is

defined as follows1. Suppose W = WL||WR and C = CL||CR, where || denotes
concatenation and WL, WR, CL and CR are blocks of bits of length n/2 (we
suppose that n is even, as is always the case in practice). Then

G(W,C) = (WL ⊕WR)||(CL ⊕ CR).
1 In order to permit the simplest presentation of the scheme, the notation of [13] has

been revised slightly; in the notation of [13], IV = SP⊕SW , IV2 = SW and Ri = Wi.

Hence decryption operates as follows:

Pi = dK(Ci)⊕Wi ⊕ Pi−1, 1 ≤ i ≤ t.

To use M-PCBC to protect data integrity, Sierra et al. [13] suggest using the
same method as proposed for G-PCBC and PCBC, i.e., they propose adding a
fixed final plaintext block prior to encryption. Below, we analyse the effectiveness
of M-PCBC for integrity protection on the assumption that this approach is used.

7 Some elementary properties of M-PCBC

We first give an alternative expression for M-PCBC decryption.

Lemma 1. If P1, P2, . . . , Pt are obtained from the M-PCBC decryption of ci-
phertext C1, C2, . . . , Ct using key K and Initialisation Vectors SP and SW then,
if i satisfies 1 ≤ i ≤ t:

Pi = SP ⊕
i⊕

j=1

(dK(Cj)⊕Wj).

where W1 = SW , Wi = G(Wi−1, Ci−1), (1 < i ≤ t), and we denote the leftmost
n/2 bits of Ck and Wk by CL

k and WL
k respectively, and the rightmost n/2 bits

of Ck and Wk by CR
k and WR

k .

Proof. We prove the result by induction on i.
For the case i = 1, observe that P1 = dK(C1) ⊕W1 ⊕ P0, as required. Now

suppose that the result holds for i = r (for some r satisfying 1 ≤ r < t). Then:

Pr+1 = dK(Cr+1)⊕Wr+1 ⊕ Pr

= dK(Cr+1)⊕Wr+1 ⊕ SP ⊕
r⊕

j=1

(dK(Cj)⊕Wj)

(by the inductive hypothesis)

= SP ⊕
r+1⊕

j=1

(dK(Cj)⊕Wj),

as required. The result now follows. 2

Lemma 2. Using the notation and assumptions of Lemma 1,

Wi = (SL
W ⊕ SR

W ⊕
i−2⊕

k=1

(CL
k ⊕ CR

k))||(CL
i−1 ⊕ CR

i−1), (1 < i ≤ t),

where SL
W and SR

W are the leftmost and rightmost n/2 bits of SW , respectively.
That is, for 1 < i ≤ t:

WL
i = SL

W ⊕ SR
W ⊕

i−2⊕

k=1

(CL
k ⊕ CR

k)

and
WR

i = CL
i−1 ⊕ CR

i−1.

Proof. We prove the result by induction on i. If i = 2, by definition of G and
since W1 = SW , we have W2 = G(W1, C2) = (SL

W⊕SR
W)||(CL

2 ⊕CR
2), as required.

If the result holds for i = r (for some r satisfying 2 ≤ r < t), then:

Wr+1 = G(Wr, Cr) (by definition),
= (WL

r ⊕WR
r)||(CL

r ⊕ CR
r) (by definition of G),

= (SL
W ⊕ SR

W ⊕ (
r−2⊕

k=1

(CL
k ⊕ CR

k))⊕ (CL
r−1 ⊕ CR

r−1))||(CL
r ⊕ CR

r)

(by the inductive hypothesis), and the result now follows. 2

These lemmas then enable us to establish the following result, in which the
plaintext recovered from an encrypted message can be expressed as a function
only of the ciphertext blocks, the Initialisation Vectors, and the secret key K.

Theorem 2. If P1, P2, . . . , Pt are obtained from the M-PCBC decryption of
C1, C2, . . . , Ct using key K and Initialisation Vectors SW and SP then:

P1 = SP ⊕ SW ⊕ dK(C1),

Pi = SP ⊕ SW ⊕
i⊕

j=1

dK(Cj)⊕

(SL
W ⊕ SR

W ⊕
i−2⊕

k=1
k even

(CL
k ⊕ CR

k))||(
i−1⊕

j=1

(CL
j−1 ⊕ CR

j−1)),

(i even, 2 < i ≤ t),

Pi = SP ⊕ SW ⊕
i⊕

j=1

dK(Cj)⊕ ((
i−2⊕

k=1
k odd

(CL
k ⊕ CR

k))||(
i−1⊕

j=1

(CL
j−1 ⊕ CR

j−1))),

(i odd, 2 < i ≤ t).

where CL
k and CR

k are as defined previously.

Proof. The equation for P1 follows immediately from Lemma 1. Now suppose i
satisfies 2 ≤ i ≤ t. Then the result follows from substituting the equation for Wi

from Lemma 2 into the equation from Lemma 1. 2

8 Breaking M-PCBC

It follows from Theorem 2 that the recovered plaintext Pi is a function only of
the set of ciphertext blocks {C1, C2, . . . , Ci} (and the key and IVs) and not of
the order in which the ciphertext blocks occur (except with respect to whether

the ciphertext blocks appear in an even or an odd position and the values of
Ci and Ci−1). This enables trivial ciphertext-only ‘forgeries’ to be constructed,
i.e. manipulations of valid messages for which the decrypted version of the final
block will remain unchanged (and hence the integrity check will succeed).

For example, in a five-block encrypted message, interchanging the first and
third ciphertext blocks will not affect the decryption of the fifth block, although,
of course, the first four blocks will be corrupted. This is directly analogous to
the simple attacks on PCBC mode due to Kohl [15].

9 Conclusions

The PCBC+ and M-PCBC modes have been described and various properties of
each mode exhibited. These properties imply that both modes are unacceptably
weak for one of their main intended uses, namely the protection of data integrity.
The M-PCBC mode is particularly weak, in that a simple known ciphertext
based forgery attack exists, which is easy to perform regardless of the block
cipher block length n. The use of one of the recently designed authenticated
encryption modes for which a proof of security exists, such as OCB, CCM or
EAX, is recommended instead of either of these modes.

Acknowledgements

The author would like to acknowledge helpful comments and advice provided by
Lars Knudsen and Caroline Kudla.

References

1. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

2. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Transactions on Information and System Security 7
(2004) 206–241

3. Black, J., Urtubia, H.: Side-channel attacks on symmetric encryption schemes: The
case for authenticated encryption. In: Proceedings of the 11th USENIX Security
Symposium, San Francisco, CA, USA, August 5-9, 2002, USENIX (2002) 327–338

4. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In Boneh, D., ed.: Advances in Cryptology — CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings. Volume 2729 of Lecture Notes in Computer
Science., Springer-Verlag, Berlin (2003) 583–599

5. Paterson, K.G., Yau, A.: Padding oracle attacks on the ISO CBC mode padding
standard. In Okamoto, T., ed.: Topics in Cryptology — CT-RSA 2004, The Cryp-
tographers’ Track at the RSA Conference 2004, San Francisco, CA, USA, February
23-27, 2004, Proceedings. Volume 2964 of Lecture Notes in Computer Science.,
Springer-Verlag, Berlin (2004) 305–323

6. Vaudenay, S.: Security flaws induced by CBC padding — Applications to SSL,
IPSEC, WTLS In Knudsen, L., ed.: Advances in Cryptology — EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 – May 2, 2002, Proceedings.
Volume 2332 of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2002)
534–545

7. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security 6 (2003) 365–403

8. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In Roy,
B., Meier, W., eds.: Fast Software Encryption, 11th International Workshop, FSE
2004, Delhi, India, February 5-7, 2004, Revised Papers. Volume 3017 of Lecture
Notes in Computer Science., Springer-Verlag, Berlin (2004) 389–407

9. National Institute of Standards and Technology (NIST): NIST Special Publication
800-38C, Draft Recommendation for Block Cipher Modes of Operation: The CCM
Mode For Authentication and Confidentiality. (2003)

10. Whiting, D., Housley, R., Ferguson, N.: RFC 3610, Counter with CBC-MAC
(CCM). Internet Engineering Task Force. (2003)

11. International Organization for Standardization Genève, Switzerland: ISO/IEC
WD 19772: 2004, Information technology — Security techniques — Authenticated
encryption mechanisms. (2004)

12. Dent, A.W., Mitchell, C.J.: User’s Guide to Cryptography and Standards. Artech
House (2005)

13. Sierra, J.M., Hernandez, J.C., Jayaram, N., Ribagorda, A.: Low computational
cost integrity for block ciphers. Future Generation Computer Systems 20 (2004)
857–863

14. Meyer, C.H., Matyas, S.M.: Cryptography: A new dimension in computer data
security. John Wiley and Sons, New York (1982)

15. Kohl, J.T.: The use of encryption in Kerberos for network authentication. In
Brassard, G., ed.: Advances in Cryptology — CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20–24,
1989, Proceedings. Volume 435 of Lecture Notes in Computer Science., Springer-
Verlag, Berlin (1990) 35–43

16. Steiner, J., Neuman, C., Schiller, J.: Kerberos: an authentication service for open
network systems. In: Proceedings: Usenix Association, Winter Conference, Dallas
1988, USENIX Association, Berkeley, California (1988) 191–202

17. Gligor, V.G., Donescu, P.: Integrity-aware PCBC encryption schemes. In: Security
Protocols, 7th International Workshop, Cambridge, UK, April 19-21, 1999, Pro-
ceedings. Volume 1796 of Lecture Notes in Computer Science., Springer-Verlag,
Berlin (2000) 153–171

18. Ferguson, N., Whiting, D., Kelsey, J., Wagner, D.: Critical weaknesses of iaPCBC.
(1999)

