On a Possible Privacy Flaw in Direct
Anonymous Attestation (DAA)

Adrian Leung!'*, Liqun Chen?, and Chris J. Mitchell!

! Information Security Group
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK
{A.Leung,C.Mitchell}@rhul.ac.uk
2 Hewlett-Packard Laboratories
Filton Road, Stoke Gifford, Bristol, BS34 8QZ, UK
Liqun.Chen@hp.com

Abstract. A possible privacy flaw in the TCG implementation of the
Direct Anonymous Attestation (DAA) protocol has recently been dis-
covered by Rudolph. This flaw allows a DAA Issuer to covertly include
identifying information within DAA Certificates, enabling a colluding
DAA Tssuer and one or more verifiers to link and uniquely identify users,
compromising user privacy and thereby invalidating the key feature pro-
vided by DAA. In this paper we argue that, in typical usage scenarios,
the weakness identified by Rudolph is not likely to lead to a feasible at-
tack; specifically we argue that the attack is only likely to be feasible if
honest DAA signers and verifiers never check the behaviour of issuers.
We also suggest possible ways of avoiding the threat posed by Rudolph’s
observation.

Keywords: Direct Anonymous Attestation, DAA, Privacy, Trusted Com-
puting.

1 Introduction

Direct Anonymous Attestation (DAA), proposed by Brickell, Camenisch and
Chen, [1,2], is a special type of group signature scheme that can be used to
anonymously authenticate a principal, also referred to as a prover, to a remote
verifier. DAA has been adopted by the Trusted Computing Group? in version 1.2
of the Trusted Computing Trusted Platform Module (TPM) Specifications [3].
The key features provided by DAA are the capability for a prover (a group
member) to anonymously convince a remote verifier that:

e it is in possession of a DAA Certificate obtained from a specific DAA Issuer,
without having to reveal the DAA Certificate to a verifier (as would be
necessary for a signature-based proof of knowledge);

* This author is supported by the British Chevening/Royal Holloway Scholarship, and
in part by the European Commission under contract IST-2002-507932 (ECRYPT).
3 http://www.trustedcomputinggroup.org/

e a DAA Signature computed by a prover on a message m, has been generated
using a valid DAA Certificate issued by a specific DAA Issuer; colluding
verifiers are unable to link two different DAA Signatures created by the
same prover, and, in particular, verifiers are not given the DAA Certificate.

Moreover, the DAA scheme provides a flexible way of achieving a number of dif-
ferent levels of ‘linkability’. Under an agreement between the prover and verifier,
DAA Signatures can be either ‘random-base’ or ‘name-base’. Two random-base
signatures signed by the same prover (TPM) for the same verifier cannot be
linked. However, name-base signatures are associated with the verifier’s name;
as a result, two name-base signatures signed by the same prover (TPM) for the
same verifier can be linked.

These features help to protect the privacy of a prover. Another important
feature of DAA (distinguishing it from other types of group or ring signature
schemes) is that the powers of the supporting Trusted Third Party (i.e. the
DAA TIssuer in its role as the group manager) are minimised, as it cannot link
the actions of users (i.e. provers) and hence compromise the user’s privacy even
when it colludes with a verifier. This unlinkability property is the key feature of
DAA.

However, an attack was recently discovered by Rudolph [4] which potentially
compromises the unlinkability property of DAA. The attack could allow a DAA
Issuer to embed covert identifying information into DAA Certificates (of provers)
and to subsequently link the transactions of the users/provers to whom the DAA
Certificates belong [4]. As a result, DAA Signatures originating from the same
users/provers become linkable, and users can thereby be uniquely identified. In
this paper, we argue that Rudolph’s attack may be infeasible in practice, and
we discuss why an attempt to launch such an attack could easily be discovered
in an environment where there is at least one honest verifier. We also propose
approaches which could prevent the attack from taking place.

The remainder of this paper is organised as follows. In Section 2 we briefly
describe the workings of DAA as well as outlining the privacy attack. In Section 3
we explain why the attack is likely to be unrealistic in many practical scenarios,
and, in Section 4, we discuss possible modifications to the use of DAA in the
TCG specifications that can prevent the attack. Finally, conclusions are drawn
in Section 5.

2 The Privacy Attack on DAA

In this section, we only describe those aspects of the DAA protocol necessary
to understand the Rudolph attack. For full details of DAA, including a proof of
its security, see [1] and chapter 5 of [2]. A brief description of the attack then
follows.

2.1 DAA Overview

We first introduce the entities involved in the DAA protocol and the roles they
play.

e The Certification Authority (CA) acts as a Trusted Third Party (TTP). Its
role is to certify the authenticity of the DAA Issuer’s longer-term public key,
CKj. It does not directly participate in the DAA protocol.

o The DAA Issuer (or just the Issuer) is a third party that issues DAA Cer-
tificates (i.e. anonymous credentials) to provers. It must be trusted by all
other participants in the DAA protocol to perform its role in a trustworthy
manner.

e The Prover (or the User) generates DAA Signatures that are verified by
verifiers. In the context of Trusted Computing, the prover is the TPM.

e The Verifier verifies DAA Signatures computed by provers.

Note that, apart from the CA, all the entities above take direct part in the DAA
protocol. Also, in normal circumstances, the numbers of CAs and DAA Issuers
are likely to be very small by comparison with the number of provers.

The DAA Scheme consists of two sub-protocols (or phases), namely the DAA
Join Protocol and the DAA Sign Protocol. In the Join Protocol (shown in Fig-
ure 1), a prover interacts with a DAA Issuer [in order to obtain an anonymous
credential on a secret value f (also referred to as the DAA Secret), known only
to the prover. This anonymous credential, also known as the DAA Certificate,
is jointly computed by the DAA Issuer and the prover as a function of a blinded
value of f, the shorter-term public key of I, PK;, and other parameters. The
DAA Certificate is later used by a prover during the DAA Sign Phase in the
DAA Signature computation. As part of the DAA Join protocol, the prover is
authenticated to the DAA Issuer using its unique and long lived Endorsement
Key (EK). Note that the public part of the EK can be used to uniquely identify a
prover. The Issuer authenticates itself to the prover using its shorter-term public
key PK;, which the prover verifies using a certificate signed by the Issuer with
its longer-term public key CK;, which is in turn certified by the CA.

| DAA JoinPhase | DAA Sign Phase
CA | |
1. Certifies CK . Verifer 1
! | | 3a. DAA Signature, o4 erie
| | (computed using fwrt PK;)
1 1 *
< 2a: EK /
2b: CK;, PK, Certcx, Certe ! 1 01 &0y from
DAA Issuer P L7
__2c. DAA Certificate ngver 7 ,l same prover ?
~(computed using fand PK;)| _ DAA Secret, f /
CK;: Longer-term Public Key V
PK, : Shorter-term Public Key 3b. DAA Signature, 03
(computed using fwrt PK)))
Verifer 2

Fig. 1. The DAA Scheme

In the DAA Sign Phase, the prover DAA-signs a message m, using its DAA
Secret f, the DAA Certificate, and other public parameters. The output of the
DAA-signing process is known as the DAA Signature o. This DAA Signature
enables the prover to prove to a verifier (using a signature-based proof of knowl-
edge) that (i) it is in possession of a DAA Certificate, and (ii) the DAA Signature
on message m was computed using its DAA Secret f, the DAA Certificate in
(i), and other public parameters. Verifying a DAA Signature requires knowledge
of the DAA TIssuer’s public key PK; (i.e. the public key of the DAA Issuer that
was used to create the DAA Certificate). Hence prior to running the DAA Sign
protocol, a verifier must have obtained an authentic copy of PKj.

The DAA Sign Protocol has the property that colluding verifiers are unable
to link different DAA Signatures originating from the same prover (as shown in
Figure 1). This property applies even if a DAA Issuer colludes with a verifier,
i.e. they are still unable to link and uniquely identify a particular prover.

2.2 The Rudolph attack

The privacy breaching attack on DAA proposed by Rudolph [4] operates un-
der an assumption about the use of DAA, which we first describe. Specifically,
Rudolph assumes that the DAA Issuer’s longer-term public key CKj, as well
as the (shorter-term) public key PK; (along with its certificate chain) used to
compute the DAA Certificate, are communicated to the verifier via the prover
during the DAA Sign Phase (as shown in Figure 2). Whether or not this is a
realistic assumption is not clear; other possibilities include use of a publicly ac-
cessible certificate repository. In any event, as we describe below, the verifier
will need to know which of the DAA Issuer’s shorter-term keys has been used to
create the DAA Certificate on which the DAA Signature is based.

DAA Join Phase DAA Sign Phase

I
I
I
|
|
|
|
|

I
I
|
|
I
|
I

__ 2. DAA Certificate _ ‘3. DAA Signature, o1
DAA Issuer CK,, PK,, Certc, " PII;EVGI" CK, PK,, Certcki, Wofifee 1
Certpy DAA Secret, f Certpy v

CK;: Longer-term Public Key
PK, : Prover-Specific Shorter-term
Public Key

Fig. 2. The Rudolph Attack

The attack works as follows. As shown in Figure 1, during the DAA Join
Phase the DAA Certificate is computed using the DAA Issuer’s public key PK;
and other parameters. The key PK7 is a shorter-term public key which is certified
using the longer-term public key CK;, which in turn is certified by a trusted CA
(as shown in Figure 1). This key hierarchy is an intentional design feature of
DAA, chosen to make the TPM’s key life cycle and the Issuer’s key life cycle
independent. This is because the TPM computes its DAA private key as a digest
of a secret seed and the Issuer’s longer-term public key. This ensures that the
TPM uses the Issuer key that matches its DAA private key. If the Issuer had
only a single key, then, when the Issuer changed its key, every TPM would also
have to update its key. To avoid this problem, the Issuer is given the two types
of key described above.

Unfortunately, this flexibility can potentially be exploited by a curious DAA
Issuer to compromise the privacy properties of DAA. As observed by Rudolph, a
DAA Issuer could embed covert identifying information into a public key without
the knowledge of an honest prover. The Issuer simply uses a different public key
PK; to generate DAA Certificates for each prover with which it interacts. As a
result, the Issuer will be able to compile a table mapping between a prover’s pub-
lic EK (its unique key) and the public key used to generate the DAA Certificate
for this prover.

Suppose a verifer has obtained the Issuer’s public key PK; from the prover.
Whenever a prover executes the DAA Sign protocol with a colluding verifier
(i.e. one that colludes with the Issuer to identify a prover), and assuming that
the public key PK; used to generate its DAA Certificate is communicated to a
verifier via the prover, the DAA Issuer and the colluding verifier can easily link
the transactions of a prover and uniquely identify it. A verifier needs only inform
the DAA Issuer of the value of PK;. The DAA Issuer can then consult the EK-
PK; mapping it has compiled, and determine the prover’s EK. Similarly, with
the aid of the Issuer, colluding verifiers are able to uniquely identify a particular
prover.

3 How realistic is the Rudolph attack?

We now consider how the Rudolph attack might work in practice, and in partic-
ular we examine two possible attack scenarios.

3.1 Scenario 1: Linking large numbers of users

In this scenario, the aim of the DA A Issuer is to identify large numbers of provers.
We believe that this attack scenario is infeasible in practice. We demonstrate (i)
why this attack scenario is unrealistic (even if all the verifiers collude) because
of the communications and computation burden involved in performing such an
attack; and (ii) how the attack can easily be detected if there is at least one
honest verifier:

(i)

(i)

The Rudolph attack only works if the DA A Issuer and all the verifiers collude.
Suppose we have a scenario where there is one DAA Issuer, n provers (all
joining the network or system at different times), and k verifiers (which
all collude with the Issuer in an attempt to link or uniquely identify the
provers). For the attack to work, the colluding verifiers have to shoulder
an additional communication and computational burden (see Table 1 for a
summary of the communication and computational overheads). First and
foremost, to be able to link all the n provers, the DAA Issuer would need
to use n different public keys PK;, one for each prover. These n public keys
would also need to be communicated to each of the colluding verifiers. If a
trusted directory is used to hold copies of the public keys, then the Issuer
would need to upload a total of n different public keys to this directory (if
the provers join at different times then this may involve sending up to n
separate upload messages). If the verifiers obtain the public keys from the
Issuer directly, then the total communications overhead for an Issuer may
be up to nk messages (as compared to k messages if the Issuer only uses one
key).

A colluding verifier, regardless of the mechanism used to retrieve Issuer
public keys, will need to obtain up to n Issuer public keys for the n provers.
This means that the communications overhead for a verifier may be up to n
messages. Furthermore, whenever there is a new prover, the verifiers might
need to obtain the new public key for this prover.

In terms of computational overheads, we now point out why it is by no
means trivial to launch the Rudolph attack. Firstly, the generation of the
DAA TIssuer public key PK; involves performing a non-interactive zero knowl-
edge proof (using the Fiat-Shamir heuristic) [1]. This potentially involves the
DAA Tssuer performing at least 160 modular exponentiations (which could
go up to 6 x 160, one for each of the public key components g, h, S, Z, Ry
and Rp). This contradicts Rudolph’s claim that the process of generating a
large number of public keys can be performed efficiently [4].

Secondly, the work to be performed by the verifier in trying to identify
the prover may become infeasibly large, depending on how Issuer public keys
are distributed. If the prover sends the Issuer-signed certificate for the Issuer
public key PK; to the verifier as part of the DAA Sign protocol, as assumed
by Rudolph, then there is no problem. However, if the key is obtained from a
directory, then significant computational problems arise. This is because the
verifier will have no way of knowing which of the n Issuer public keys have
been used to create the DAA certificate, and hence which of them should
be used to attempt to verify the DAA Signature. The only solution would
be for the verifier to attempt to verify the signature using every possible
key, which would involve up to n verifications. Given the ubiquity of trusted
computing hardware, a typical value of n might be 10° or 10°, which would
make such a process computationally infeasible.

The attack will easily be discovered if there is at least one honest verifier or
if Issuer public keys are stored in public directories, as we now describe.

Table 1. Communications and computation costs for honest and colluding entities.

Costs Incurred By
Type of Costs |Honest|Honest|Colluding|Colluding
Issuer |Verifier| Issuer | Verifier

Communication 1 1 nk n
(no. of messages)

Computation - 1 - n
(no. of DAA Sign
Verifications)

e Consider first an environment in which there is at least one honest ver-
ifier. When the honest verifier attempts to verify a DAA Signature, it
first needs to retrieve the Issuer’s public key from the Issuer (or from
a trusted directory). If the Issuer (or the trusted directory) submits a
large number of public keys to the verifier, then suspicions about its
trustworthiness will immediately be aroused. Even if the honest verifier
is given the Issuer public key by the prover rather than retrieving it from
a directory, then it could still detect misbehaviour if it keeps a log of all
the Issuer public keys that it has been passed. If one particular Issuer
is using large numbers of different public keys, then this will quickly
become obvious to such a verifier.

e Suppose an Issuer uploads multiple public keys to a directory or other
repository. This will immediately be obvious both to the operator of the
directory (which may report suspicious behaviour) as well as to any user
of the directory.

3.2 Scenario 2: Linking a small set of users

On the other hand, if the aim of the DAA Issuer is to link all transactions
involving a single user (e.g. a high-profile user or one that makes high value
transactions), or a very small set of users, then the attack is much more likely
to succeed in a way that is hard to detect. For example, if a DAA Issuer only
wants to distinguish transactions involving one user, then the Issuer only needs to
have two public keys PK;. Hence, the communication and computation problems
discussed in the previous section would not be an issue in this attack scenario,
nor would there be a large number of Issuer public keys in circulation to arouse
suspicions.

Nevertheless, if a verifier deals with many provers who are clients of the same
Issuer, the suspicions of an honest verifier might be aroused if one Issuer public
key, or some small set of such keys, is used much less than others. In particular,
if the DAA Signatures are of the name-base type, allowing a verifier to link

DAA Signatures signed by the same prover (TPM) for the same verifier, then
the verifier will be able to observe significant differences in the numbers of clients
for an Issuer’s public keys.

4 Preventing the Rudolph attack

Despite the issues raised in the previous section, the Rudolph attack will work if
a verifier obtains the Issuer’s public key from a prover (as described in [4]), and
if no honest verifier keeps track of the Issuer public keys it has received or if the
goal of the attackers is only to track a few users. Even worse, a prover would be
completely oblivious to such an attack, as there is no way for a prover to tell if
a DAA Issuer is embedding covert identity information into the public key that
is used to generate its DAA Certificate (e.g. by using a different public key for
each prover).

‘We now examine a number of possible ways of preventing the Rudolph attack.
We also discuss the limitations of these approaches.

4.1 Modifying the TCG Specifications

We first observe that addressing the root cause of the problem would involve
changing the TCG specifications to prevent a DAA Issuer from self-certifying an
arbitrary number of public keys. This could be achieved by requiring the Issuer
to use a private key for which the public key has been directly certified by a
third party CA (in the notation used above, this would mean that the issuer key
CK would be used to generate DAA certificates).

There are two problems with such a approach. Firstly, the CA would then
need to be trusted not to generate large numbers of certificates for an Issuer.
Whilst this could be supported by requiring any CA that generates Issuer certifi-
cates to adhere to an appropriate Certification Practice Statement, it still means
that a significant amount of trust is placed in a single third party, a situation
which the design of DAA seeks to avoid.

Secondly, as explained above, this means that the key life cycle of the TPM
and the Issuer become linked. Addressing this issue would require further changes
in the operation of the TPM.

An alternative approach would retain the two levels of Issuer public keys,
but would require both types to be certified by a CA. As in the existing scheme,
the first level key would be used to compute the DAA secret, and the second
level key would be used to create the DAA Certificate. Certificates for second
level keys could mention the first level key to link the two together. This could
address the Rudolph attack without causing a key life cycle issue.

4.2 Using a Trusted Auditor

We next explore another possible approach which does not involve modifying
the TCG specifications too much (or at all). We propose that a prover obtains

DAA Certificates only from DAA Issuers that use the same public key for a very
large set of users. Thus the challenge is to enable a prover to determine the key
usage behaviour of a DAA Issuer.

If a prover is able to obtain assurance that a specific Issuer’s public key
has being used more than a certain number of times (i.e. to generate a certain
number of DAA Certificates), then it is immediately able to derive confidence
that it will not be uniquely identified, and at the same time gain information
about the level of anonymity that it is being afforded. For example, if a prover
knows that the public key used to generate its DAA Certificate has been used
to generate a thousand other DAA Certificates, then it knows that it cannot
be distinguished from a thousand other entities. On the other hand, if it knows
that a particular public key has only been used to generate three other DAA
Certificates, then the level of anonymity afforded to it is potentially very limited.

We now suggest two possible approaches designed to give a prover this type of
assurance. We also discuss the possible limitations of the suggested approaches.

A modification to the use of DA A. This approach requires the introduction
of a new type of trusted third party, which we refer to as a Trusted Auditor
(TA). We make use of the TA (which is not necessarily unique) to give provers
assertions about the “trustworthiness” of individual DAA Issuers. Since the CA
needs to be trusted by the protocol participants, and since it is already employed
to certify the longer-term public key CK; of the Issuer, a CA could act as a TA,
although this does need to be the case.

We propose that the following additional steps be performed by a prover
during the DAA Join protocol. During the Join phase, and after a DAA Cer-
tificate has been successfully created, the prover establishes a secure channel
with the TA. This can be achieved by the prover first establishing a unilater-
ally authenticated secure channel using a public key certificate for the TA, e.g.
using SSL/TLS. The prover can then send its EK credential to the TA via this
channel, and use this credential to authenticate itself, e.g. by decrypting data
sent to it encrypted using the EK. Finally, the prover uses this channel to send
a statement that a specific DAA Issuer has used a particular public key PK; to
derive its DAA Certificate, i.e.

Prover — TA : IDjssyer, CKp, PK;

Using these messages, the TA can compile a list of the form given in Ta-
ble 2. A copy of this list signed by the TA (to prove authenticity) can then be
communicated to a prover prior to the Join Phase. Since it is desirable not to
publicise the public EK values of individual trusted platforms, this information
can be removed from the list before it is distributed. The list of public EKs can
be replaced by the total number of different EKs for which credentials have been
generated using a particular Issuer public key.

This approach suffers from one problem. The public part of the Endorsement
Key (EK) of every prover is revealed to the TA. Since the EK pair for a trusted
platform is fixed, the public EK functions as a fixed identifier for a platform,

Table 2. Mapping of EKs to a PK; for individual Issuers

No.|Issuer Name|Longer-term CK;|Shorter-term PK;| Users
EK;
PK{1 :
1. Alice CK# E K000
EK;
PK{? :
EKio
EK;
2. Bob CKP PKP! :
E K200

and hence revealing it is not desirable. Indeed, DAA was introduced to avoid the
need to reveal the link between the public EK and other prover public keys to
a Privacy CA. Nevertheless, this scheme does not pose the same threat to user
privacy as the use of a Privacy CA, since the TA does not learn the link between
the EK and any other prover keys.

An alternative approach. A possible alternative to the above approach avoids
revealing the EK to a third party, although it still relies on a TA to provide
assertions regarding the trustworthiness of the DAA Issuer (i.e. reporting on the
number of DAA Certificates generated for a particular public key for a specific
Issuer). A prover and DAA Issuer run the DAA Join protocol as normal, thereby
obtaining a DAA Certificate (for the prover’s unique DAA Secret f). The prover
then conducts an instance of the DAA Sign protocol with the TA, which acts
as the verifier. The prover DA A-signs the following information sent to the TA
(acting as verifier), so that the TA can compile a table similar to that shown in
Figure 2.

Prover — TA : IDrssyer, CK7, PKy

One possible problem with this approach is that, because no use is made of the
EK, a malicious Issuer could fabricate DA A-signed messages of the above form,
and send them to the TA. The DAA signature signed for the TA could be of the
name-base type, which will guarantee that each DAA secret can only provide
one piece of evidence. However, the messages could be based on any number of
‘fake’ DAA Certificates, that are valid in that they have been created by the
DAA Issuer, but have never been sent to a genuine prover. Such messages will
be indistinguishable from messages sent from genuine provers, and hence the
number of uses of a key can be artificially inflated.

Nevertheless, a table created in this way will still reveal if an Issuer has
created more public keys than would be expected in ‘normal’ behaviour; this

may be sufficient to deter an Issuer from using the Rudolph attack on a large
scale.

4.3 A User-Centric Approach

To determine the trustworthiness of an Issuer, two or more users could collab-
orate to compare the PK; values that they have obtained from a particular
Issuer. If all of them have the same key PKj, then there is good chance that the
Issuer is using the same PK; for a large set of users. However, if the users find
that two or more different keys PK; have been used, then the trustworthiness
of the issuer is immediately called into question. This approach is suited to a
distributed or peer-to-peer environment, and does not require the involvement
of a trusted third party. Clearly, the effectiveness of the technique will depend
on the number of cooperating users.

5 Concluding Remarks

A privacy flaw in DAA was recently pointed out by Rudolph [4]. In this paper
we have analysed the feasibility of attacks exploiting this property. We then
examined possible approaches which could be used to prevent (or reveal) the
attack as well as the limitations of these approaches. These approaches could
make a successful attack very difficult to perform; however, all of the suggestions
have certain drawbacks. It remains an open problem to find a ‘perfect’ solution
to the Rudolph attack. Indeed, the DAA scheme itself cannot stop an issuer from
using a different key with each TPM, no matter whether the key is certified by
the Issuer’s longer-term key or by another CA. It is a very tough challenge for
any application to completely avoid such a threat.

It should be noted that protocols and applications (such as those given in
[5-7]) which employ DAA as a building block are not affected by this attack, as
it is not an attack on the DAA protocol itself, but is rather a weakness intro-
duced in the particular use of DAA. In fact, an implementation of an arbitrary
group signature scheme might have a similar problem if the size of a group is
very small, e.g. for groups containing just a single member. However, in other
implementations of group signatures, a group manager might not have any mo-
tivation to break the anonymity of its members, because the manager has the
ability to open the identity of a signer from its signature.

Acknowledgements

We thank Heiko Stamer and Stéphane Lo-Presti for their valuable comments, and
in particular to Heiko Stamer for pointing out the true complexity of generating
DAA TIssuer key pairs. We also thank Rene Mayrhofer for bringing the Rudolph
attack to our attention.

References

1. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings
of the 11th ACM Conference on Computer and Communications Security, Wash-
ington DC, USA, October 25-29, 2004, ACM Press (2004) 132-145

2. Mitchell, C.J., ed.: Trusted Computing. IEE Press, London (2005)

3. Trusted Computing Group (TCG): TCG Specification Architecture Overview. Ver-
sion 1.2, The Trusted Computing Group, Portland, Oregon, USA (2004)

4. Rudolph, C.: Covert identity information in direct anonymous attestation (DAA). In
Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R., eds.: 22nd IFIP TC-
11 International Information Security Conference (SEC2007) on “New Approaches
for Security, Privacy and Trust in Complex Environments”, Sandton, South Africa,
May 14-16, 2007. Proceedings. Volume 232 of IFIP International Federation for
Information Processing., Springer, Boston (2007) 443-448

5. Balfe, S., Lakhani, A.D., Paterson, K.G.: Trusted computing: Providing security
for peer-to-peer networks. In: Proceedings of the Fifth International Conference on
Peer-to-Peer Computing (P2P’05), Konstanz, Germany, August 31-September 2,
2005, IEEE Computer Society (2005) 117-124

6. Leung, A., Mitchell, C.J.: Ninja: Non identity based, privacy preserving authenti-
cation for ubiquitous environments. In Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T., eds.: 9th International Conference on Ubiquitous Computing (Ubicomp
2007), Innsbruck, Austria, September 16-19, 2007. Proceedings. Volume 4717 of
Lecture Notes in Computer Science., Springer-Verlag, Berlin (2007) 73-90

7. Leung, A., Poh, G.S.: An anonymous watermarking scheme for content distribution
protection using trusted computing. In: Proceedings of the International Conference
on Security and Cryptography (SECRYPT 2007), Barcelona, Spain, August 28-31,
2007, INSTICC Press (2007) 319-326

