
Efficient Compilers for Authenticated Group

Key Exchange

Qiang Tang and Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

{qiang.tang, c.mitchell}@rhul.ac.uk

Abstract. In this paper we propose two compilers which are designed
to transform a group key exchange protocol secure against any passive
adversary into an authenticated group key exchange protocol with key
confirmation which is secure against any passive adversary, active adver-
sary, or malicious insider. We show that the first proposed compiler gives
protocols that are more efficient than those produced by the compiler of
Katz and Yung.

1 Introduction

The case of 2-party authenticated key exchange has been well investigated within
the cryptographic community; however, less attention has been given to the case
of authenticated group key exchange protocols, which have more than two par-
ticipants. A number of authors have considered extending the 2-party Diffie-
Hellman protocol [1] to the group setting (e.g. [2, 3]). Unfortunately, most of
these schemes only assume a passive adversary, so that they are vulnerable
to active adversaries who control the communication network. Recently, sev-
eral provably secure (against both passive and active adversaries) authenticated
group key agreement protocols (e.g. [6, 7]) have been proposed.

In this paper we are particularly interested in protocol compilers which trans-
form one kind of protocols into another. In [8], Mayer and Yung give a compiler
which transforms any 2-party protocol into a centralised group protocol which,
however, is not scalable. Recently, Katz and Yung [4] proposed a compiler (re-
ferred to as the Katz-Yung compiler) which transforms a group key exchange
protocol secure against any passive adversary into an authenticated group key
exchange protocol which is secure against both passive and active adversaries.
Although the Katz-Yung compiler produces more efficient protocols than the
Mayer-Yung compiler, it nevertheless still produces rather inefficient protocols.
Each participant is required to perform numbers of signatures and verifications
proportional to the number of rounds in the original protocol and the num-
ber of participants involved, respectively. Additionally, the Katz-Yung compiler
also adds an additional round to the original protocol, but does not achieve key
confirmation. We propose two new more efficient compilers and prove their secu-
rity. Both our new compilers result in protocols achieving key confirmation with

lower computational complexity and round complexity than those produced by
the compiler of Katz and Yung. Note that proofs of the two main theorems have
been omitted for space reasons — these proofs will be given in the full version
of the paper.

The rest of this paper is organised as follows. In section 2, we review the Katz-
Yung compiler. In section 3, we propose a new compiler which transforms a group
key exchange protocol secure against any passive adversary into an authenticated
group key exchange protocol with key confirmation which is secure against any
passive adversary, active adversary, or malicious insider. In section 4, we propose
a second new compiler which outputs protocols that are both more efficient and
provide the same functionality as the first compiler, at the cost of introducing a
TTP. In section 5, we conclude the paper.

2 The Katz-Yung compiler

In this section we review the Katz-Yung compiler. With respect to the protocol
P input to the compiler, which must be a group key exchange protocol secure
against any passive adversary, we make the following assumptions:

1. There is no key confirmation, and all participants compute the session key
after the last round of the protocol.

2. Every protocol message is transported together with the identifier of the
source and the round number.

2.1 Description of the Katz-Yung compiler

Let Σ = (Gen ,Sign,Vrfy) be a signature scheme which is strongly unforgeable
under an adaptive chosen message attack (see, for example, [9] for a definition).
If k is a security parameter, Gen(1 k) generates a pair of public/private keys for
the signing and verification algorithms (Vrfy,Sign).

Suppose a set S = {U1, · · · , Un} of users wish to establish a session key. Let
IDUi

represent Ui’s identity for every i (1 ≤ i ≤ n). Given P is any group key
exchange protocol secure against any passive adversary, the compiler constructs
a new protocol P ′, in which each party Ui ∈ S performs as follows.

1. In the initialisation phase, and in addition to all the operations in protocol
P , each party Ui ∈ S generates a verification/signing key pair (PKUi

, SKUi
)

by running Gen(1 k), where k is a security parameter.
2. Each user Ui chooses a random ri ∈ {0, 1}k and broadcasts IDUi

||0||ri,
where here, as throughout, || represents concatenation. After receiving the
initial broadcast message from all other parties, each Ui sets noncei =
((IDU1

, r1), · · · , (IDUn
, rn)) and stores this as part of its state information.

It is obvious that all the users will share the same nonce, i.e., nonce1 =
nonce2 = · · · = noncen, as long as no attacker changes the broadcast data
(or an accidental error occurs).

3. Each user Ui in S executes P according to the following rules.
– Whenever Ui is supposed to broadcast IDUi

||j||m as part of proto-
col P , it computes σij = SignSKUi

(j||m||noncei) and then broadcasts

IDUi
||j||m||σij .

– Whenever Ui receives a message IDU ||j||m||σ, it checks that: (1) U ∈ S,
(2), j is the next expected sequence number for a message from U , and
(3) VrfyPKU

(j||m||noncei, σ) = 1 where 1 signifies acceptance. If any of
these checks fail, Ui aborts the protocol. Otherwise, Ui continues as it
would in P upon receiving message IDU ||j||m.

4. Each non-aborted protocol instance computes the session key as in P .

2.2 Security and efficiency

Katz and Yung [4] claim that their proposed compiler provides a scalable way
to transform a key exchange protocol secure against a passive adversary into an
authenticated protocol which is secure against an active adversary. They also
illustrate efficiency advantages over certain other provably-secure authenticated
group key exchange protocols. With respect to efficiency, we make the following
observations on the protocols produced by the Katz-Yung compiler.

1. Each user Ui must store the nonce noncei = ((U1, r1), · · · , (Un, rn)) regard-
less of whether or not the protocol successfully ends. Since the length of
this information is proportional to the group size, the storage of such state
information will become a non-trivial overhead when the group size is large.

2. From the second round onwards, the compiler requires each user to sign all
the messages it sends in the protocol run, and to verify all the messages
it receives. Since the total number of signature verifications in one round is
proportional to the group size, the signature verifications will potentially use
a significant amount of computational resource when the group size is large.

3. The compiler adds an additional round to the original protocol P ; however,
it does not provide key confirmation. As Katz and Yung state [4], in order
to achieve key confirmation a further additional round is required.

3 A new compiler without TTP

In this section we propose a new compiler that transforms a group key exchange
protocol P secure against a passive adversary into an authenticated group key
exchange protocol P ′ with key confirmation which is secure against passive and
active adversaries, as well as malicious insiders.

We assume that Σ = (Gen ,Sign,Vrfy) is a signature scheme as specified
in section 2.1. We also assume that a unique session identifier SID is securely
distributed to the participants before every instance is initiated. In [5] Katz and
Shin propose the use of a session identifier to defeat insider attacks.

Suppose a set S = {Ui, · · · , Un} of users wish to establish a session key,
and h is a one-way hash function. Let IDUi

represent Ui’s identity for every i

(1 ≤ i ≤ n).

Given a protocol P secure against any passive adversary, the new compiler
constructs a new protocol P ′, in which each party Ui ∈ S performs as follows.

1. In addition to all the operations in the initialisation phase of P , each party
Ui ∈ S also generates a verification/signing key pair (PKUi

, SKUi
) by run-

ning Gen(1 k).
2. In each round of the protocol P , Ui performs as follows.

– In the first round of P , each user Ui sets its key exchange history Hi,1 to
be the session identifier SID, and sets the round number k to 1. During
each round, Ui should synchronise the round number k.

– When Ui is required to send a message mi to other users, it broadcasts
Mi = IDUi

||k||mi.
– Once Ui has received all the messages Mj (1 ≤ j ≤ n, j 6= i), it computes

the new key exchange history as:

Hi,k = h(Hi,k−1||SID||k||M1||· · ·||Mn)

Then Ui continues as it would in P upon receiving the messages mj

(1 ≤ j ≤ n, j 6= i). Note that Ui does not need to retain copies of all
received messages.

3. In an additional round, Ui computes and broadcasts the key confirmation
message IDUi

||k||σi, where σi = SignSKUi

(IDUi
||Hi,k||SID||k).

4. Ui verifies the key confirmation messages from Uj (1 ≤ j ≤ n, j 6= i). If all
the verifications succeed, then Ui computes the session key Ki as specified in
protocol P . Otherwise, if any verification fails, then Ui aborts the protocol
execution.

In addition to the initialisation phase, the above protocol adds one round
to the original protocol and achieves key confirmation. Each participant needs
to sign one message and verify n signatures, in addition to the computations
involved in performing P . In addition, each participant only needs to store the
(hashed) key exchange history. Hence this compiler yields protocols that are
more efficient than those produced by the Katz-Yung compiler.

Theorem 1. If h can be considered as a random oracle, the compiler transforms

a group key exchange protocol P secure against any passive adversary into an

authenticated group key exchange protocol P ′ with key confirmation which is

secure against any passive adversary, active adversary, or malicious insider.

4 A new compiler with TTP

We assume that Σ = (Gen ,Sign,Vrfy) is a signature scheme which is strongly
unforgeable under an adaptive chosen message attack. We also assume that a
unique session identifier SID is securely distributed to the participants and the
TTP before every protocol instance is initiated. In addition, we assume that the
TTP acts honestly and is trusted by all the participants.

Suppose a set S = {Ui, · · · , Un} of users wish to establish a session key,
and h is a one-way hash function. Let IDUi

represent Ui’s identity for every i

(1 ≤ i ≤ n).
Given a protocol P secure against any passive adversary, the compiler con-

structs a new protocol P ′, in which each party Ui ∈ S performs as follows.

1. In addition to all the operations in the initialisation phase of P , the TTP gen-
erates a verification/signing key pair (PKTA, SKTA) by running Gen(1 k),
and make PKTA known to all the potential participants. Each party Ui ∈ S

also generates a key pair (PKUi
, SKUi

) by running Gen(1 k). The TTP
knows all PKUi

(1 ≤ i ≤ n).
2. In each round of the protocol P , Ui performs according to the following rules.

– In the first round of P , Ui sets his key exchange history Hi,1 to be
SID, and sets the round number k to 1. During each round, Ui should
synchronise the round number k.

– When Ui is supposed to send message mi to other users, it broadcasts
Mi = IDUi

||k||mi.
– When Ui receives the message Mj from user Uj (1 ≤ j ≤ n), it computes

the new key exchange history as:

Hi,k = h(Hi,k−1||SID||k||M1||· · ·||Mn)

Then Ui continues as it would in P upon receiving the messages Mj. As
before, Ui does not need to store copies of received messages.

– In an additional round, Ui computes and sends the key confirmation
message IDUi

||k||Hi,t||σi to the TTP, where

σi = SignSKUi

(IDUi
||Hi,t||SID||k)

3. The TTP checks whether all the key exchange histories from Uj (1 ≤ j ≤ n)
are the same, and verifies each signature. If all these verifications succeed, the
TTP computes and broadcasts the signature σTA = SignSKTA

(Hi,k||SID||k).
Otherwise, the TTP broadcasts a failure message σTA = SignSKTA

(SID||str),
where str is a pre-determined string indicating protocol failure.

4. Ui verifies the signature from TA. If the verification succeeds, then Ui com-
putes the session key Ki as required in protocol P . If this check fails, or if
Ui receives a failure message from the TTP, then Ui aborts the protocol.

In addition to the initialisation phase, the above protocol adds two rounds
to the original protocol and achieves key confirmation. Each participant needs
to sign one message and verify one signature, in addition to the computations
involved in performing P . In addition, it only needs to store the (hashed) key
exchange history. Of course, the TTP needs to verify n signatures and generate
one signature.

Theorem 2. If h can be considered as a random oracle, the compiler transforms

a group key exchange protocol P secure against any passive adversary into an

authenticated group key exchange protocol P ′ with key confirmation which is

secure against any passive adversary, active adversary, or malicious insider.

5 Conclusion

In this paper, we have investigated existing methods for building authenticated
group key agreement protocols, and proposed two compilers which can generate
more efficient protocols than the Katz-Yung compiler.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22 (1976) 644–654

2. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In Santis, A.D., ed.: Advances in Cryptology—EUROCRYPT ’94. Volume
950 of Lecture Notes in Computer Science, Springer-Verlag (1994) 275–286

3. Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement.
In: Proc. IFIP TC11 16th Annual Working Conference on Information Security.
(2001) 229–244

4. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In
Boneh, D., ed.: Advances in Cryptology — Crypto 2003. Volume 2729 of Lecture
Notes in Computer Science, Springer-Verlag (2003) 110–125

5. Katz, J., Shin, J.: Modeling Insider Attacks on Group Key-Exchange Protocols.
Cryptology ePrint Archive: Report 2005/163. (2005)

6. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proceedings of the 8th ACM Con-
ference on Computer and Communications Security. ACM Press (2001) 255–264

7. Bresson, E., Catalano, D.: Constant Round Authenticated Group Key Agreement
via Distributed Computation. In: Proc. of PKC 2004. (2004) 115–129

8. Mayer, A., Yung, M.: Secure protocol transformation via “expansion”: from two-
party to groups. In: Proceedings of the 6th ACM conference on Computer and
communications security. ACM Press (1999) 83–92

9. Bellare, M., Neven, G.: Transitive Signatures Based on Factoring and RSA. In
Zheng, Y., ed.: Advances in Cryptology — Asiacrypt 2002. Volume 2501 of Lecture
Notes in Computer Science, Springer-Verlag (2002) 397–414

