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Tactical decompositions of designs

HENRY BEKER, CHRISTOPHER MITCHELL AND FRED PIPER

0. Introduction

In this paper we have attempted to give an account of the theory of special
decompositions of designs. We assume that the reader has some familiarity with
incidence structures and their representation by incidence matrices.

The origin of this work could be considered to be the 1942 paper of Bose [11], in
which the theory of resolvable and affine designs is introduced. These concepts
were generalised by Shrikhande and Raghavarao in [41] to a-resolvable and affine
a-resolvable designs. These results, together with the work of Dembowski on
tactical decompositions (see [19], [20]), led naturally to the work of Beker and
Mitchell on divisible and strongly divisible 1-designs.

Also of fundamental importance to the study of strongly divisible 1-designs is
the significance of the intersection number k — n, first recognised in the 1953 paper
of Majumdar [30]. This develops into the concept of (k — n)-decompositions and
from there to the work of Singhi and Shrikhande [44] and Beker and Haemers [6).
As is shown below, every strongly divisible 2-design is a nontrivial example of a
2-design admitting a (k — n)-decomposition, and these two classes of designs are
thus closely related.

Tactical decompositions of designs are also of great interest because of their
intimate connection with automorphism groups of designs. In particular, note that
the point and block orbits of any automorphism group of a design give rise to a
tactical decomposition of this design, and thus many results concerning tactical
decompositions of designs have as immediate corollaries results about automor-
phism groups of designs.
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124 HENRY BEKER ET AL. AEQ. MATH.

To conclude this introduction, we discuss briefly the contents of each of the
eleven sections of this paper.

Sections 1, 2, 3 and 4 are introductory in nature. Section 1 contains a list of
results on designs that are relevant to the discussions in later sections. In Section 2
we develop the idea of decompositions of incidence matrices, by means of which
many of the later results can be obtained, and in Section 3 we give the
corresponding definitions and results on decompositions of designs. To conclude
this introductory portion of the paper, Section 4 gives the definition and some basic
results on tactical decompositions of 1-designs.

In Sections 5, 6 and 7 we restrict ourselves to the case when the design admitting
a special decomposition is a 2-design. Section 5 contains a discussion of strongly
divisible 2-designs, while in Section 6 we specialise further to the special class of
strongly divisible 2-designs, which we call here strongly resolvable 2-designs (in the
notation of Shrikhande and Raghavarao these are strongly a-resolvable designs).
In Section 7 we examine 2-designs admitting (k — n)-resolutions, and, as mentioned
above, we are at the same time also considering all designs having a strong tactical
decomposition.

In Section 8 we consider strongly divisible 1-designs; many of the results on
strongly divisible 2-designs generalise in a natural way to the 1-design case. Section
9 contains a discussion of orbit theorems for designs. Many of these results are
immediate corollaries of earlier results on tactical decompositions of designs.

The penultimate section, Section 10, contains a list of construction methods for
strongly divisible and strongly resolvable 2-designs. This list includes all the
construction methods of such 2-designs known to the authors.

Finally, Section 11 contains some further, miscellaneous results concerning
tactical decompositions of designs, including an outline of a way in which the theory
of group divisible 1-designs has relevance to the theory of strongly divisible designs.

1. Preliminary results

A t-design D (t =0) is an incidence structure with a finite, nonzero number of
points and blocks (normally denoted by v and b, respectively) having the following
properties:

(i) Every block of D is incident with precisely k points for some constant k
O<k <v).

(ii) Every set of ¢t distinct points is incident with exactly A blocks for some
constant A >0.

(iii) No two distinct blocks are incident with the same set of points.

(iv) No two distinct points are incident with the same set of blocks.

Any incidence structure satisfying (i), (iii) and (iv) will be called a design, and it
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is clear that the terms 0-design and design are synonymous. If D contains v points
and satisfies (i)-(iv) then we say that D is a t — (v, k,A) design.

By (iii) above we may, in a design, regard a block as the set of points incident
with it, with incidence as set-theoretic inclusion. In any design we will call the
number of points incident with a pair of blocks x, y the intersection number of x and
y and, using the set-theoretic notation, we will often write |x Ny | for this number.
Dually, if P, Q are two points of a design, then we will call the number of blocks
incident with both P and Q the connection number of P and Q.

RESULT 1.1. If Dis a t —(v,k,A) design, then, for every s satisfying 0<s <1,
Dis an s — (v, k, A,) design, where A, = (:=)/(:=5).

In any t-design we have b = Ao, and if t =1 we set r = A,. As an immediate
corollary of Result 1.1 we have:

RESULT 1.2. Suppose D is a t — (v, k,A) design.
(i) If t =1, then bk = vr.
(i) If t =2, then A, (v —1)=r(k —1).

A further basic result is:
RESULT 1.3 (Fisher’s Inequality). If D is a 2 — (v, k, A) design then b = v.

If b = for a2— (v, k,A) design, then the design is symmetric. For this case we
have:

RESULT 1.4. LetDbea 2— (v, k, A) design. Then the following are equivalent :
(i) D is symmetric.

(ii) Every pair of blocks have intersection number A.

(iii) Every pair of blocks have constant intersection number.

Because of the importance of the number r — A ina 2— (v, k, A) design we will
write n for r — A and call n the order of the design. A further result on intersection
numbers of 2-designs is the following result due to Majumdar [30].

RESULT 1.5. Let D be a 2—(v,k,A) design. If x, y are two blocks of D, then
lxNy|=k —n with equality if and only if |x N z|=|y N z| for every block z (z # x
ory).

Note that, for most 2-designs, k —n <0. In fact one can easily show that
k=n=0if and only if 0<b-v=<r—1.
 An incidence matrix A = (a;) for a design D, is a v by b matrix with its rows
Indexed by the points of D and its columns indexed by the blocks of D, such that
% =1 if the ith point is incident with the jth block and a; =0 otherwise.
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For any design D we define the dual D* of D to be the incidence structure
whose points are the blocks of D and whose blocks are the points of D with
incidence the “same” as in D. Clearly if D is a 1 — (v, k, r) design then D* must be a
1— (b, r, k) design. Furthermore we see from Result 1.4 that the dual of a symmetric
2—(v,k, A) design is itself a symmetric 2 — (v, k, A) design.

The complement C(D) of a design D has as points the points of D, blocks the
blocks of D, with a point P incident with a block x in C(D) if and only if P is not
incident with x in D (i.e., considered as point sets, the blocks of C(D) are the
complements of the blocks of D). '

RESULT 1.6. If D is a 2—(v,k,A) design 2=k <v—2), then C(D) is a
2—(v,v —k,b —2r + A) design.

Note that Results 1.1-1.4 and 1.6 may be found in [20].

The residual D* of a 2— (v, k,A) design D (x a block of D) has as its points
those points of D not incident with x, and as its blocks all the blocks of D except x,
with incidence as in D. Using Result 1.4 we have the following.

RESULT 1.7. If D is a symmetric 2— (v, k, A ) design with v =2k then D" is a
2—(v—k,k — A, A) design for every block x of D.

Every residual design of a symmetric 2-design has k —n =0 and, if a 2-design
satisfies k = n, then it is said to be quasi-residual. It is an interesting problem to
decide precisely when a quasi-residual design is actually a residual.

A parallelism of a design D is an equivalence relation | on the blocks of D such
that, for any point P and any block x, there exists a unique block y incident with P
such that y | x. Bose [11] showed that if a 2— (v, k, A ) design admits a parallelism,
then b—v =r—1, and if b — v =r — 1, then the design is said to be affine. Note
that, for any two nonparallel blocks x, y in an affine design, |x Ny]|is a constant.

If D is a symmetric 2 — (v, k, 1) design then it is a projective plane and a residual
design of D (which is always affine) is called an affine plane. Furthermore (see, for
instance, [20]) every quasi-residual 2-design with A =1 is residual and hence is an
affine plane. For a summary of known results on affine designs see Shrikhande [40],
and for details on projective planes see [23].

A division of a 1 — (v, k, r) design D is a partition P;,..., P, of the points of D
(v: < v) such that the connection number of two distinct points is a constant A or A
depending only on whether the points are from the same class or not. It is normal t0
assume A # A’, otherwise D is a 2-design. With this assumption it can be shown that
a division of a 1-design (if it exists) is unique, and that there exists a constant such
that | P,| = I for every i. A 1-design admitting a division is called divisible (note that
these designs are often referred to as group divisible designs).

RESULT 1.8 (Bose-Conner Theorem). Let D be a divisible 1— (v, k,r) design
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with connection numbers A and A' and v, point classes, and let A be an incidence
matrix for D. Then either

(i) rk =vA’ and b =rank AA™ = v — v, +1 (and D is called singular divisible);
or

(ii) vk >vA’ and b =rank AA" = v (and D is called nonsingular divisible).

As in the 2-design case, if a divisible 1 — (v, k, r) design satisfies b = v then it is
called symmetric. For further details, see, for instance, [20, pp. 286-289].

2. Matrix decompositions

In this section, we prove some elementary results about matrix decompositions.
These were first established by Block [10], and have some surprisingly strong
implications when applied to incidence matrices of designs. Throughout this paper
we denote the rank of a matrix X by p(X).

If A is a v by b matrix, then a decomposition of A is any partition P, . .., P,, of
the rows of A and a partition xi,...,x, of the columns of A. If |P;|=1, and
|x;| = my, then the I; by m; matrices M;; (which consist of all the entries in the rows
of P, and the columns of x;) are the decomposition matrices of the decomposition.
Clearly an arbitrary decomposition is much too general a concept to be useful. If,
for each i and j, the sum of the entries of each row of M; is a constant, which we
will denote by r;, then we say that the decomposition is row -tactical. Similarly we
say that the decomposition is column-tactical if the sum of each column of M; is a
Constant c;, and that it is factical if it is both row- and column-tactical. If a
decomposition is row-tactical then we define the v, by b, matrix of the row sums, R,
by R =(r;) and if it is column-tactical we define C = (c;).

THEOREM 2.1. Suppose that A is a v by b matrix with a decomposition
P,...,P, of the rows and x,, . .. , X5, Of the columns.

() If the decomposition is row-tactical, then p(A)—p(R)=<b —b,.

(b) If the decomposition is column-tactical, then p(A)—p(C)=v —v,.

Proof. We prove (b). Suppose the decomposition is column-tactical. If R is a set
of p(A) linearly independent rows of A, then the remaining v — p(A) rows of A
fall in at most p — p(A) different row classes P;. Thus at least v, — (v — p(A)) of the
Tow classes of the decomposition are completely contained in the rows of R.

Of course v, — (v — p(A)) might be negative or zero but, if this is the case, then
V'=(v~p(A))=0=p(C), which gives p(A)—p(C)=<v —uv,, as required. So
Suppose v, — (v — p(A)) is positive and consider the corresponding v, — (v — p(A))
Tows of C. If some linear combination of these rows was equal to zero, then the
Same linear combination of the rows of the corresponding v, — (v — p(A)) row
classes of A (with each row inside a given class having the same coefficient), would
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also be zero. This is an immediate consequence of the fact that the decomposition is
column-tactical, since multiplying each row of M; by a constant h and adding the
rows gives a row vector with each entry equal to hc;. However, the v, — (v — p(A))
point classes are completely contained in R, and the rows of R were chosen to be
linearly independent. Thus the v,—(v —p(A)) rows of C must be linearly
independent, which gives vi—(v —p(A))=<p(C) or p(A)-— p(C)=v —uv,. This
establishes (b).

The proof of (a) is given by similar considerations on the columns of A. [

COROLLARY 2.2. Suppose p(A)=v.
(a) If the decomposition of Theorem 2.1 is row-tactical, then b,—v,<b —v.
(b) If the decomposition of Theorem 2.1 is column-tactical, then 0<b,— v,.

Proof. (a) Clearly, since R is a v, by b, matrix, p(R) = v:. So, from Theorem
2.1(a), v =p(A)<p(R)+b—by=v,+b—b, and hence b,—v,<b —v.

(b) Also, by Theorem 2.1(b), v=p(A)<p(C)+v—-vi=b+v—v, or
b] - b] =0. D

3. Decompositions of designs

If A is an incidence matrix of a design D, any decomposition of A gives rise to a
partitioning of the points and blocks of D. Similarly, any partitioning of the points
and blocks of D gives, in a natural way, a decomposition of A. A partitioning of the
points and blocks of D is called a point-tactical, block-tactical or tactical
decomposition of D if it is equivalent to a row-tactical, column-tactical or tactical
decomposition of A. We can, in fact, recognise the various decompositions of D
without considering incidence matrices.

LEMMA 3.1. Let P,,...,P, and x,,...,x, be a partitioning of the points and
blocks of a design D. Then

(a) Itis point-tactical if and only if, for any i and j, each point of class i is incident
with a constant number of blocks from class j. (We denote this constant by v;.)

(b) It is block-tactical if and only if, for any i and j, each block in class j is
incident with a constant number of points from class i. (We denote this constant by

B‘i )

Proof. We shall prove (b). By definition the decomposition of D is block-tactical
if and only if it is equivalent to a column-tactical decomposition of A, i.e., if and
only if, for any i and j, the entries in any column of M;; add up to a constant c;. But,
since A is a (0, 1)-matrix, this is the same as saying that each column of M has ¢,
nonzero entries. However, the number of nonzero entries in a given column of M,
is equal to the number of points of class i incident with that particular block of class
j. This establishes (b) and a similar argument will prove (a). [
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Tactical decompositions of designs were first studied by Dembowski [19]. Their
importance is illustrated by the following lemma.

LEMMA 3.2. LetI be an automorphism group of a design D. Then the point and
block orbits of I' form a tactical decomposition of D.

Proof. Let P,,..., P, be the point orbits of I' and let x,,...,x, be the block
orbits. If | P | = 1 then, trivially, for every j every point of P; is on the same number
of blocks in x;. If | P; | = 2, let X, Y be two distinct points in P; and let a,, ..., a. be
the blocks of x; through X. Since X and Y are in the same orbit of I, there exists y
in I' with X” =Y, and then a?,...,a, are the blocks of x; through Y. Thus each
point of P; is on m blocks of x; and, by Lemma 3.1, the decomposition is

point-tactical. A similar argument shows it is also block-tactical and proves the
result. [J

Now that we know that the orbits of an automorphism group form a tactical

decomposition, we can use our results on decompositions to obtain an orbit
theorem for designs.

THEOREM 3.3. Let D be a 2— (v, k, A) design. If I' C Aut D has v, point orbits
and b, block orbits then 0<b,—v,<b —v.

Proof. If A is any incidence matrix of D, then A has rank v (see, for example,
[20 p. 20]). Since the point and block orbits of I" give a tactical decomposition of D,
Theorem 3.3 is an immediate consequence of Corollary 2.2. O

Note that Theorem 3.3 can be strengthened, since all the proof requires is for
the incidence matrix A to have rank v, i.e., we only require that D be a structure
with v points, b blocks and incidence matrix of rank v.

Putting v = b in Theorem 3.3 gives the well known orbit theorem for symmetric
designs (see, for instance, [20, p. 78]). Also, putting b, =1, we see that, if I" is
transitive on blocks, then it is also transitive on points. The converse, of course, is
not true, an easy counterexample being given by the translation group of an affine
translation plane (see [23]).

It is also worth pointing out that there are many examples of tactical
decompositions of designs which are not the orbits of any automorphism group.
Any 1-design D has a tactical decomposition with just one point and block class.
However, there are many 1-designs whose full group is not transitive on points (or
blocks), for example, the automorphism group of any projective nondesarguesian
translation plane (see [23]).

4. Tactical decompositions of designs

Let D be a 1-(v, k,r) design, and let Py,...,P, and x,,...,x, be a tactical
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decomposition of D. Now let the points of D be arranged in order, with those of P,
first, then those of P, etc., and let the blocks be similarly ordered. If A is any
incidence matrix for D obtained by using this ordering, then we call A an incidence
matrix for D associated with the given tactical decomposition.

In this section we shall use an incidence matrix to establish some relations which
must hold between the By, ¥;, k =|P:|and m; = |x;|for 1 =i =v;,1=<j <b,. These
relations were first established by Dembowski [19], but the matrix proof here is due
to Beker [5]. However, we first state, without proof, some trivial identities.

LEMMA 4.1. (i) 2t By =k for any j;
(i) Z;L,y5 =7 for any i;
(iii) By =0 if and only if v; =0;
(v) 2Lk =v;
bl
(V) 2,'=1 m; = b.
For the rest of this section we assume that D is a 2 — (v, k, A ) design. If A is an

incidence matrix for D associated with the given tactical decomposition, then we let
A, be the following (v + b,) by (b + v,) matrix:

[ b 1 v
) >
1 P
i 3
. n
v A ___1 __________
A1= ______________
1
Ak
1
| | |
1..... 1 E . . E i
b, i ..... | |
. | I 0
| | |
| | |
| : ! D 1 ]
— —
m, m; nm,

where the (v + j)th row has m; 1’s in the columns corresponding to the blocks of %
and O’s elsewhere, and the (b + i)th column has /; 1’s in the rows corresponding 0
the points of P; and 0’s elsewhere.
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LEMMA
v

A]A T =
b,

where

B =nI,

Tactical decompositions of designs

4.2.
v bl
Y1 Yz * Vs,
Y Yz Vi,
P
Y21 Y2z * Yo,
B |eeEEet
e
Yor1 Vo2 " * Yo,
Y11 *Yn :721 Y2 :' i‘Yu,l U Yo | MY
Yi2 ° Y2 E'Yzz * Y22 : :‘Yu,z i %) m; 0
| . [
! b
P I | 0
| | | .
Yot Vs, : Y2p, " 7Zb|! E‘yulbl © Youb my,
L A L,
|
Jy
_____ T 0
! |
body
v L !
+AJ, +
0 [
|
: ]“’l
|
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Where AT denotes the transpose of A, I, is the v by v identity matrix, J, is the s by s
Matrix all of whose entries are +1 and n =r — A.
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Proof. Most of the computation is straightforward. The upper left-hand corner
needs the basic fact that AA™ = nl, + AJ, (see [20, p. 20]). The entry in the ith row,
1<i=<wv, and (v +j)th column, 1=<j=b,, is the inner product of the ith and
(v +j)th rows of A,. Since the (v +j)th row of A, has +1 entries only under the
blocks of x;, the inner product gives the number of biocks of x; through the ith

HENRY BEKER ET AL.

point. Thus it is vy, where the ith point is in P.. [

When we try to compute AjA;, the b by b matrix in the top left-hand corner
involves ATA. Since, in general, we do not know ATA, we cannot get such a

precise formulation for ATA,. However, we do have the following.

LEMMA
b
A ;rA 1=
L

AEQ. MATH.

> My

> m,

43. b o0
B Bu HZI te ﬁvﬂ
BiiBa - Bon
Bl2 ﬁzz o Bvﬂ
C
B12 322 o Bvﬂ
BioBan ++ Bun
Bis,B2s, ** * Bup,
[3,,~--B,1:Bu"'ﬁ1zi :Blb,"'Blb,I:ll
321...321':322...322: iBZbl...BZbl: lz. 0
. . |- . | | . . |
| Lol |
B L '.
[ L '
R
| Lo ‘
. - . : L . |l .
L.Bull e Bv:l : Bv|2 e Bv12| :31’1"1 v B”l"l ! l"‘ =

v

m,

Vv

m;

where C involves ATA. (We know the diagonal entries are k +1.)
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We now use the elementary fact that A,(ATA;)=(A,A7)A, to obtain
Dembowski’s relations.

THE(")REM 4.4. (i) ﬁ;,m, = ‘y.'jl,' for a” i and j;
(i) 2;% ywBy = Al + ndy.

Proof. (i) Consider the (v +j,b+i)th entry of both sides of (A;A)A,=
A(ATA).

(i) Consider the (m, b + i)th entry where the mth point in our ordering belongs
to P. D

It should be noted that Dembowski’s counting arguments are no more difficult
than the ones given by the matrix approach. However, this matrix method gives still

more information. Using the results of this section it is fairly straightforward to
show that:

v, b
det A\AT=n"[] L] m;.

i=1 j=1

Thus A,AT is nonsingular, i.e., p(A;AT) = v + b,. But clearly p(A))=p(A,A)),
and so, since A, has v + b, rows, p(A,) = v + b,. This gives an alternative proof of
b—v = b,— vy, since A, has b + v, columns, and also shows that, if v + b, = b + v,
then A, is nonsingular. This fact will be very useful in Sections 5, 8 and 9 below.

S. Strong tactical decompositions
We first state a theorem due to Block [9].

THEOREM 5.1. Any tactical decomposition of a 2 — (v, k, A) design D satisfies
b_UEbl_lHZO.

Proof. The proof is identical to that of Theorem 3.3, which is just a special case
of Theorem 5.1. O

Hence it is natural to look at decompositions for which b —v = b; — v;. Note
that, if b=y, then by =y, a result originally due to Dembowski [19], but if
bi—v,=0, then b does not necessarily equal v; a counterexample is, for instance,
the decomposition with only one point and one block class.

As we mentioned above, any 1-design admits the tactical decomposition in
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which every point and block class has length 1. Clearly, this satisfies the equality
b—v =b,— v, but in an uninteresting way. These tactical decompositions are
called trivial and from now on we will restrict all discussions to nontrivial tactical
decompositions.

Any tactical decomposition satisfying b —v = b, — v, is called strong, and a
design admitting a strong tactical decomposition is said to be strongly decomposable.

If a 2-design D admits a parallelism, then a tactical decomposition of D can be
obtained by taking the parallel classes for block classes and taking all the points to
form a single point class. Clearly b, =r, B;; =1 and y;; =k for1=j=r. Theorem
5.1 in this case becomes b — v = r — 1, which is Bose’s inequality [11]. But Bose also
showed that b — v = r — 1 if and only if D is affine, and thus every affine design is
strongly decomposable. Clearly every symmetric design is also strongly decomposa-
ble. As we shall see later, there are many strongly decomposable 2-designs which
are neither affine nor symmetric.

The following theorem due to Beker [4] generalises Bose’s result.

THEOREM 5.2. If T(D) is a tactical decomposition of a 2 — (v, k, A) design D,
then the following are equivalent:
(i) T(D) is strong.
(ii) The number of points in the intersection of two distinct blocks depends only on
the block classes to which they belong.
(iii) Every two distinct blocks in the same block class intersect in k — n poinis.

The equivalence of (i) and (iii) is inmediate from Result 1.5, and the fact that (i)
and (iii) are equivalent may be obtained by evaluating the sum 2., L1 Biyy in two
ways. Alternatively, the theorem may be obtained by using the nonsingularity of
the matrix A, of Section 4 when T(D) is strong, and by evaluating the matrix
product A;ATA, in two ways (see [2], [5]), or by the linear algebra techniques of
Bridges [14]. Using Theorem 5.2 and Result 1.5 we have the following immediate
corollary.

COROLLARY 5.3. If T(D) is a tactical decomposition of a 2 — (v, k, A) design
D with the property that every two distinct blocks of any block class intersect in ¢
constant number of points p, then p =k —n with equality if and only if T(D) is
strong.

An example of a design satisfying the conditions of the corollary with
p >k —r+ A may be found in [4]. The following two results appear in the sam¢

paper.
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THEOREM 5.4. If a 2-design D is strongly decomposable, then C (D) is also.

THEOREM 5.5. The only 3-designs admitting strong tactical decompositions
are Hadamard 3-designs (i.e., 3—(4A +4,2\ +2,\) designs).

Theorem 5.5 generalises an earlier result due to Kimberley [29, Theorem 2],
who showed that Hadamard 3-designs are the only affine 3-designs.

Finally, we give some restrictions on the parameters of a strongly decomposable
2-design. For proofs see [2].

THEOREM 5.6. If D is a strongly decomposable 2-design then:
@ k|(k=n)& —k+n);

(i) A [(k = Dn;

(iii) Disa 2—((n(k —1)/A)+ k, k, L) design.

THEOREM 5.7. If B, and B, are block classes of a strong tactical decomposition
of D, then p,, <2n/(m, + m,)+ k — n, where p,, is the intersection number of a block
of class B, and a block of class B,.

Note that Theorem 5.7 together with Result 1.5 gives both an upper and a lower
bound on the intersection numbers of 2-designs admitting strong tactical decompos-
itions. This result can be deduced from the work of Connor [18] and Majumdar [30]
for the case m, =m, =1.

By applying the Hasse-Minkowski theory of rational congruence to our matrix
equation A,A7 =K given by Lemma 4.2, we otain the following results. (We
assume throughout that T(D) is a regular strong tactical decomposition of a
2-(v,k,A) design D, where regular implies that I, =1 and m; = m for every i,
I<i=<uv, and for every j, 1=<j=<b,)

THEOREM 5.8. If v is even and b is odd then
(i) m is a square.

(i) Ifv, =2 (mod 4), then n'"'Ix> — y> = z” has solutions in integers x, y, z not all
zero.

(We could alternatively write (ii) as

(i) If v, =2 (mod 4), then D does not exist if the square free part of n' "'l contains
a prime p =3 (mod 4).

In the following theorems we shall state only one of the alternatives.)

THEOREM 5.9. If v and b are both even then, either,
(@) b, and v, are both odd and nlm is a square and either
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(i) b=0 (mod 4) and v =0 (mod 4), or
(i) b =0 (mod 4) and v =2 (mod 4) and Ix*— y* = z* has solutions in integers
X, y, z not all zero, or
(iii) b =2 (mod 4) and v =2 (mod 4) and nx’—y* = z” has solutions in integers
x, y, z not all zero, or
(iv) b =2 (mod 4) and v =0 (mod 4) and mx*— y* = z* has solutions in integers
x, y, z not all zero, or
(b) b, and v, are both even and either
(i) b =0 (mod 4) and v =2 (mod 4) and v, =2 (mod 4) and b, = 0 (mod 4) and
Ix?— y?> = 2z* has solutions in integers x, y, z not all zero, or
(ii) b =0 (mod 4) and v= O (mod 4) and either b,=v,=0 (mod 4) or by =v,=
2 (mod 4) and minx*—y> =z’ has solutions in integers x, y, z not all zero, or
(iii) b =2 (mod 4), v =2 (mod 4) and b,=v,=2 (mod 4) and mix*—y>=7z’
has solutions in integers x, y, z not all zero, or
(iv) b=2 (mod 4), v=0 (mod4) and v,=0 (mod4), b,=2 (mod 4) and
mx?—y?=z* has solutions in integers x, y, z not all zero.

THEOREM 5.10. If v and b are both odd then Im is a square and either
(i) b=1 (mod4) and v=1 (mod4) and either by=v,=1 (mod 4) and

nx’+ ly* = z* has solutions in integers x, y, z not all zero or b, = v, =3 (mod 4) and
nx2—ly*=z* has a solution in integers x, y, z not all zero, or

(i) b =1 (mod 4) and v =3 (mod 4) and either b, =1 (mod 4), v, =3 (mod 4)
and mx*— ny> = z* has solutions in integers x, y, z not all zero or v, =1 (mod 4) and
b,=3 (mod 4) and (—m, —n), = +1 for all odd primes p, or

(iii) b =3 (mod 4) and v =1 (mod 4) and either b,=1 (mod 4) and v,=3
(mod 4) and (— m, —n), = +1 for all odd primes p or v, =1 (mod 4), b, =3 (mod 4)
and mx>— ny’ = z* has solutions in integers x, y, z not all zero, or

(1v) b 3 (mod 4) and v=3 (mod 4) and either by=v,=1 (mod 4) and
nx’— my = 27 has solutions in integers x, y, z not all zero, or b; = v, =3 (mod 4) and
nx?+ my> = z> has solutions in integers x, y, z not all zero.

THEOREM 5.11. If v is odd and b is even then

(1) | must be a square,

(2) either b =0 (mod 4) and nmx +( 1)°"4?y? = z* has solutions in integers X,
y, z not all zero or b =2 (mod 4) and nx’>+(—1)° "”2 2 = 2? has solutions in integers
X, y, z not all zero.

In the case when D is symmetric or affine these results reduce to the results of
Bruck-Ryser-Chowla [15], [17] and Shrikhande [37], [38].
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6. Resolutions

In this section we consider 2-designs which admit a special type of tactical
decomposition called a resolution. A resolution R(D) of a 1 — (v, k, r) design D is a
tactical decomposition with just one point class, and a design admitting a resolution
is called resolvable.

Note that this definition is not standard, in fact many authors (see, for instance,
[40]) use the word to describe what we call a parallelism. The definition used here
corresponds with the definition of (i1, wo, . . ., )-resolvable due to Kageyama [26],
which generalised the idea of a-resolvability initiated by Shrikhande and
Raghavarao [41].

We first give the following theorem due to Beker [2].

THEOREM 6.1. If D is a resolvable 1— (v, k,r) design with the property that
every two distinct blocks of the same block class have a constant intersection number,
p, say, then: !

(i) any point is incident with the same number o = (k* — kp)/(k> — vp) of blocks
from each block class

(i) each block class has the same number m = (vk — vp)/(k*> — vp) of blocks ;

(i) p = k(k —1)/(v —1).

By Theorem 5.1, any resolution of a 2-design satisfies b —v = b, — 1 and we
accordingly define a strong resolution to be one for which b = v + b, — 1, and we call
a 2-design admitting a strong resolution strongly resolvable. By definition, we see
that a strongly resolvable 2-design is simply a special type of strongly decomposable
2-design, and the following theorem due to Hughes and Piper [24] is an immediate
corollary of Theorem 5.2.

THEOREM 6.2. If R(D) is a resolution of a 2— (v, k,A) design D, then the
following are equivalent:
(1) R(D) is strong.
(ii) The intersection number of two blocks depends only on the block classes to
which they belong.

(iii) Every two distinct blocks of the same block class have intersection number
k—n.

In fact, Hughes and Piper showed that, in this case, we have the stronger result
that the intersection number of two blocks from different classes must also be a
constant equal to k*/v. Thus, a strongly resolvable 2-design is precisely what
Shrikhande and Raghavarao [41] call an affine a-resolvable design. This paper
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contains a weaker version of Theorem 6.2; it includes the added assumption that
the resolution is regular (a regular resolution is one for which each block class
contains the same number of blocks). Clearly, by Theorem 6.1, a strong resolution
is always regular. Other authors, e.g., Shah [36], have given further necessary and
sufficient conditions for a regular resolution to be strong.

We can now state a theorem due to Beker and Haemers [6].

THEOREM 6.3. If Disa 2—(v, k, L) design then the following are equivalent:
(1) D is strongly resolvable.

(ii) D has precisely two intersection numbers, the smaller of which is k — n.

(iii) D has precisely two intersection numbers, the larger of which is k*|v.

(iv) D* is divisible.

(v) D* is singular divisible.

We also have the following result on the parameters of strongly resolvable
2-designs; see [2] and [21]. ‘

THEOREM 6.4. If D is a strongly resolvable 2-design then:

(i) Disa 2—(um®/o’, um/o, (um — o)/(m — 1)) design, where m is the block
class size, w is the intersection number of two blocks from different block classes of the
resolution, and o = v,; for every j.

(i) o =nk/(k’—kv +nv); m =nv/(k*— kv + nv).

Clearly, strongly resolvable designs include affine designs as a special case (i.e.,
when k — n = 0), but there do exist infinite families of strongly resolvable 2-designs
which are not affine, see Section 9 below.

7. 2-Designs with k — n as an intersection number

We now consider 2 — (v, k, A ) designs having k — n as an intersection number,
and so, by Theorem 5.2, we consider all strongly decomposable 2-designs.

We first give the following constraints on the parameters of such a design (for
proofs see [6]).

THEOREM 7.1. Ifa 2— (v, k, A) design contains two blocks having intersection
number k — n then:
() O=sk—n=A;
(ii)) v —k=n;
(iii) v-1=b—r;
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ivy v—1=r;
v) k=r/2.

There exist infinitely many affine and symmetric 2-designs and so there exist
infinitely many 2-designs with intersection number k —n whenever k —n =0 or A.
However, as shown in [6],

THEOREM 7.2. For a given value of k —n&{0,A}, there exist only finitely
many 2-designs admitting k — n as an intersection number.

We also have the following.

THEOREM 7.3. For a given value of A, there exist only finitely many 2-designs
with an intersection number k —nZ {0,A}.

Note that the total number of 2-designs admitting an intersection number
k—n#0,A is not finite. In Section 10 we will construct an infinite family of such
designs.

Beker and Haemers also point out that the only 3-designs admitting an
intersection number k — n are the Hadamard 3-designs, giving a further generalisa-
tion of Theorem 5.5.

We now define a relation on the blocks of a 2-design D admitting k — n as an
intersection number. If x, y are blocks of D, then x ~y if and only if x =y or
lxNny|=k-n. By Result 1.5, ~ is an equivalence relation on the blocks of D, and
for the purposes of this section we will call the partition of the blocks of D into
equivalence classes under ~ the maximal (k —n)-decomposition of D. Any
refinement of the maximal (k — n)-decomposition is called a (k — n)-decomposition
of the design. A (k — n)-decomposition of a 2-design has the property that the
intersection number of two blocks depends only on their decomposition classes. An
example of a (k — n)-decomposition is provided by the block classes of a strong
tactical decomposition of a 2-design.

A decomposition is said to be regular if each class contains the same number of
blocks, and an example of a regular maximal (k — n)-decomposition is provided by
the block classes of any strong resolution of a 2-design. The relationship between

(k — n)-decompositions and resolutions is strengthened by the following result, see
(6] and [31).

THEOREM 7.4. If B,,...,B,, are the classes of a (k — n)-decomposition of a
2=(v,k,A) design then,
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(@) |B;|=b/(b—v +1), for every j.
(b) v+bi=b+1.
(c) The following are equivalent:

(i) B,..., By, is a strong resolution ;
(i) |B;|=b/(b—v +1) for every j;
(iii) v+ b, =b+1.

Restricting our attention to regular (k — n)-decompositions (and writing m for
the size of a class in such a decomposition) we have the following results (see [6]).

THEOREM 7.5. If D is a nonsymmetric 2—(v,k,\) design with a regular
(k — n)-decomposition, then:

k-n=M/b=n/m+k—n.

THEOREM 7.6. Let D be a 2—(v,k,A) design with a regular (k —n)-
decomposition and suppose p; is the intersection number of a block of class B and a
block of class B; (i# j). Then:

(i) pj =2k?*/v —n/m —k + n, with equality if and only if all the points of D are
in the same number of blocks from B, U B; ;

(ii) p; =n/m +k —n with equality if and only if each point occurs the same
number of times in blocks from B; as in blocks from B,;.

Note that (ii) of the above result generalises Theorem 5.7 on intersection
numbers between classes of a strong tactical decomposition; it is also worth
pointing out that in the case when D is a strongly resolvable 2-design and we
consider the maximal (k — n)-decomposition (which is clearly regular), both the
above bounds are sharp. This theorem can be deduced from the work of Connor
[18] and Majumdar [30] for the case m =1.

We now consider 2-designs with exactly three intersection numbers, one of
which is k — n. In [6] the following is shown.

THEOREM 7.7. If D is a 2—(v,k,A) design with exactly three intersection
numbers, k — n, p, and p,, then the maximal (k — n)-decomposition is regular, and
the size m of the classes is given by:

Ak’—kn +n’ +bp,p2—Av(p,+p2)
(k—n—-p)(k—n—p)

m=

A similar result does not hold for designs with greater than three intersection
numbers, see, for instance, the design of Bhattacharya [9].



Vol. 25, 1982 Tactical decompositions of designs 141

We also have the following.

THEOREM 7.8. If D is a 2—(v,k,A) design with exactly three intersection
numbers, k —n, p, and p,, then p,=n/m +k —n if and only if p,= Av/b.

It does not seem likely that a 2-design with a regular maximal (k — n)-decom-
position need to have three or less intersection numbers, although the authors
know of no examples having greater than three. As we shall see in Section 10
below, all known constructions of strongly decomposable 2-designs yield designs
having three or less intersection numbers.

However, in some special cases we can restrict the number of possible block
intersection sizes. Singhi and Shrikhande [44] showed:

THEOREM 7.9. If a quasi-residual 2 — (v,k,A) design has a regular (k — n)-
decomposition with A —1 blocks in a block class, then the only possible other
intersection numbers are A and A — 1.

Another result of this type is found in [6].

THEOREM 7.10. If Disa 2— (v, k, A) design with a regular maximal (k — n)-
decomposition, and Av/b and n/m + k — n are consecutive integers, then D has at
most three intersection numbers.

(If we set h =2 in the family of designs of Theorem 10.1, then we obtain
examples of both Theorems 7.9 and 7.10.)

Beker and Haemers [6] also gave some conditions for certain quasi-residual
designs having three or less intersection numbers to be residuals of symmetric
2-designs. An application of one of their results is the embedding of the quasi-
residual designs which shall be discussed in Section 10.

8. Strongly divisible 1-designs

Many of the results which hold for strongly decomposable 2-designs may be
generalised to a certain special class of 1-designs. A tactical division of a 1-design is
a tactical decomposition with point classes P, ..., P, such that:

(i) The connection number of two distinct points P € P;, Q € P; depends only
on the choice of i and j and is denoted by A,.

(ii) There exists a constant A such that A; = A for every i (1=<i=wv,) with
IP.|>1 (i.e., for every i such that A; is defined).
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If a 1-design D admits a tactical division, then D is said to be tactically divisible.
Clearly, if D is a 2-design, then the terms tactical division and tactical decomposi-
tion are synonymous.

As a partial generalisation of Block’s Theorem (theorem 5.7) Beker [5] showed:

THEOREM 8.1. Any tactical division of a 1— (v, k,r) design satisfies b —v =
b] - V.

Beker’s proof uses the matrix A,, defined in an analogous way to the A, of
Section 4. It is shown in [5] that A,A7 is nonsingular, in fact |A,Al|=
n o ILL Hf;, m;, where n =r— A and A is as in (ii) of the definition of tactical
division above. We will use n in this generalised sense throughout this section.

As in the 2-design case (see Theorem 4.4) we have the following.

THEOREM 8.2. If T(D) is a tactical division of a 1-design D, then:
@) m{,Bi,» = lyy, for every i and j;
(ii) 2u1=l ‘Yiquu = liAij + n8.~,~ for every i and j.

The theorem may be obtained by considering the matrix identity A|ATA, in
two ways, precisely as in the method of proof of Theorem 4.4.

As in Section 5, we now define a strong tactical division to be one for which
b — v = b, — vy, and a design admitting a strong tactical division is said to be strongly
divisible. We can obtain the following generalisation of Theorem 5.2.

THEOREM 8.3. If T(D) is a tactical division of a 1— (v, k,r) design D, then
the following are equivalent:
(i) T(D) is strong.
(ii) The intersection number of two blocks depends only on their block classes.

(iii) The intersection number of any two distinct blocks of the same block class is
k —n.

The original proof of this theorem again depends on the nonsingularity of A
A;'is calculated and A,ATA, is evaluated in two ways to give the equivalence of
the above three statements. Alternatively, using counting methods, Mitchell [31]
obtains the result by first proving Theorem 8.4 below to obtain the equivalence of
(ii) and (jii), and then evaluating the sum =%, =, B;; in two ways to obtain the
equivalence of (i) and (iii). (This method is a direct generalisation of the technique
employed in [4] to prove Theorem 5.2.) Theorem 8.1 also follows from Mitchell’s
proof.

As a byproduct of the original proof [5] of Theorem 8.2 one obtains the
following generalisation of Corollary 5.3:
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THEOREM 8.4. If T(D) is a tactical division of a 1— (v, k,r) design D, with
the property that every two distinct blocks of the same block class intersect in a
constant number of points p, then p = k — n, with equality if and only if T(D) is
strong.

From Theorem 8.3 we also have the following.

COROLLARY 8.5. A 1-design D is strongly divisible iff the dual design D* is
also.

Hence strongly divisible 1-designs have many properties akin to those of
symmetric 2-designs.

As an intermediate corollary of Theorem 8.2 (ii) and Corollary 8.5 we have:
COROLLARY 8.6. If T(D) is a strong tactical division of a 1-design D then,
:2; BuiYw = mip; + nd; for every i, j.

Evaluating the matrix product AATA in two ways, leads to the following.

LEMMA 8.7. If T(D) is a strong tactical division of a 1-design D, and B, is any
block class satisfying |B;|> 1, then

v, bl

..21 Ay = Z, PiwYw  for every i.

We also have (see [5]) a generalisation of Theorem 5.4.

THEOREM 8.8. If D is a strongly divisible 1-design then C(D) is also.

Using more “matrix counting”, two further combinatorial identities can be
established ([2]).

THEOREM 8.9. If T(D) is a strong tactical division of a 1— (v, k,r) design,
then:

v, bl
Z ;= Z mp, =tk —n foreveryi (1<i<v,)and foreverys (1<s=b,).
t=1

j=
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THEOREM 8.10. If T(D) is a strong tactical division of a 1— (v, k,r) design,
then for any two distinct block classes B, and B;:

Yy

2 E (Bs — Bu)(Bis — Bi)hi = 2n(k —n —ps)+ 2.] (pen — P»-)th,

i=1j=1
where p. is the intersection number of a block of class B, and a block of class B..

Theorem 8.9 can be obtained by showing that, for any tactical division,
2, LA; = rk —n, and the theorem then follows by Corollary 8.5. Also (again by
Corollary 8.5), we may obtain the dual result of Theorem 8.10.

Finally, using Hasse-Minkowski theory precisely as in Section 5 above, Beker
[2] obtains nonexistence results for 1-designs admitting regular strong tactical
divisions. These results are “identical” to those of Theorems 5.8-5.11.

9. Orbit theorems

As shown in Section 3 above, the point and block orbits of an automorphism
group of a design form a tactical decomposition and, as in Theorem 3.3, we may use
results obtained on tactical decompositions of designs to obtain orbit theorems. It is
also possible, as we shall see below, to derive strong tactical decompositions of
2-designs from automorphism groups of these designs.

We first give an orbit theorem due to Beker ([2], [3]) for any automorphism
group that permutes the point and block classes of a strong tactical division of 2
1-design.

We require the following notation. Suppose T(D) is a tactical division of a
1-design D, and « is an automorphism of D. Then we denote the number of fixed
points of & by x. (a), the number of fixed blocks of a by x, (a), the number of fixed
block classes of a by xa (a), and the number of fixed point classes of & by xr ().

THEOREM 9.1. Let T(D) be a strong tactical division of a 1-design D. If o is
an automorphism of D permuting the point and block classes of T(D), then:

X« (@) + x8 () = xy (@) + xp ().

The proof depends on the nonsingularity of A, as defined in Section 4. As
corollaries, we have results due to Parker [34] and Beker [3]; it is perhaps worth
noting that the special case of Corollary 9.2 when A =1 is due to Baer [1].
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COROLLARY 9.2. If a is an automorphism of a symmetric 2-design, then it
fixes the same number of points and blocks.

COROLLARY 9.3. If @ is an automorphism of a strongly resolvable 2-design,
then xx(a)+ xe(a)= x, (a)+1.

Now suppose I1 is an automorphism group of a 1-design D with a strong tactical
division T(D), such that IT permutes the point and block classes of T(D). We
denote the number of point orbits by ¢, the number of block orbits by t,, the
number of block class orbits by t;, and the number of point class orbits by t,.

The following theorem is shown in [4].

THEOREM 9.4. If D and II are as above, then:

t1+t3=t2+t4.

The proof uses Theorem 9.1 above. This theorem generalises the corresponding
result for strongly decomposable 2-designs in [3], which itself had as corollaries the
following earlier result due to Norman [33] and Harris [21].

COROLLARY 9.5. If Il is an automorphism group of a strongly resolvable
design, then t, +t;=1t,+ 1.

As a further corollary we have an alternative proof of the orbit theorem for
symmetric designs (see Section 3).

We now consider automorphism groups which leave decomposition classes
invariant. (The results in the rest of this section are all due to Beker 2].)

LEMMA 9.6. Let T(D) be a strong tactical decomposition of a 2-design D. If IT
is an automorphism group of D that leaves the block classes of T(D) invariant, then IT
leaves the point classes invariant.

Using Lemma 9.6 we have the following.

THEOREM 9.7. Let T(D) be a strong tactical decomposition of a 2-design D. If
Ilis an automorphism group of D that leaves the block classes of T(D) invariant, then
the point and block orbits form a strong tactical decomposition of D.

If T(D) is maximal (i.e., if the block classes of T(D) form a maximal

(k - n)-decomposition in the sense of Section 7), then we have a stronger result:
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THEOREM 9.8. Let T(D) be a maximal strong tactical decomposition of a
2-design D, and let I1 be an automorphism group of D. Then the point and block orbits
of II form a strong tactical decomposition if and only if II leaves the block classes of
T(D) invariant.

From Theorem 9.8 we see that every automorphism of a symmetric 2-design
gives rise to a strong tactical decomposition of the design, since, for a symmetric
2-design, the tactical decomposition with just one point and block class is strong.

We finally give two further results indicating methods of obtaining strong
tactical decompositions of 2-designs by using automorphism groups.

THEOREM 9.9. If D is a symmetric 2— (v, k,\) design with an axial auto-
morphism a, and D' = D* where x is the axis of a, then D' is a strongly decomposable
2-design.

THEOREM 9.10. Let D be a 2-design and I an automorphism group of D such
that the point and block orbits of II form a strong decomposition of D. If I is a
subgroup of II then the point and block orbits of I form a strong tactical decomposition
of D.

10. Constructions and examples

We provide here a list of known families of strongly decomposable 2-designs.
The construction methods used to obtain these designs may also be used to
construct many strongly divisible 1-designs.

The first result uses a construction method due to Beker and Mitchell [7].
Details of this particular example of the construction may be found in [32].

THEOREM 10.1. If there exists an affine plane of order q —1 and q >2 is a
prime power, then for every h =2 there existsa 2—((q — 1)(¢" —1),9" (¢ —1),q9" ")
design D admitting a strong tactical decomposition with (q" —1)/(q — 1) point classes,
q(q" —1)/(q — 1) block classes of (q — 1)’ points and (q —1) blocks each, respec-
tively. D has intersection numbers 0 (= k —n), " (g —1) and ¢"".

Since the designs of Theorem 10.1 have k — n =0, they are quasi-residual, and
it can be shown (see for instance [6, section 6]) that they are in fact residual. Hence
the existence is established of an infinite family of symmetric 2-
("' —q +1,q9" q"") designs. The construction of Theorem 10.1 may be regarded
as a generalisation of the construction method of [8].
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Shrikhande and Raghavarao [42] give a method of construction of an infinite
family of strongly resolvable 2-designs which are never affine. Their result may be
stated by the following theorem.

THEOREM 10.2. If there exists an affine 2— (ut®, ut,(ut —1)/(t — 1)) design
and a symmetric 2—(t,s,s(s —1)/(t — 1)) design for some s, then there exists a
strongly resolvable 2 — (ut’, uts, s(uts —1)/(t — 1)) design D. D has parameters b =
tu’ =1/t =1), r=sut’-1)/(t—1), o =s, m =t and p = us>.

Note that, since k —n = uts(s — 1)/(t — 1) > 0, these designs are never affine. The
family of designs of this theorem are the only strongly resolvable designs known to
the authors which are not affine (apart from complements of affine 2-designs).

We now consider a construction due to Sillitto [43]. We first note the
importance of a special class of 2-designs. If a 2 — (v, k, A ) design satisfies b =4n,
then it is said to satisfy Condition S and we immediately have the following results
due to Sillitto [43] and Shrikhande [39]:

LEMMA 10.3. Disa 2— (v, k, A) design satisfying Condition S if and only if D
is @ 2—(u”,u(u £1)/2,(u £2)N/2) design, where u, N are integers satisfying
N=u/2=1. In this case b = 2uN and r = (u = 1)N. Furthermore, D is a symmetric
2—(v,k,\) design satisfying Condition S if and only if D is a 2-
(4s*,s(2s £ 1),s(s = 1)) design.

In the above lemma the designs with the parameters corresponding to the +
signs represent the complements of the designs with parameters corresponding to
the — signs. If D is a 2—(u’, u(u — 1), (u —2)N/2) design, then we say D is a
U(u, N) design and, if D is a 2— (4s>,5(2s — 1),s(s — 1)) design, then we call D an
S(s) design. Note that an S(s) design is the same as a U(2s,s) design. Also, as
shown in [35], [39], [43], and [45], an S(s) design exists for infinitely many values of
S, and, in particular, for every s satisfying 1 <s < 10.

Using the construction method of [43], Mitchell [31] obtained the following.

THEOREM 10.4. Suppose there exists an S(s) design and a U(u, N) design
admitting a strong tactical decomposition with v, point classes, b, block classes, and
intersection numbers p; (i.e., a block of the ith class and a block of the jth class have
intersection number p;), then there exists a U (2us,2Ns) design admitting a strong
lactical decomposition with 4s*v, point classes, 4s°b, block classes, and intersection
numbers us(2s — 1)+ 4s°p;, us(us — 1).

This establishes a recursive method for constructing strongly decomposable
U(u, N) designs.
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The only affine design satisfying Condition S is the unique affine plane of order
3, namely the U(3,2). Of the strongly decomposable designs constructed in
Theorems 10.1 and 10.2 above, the only designs which satisfy Condition S are as
follows. Let t =3 (mod 4) (t =7), be a prime power. Then there exists an affine
2—(t%1,1) design and a symmetric (Hadamard) 2—(¢,(t — 1)/2,(t —3)/4) design
(see, for instance, [20, p. 112]). Then, using Theorem 10.4, there exists a strongly
resolvable U(t,(t +1)/2) design with o=(t—1)2, p=(t— 1/4, m=1t and
k —n = t(t — 3)/4. Using these designs together with the U(3,2) above in Theorem
10.4, we obtain the following theorem.

THEOREM 10.5. If t =3 (mod 4) and an S(s) design exists, then there exists a
U(2st,s(t +1)) design admitting a strong tactical decomposition with 4s® point
classes, 4s(t + 1) block classes, and intersection numbers st(st —s —1) (= “k —n”),
st(st —1) and st(st —1)+s’.

Note that designs with identical parameters were constructed, using a different
method, in [7]. Furthermore, the use of two divisible designs of John and Turner
[25], leads to the construction (see [7]) of strongly decomposable U(8,5) and
U(10, 6) designs with parameters correspondingtom =4,s =landm =5,s = lin
Theorem 10.5, respectively. These designs may also be used in Theorem 10.4 to
generate strongly decomposable U(16s,10s) and U (20s, 12s) designs for every s
such that an S(s) design exists.

Clearly there exist many infinite families of strongly divisible 1-designs which
are not 2-designs. As we see in Theorem 11.7 below, any divisible 1-design with a
divisible dual is strongly divisible, and there exist many infinite families of these
designs alone. Also note that the theorems above automatically yield strongly
divisible 1-designs, merely by considering the dual designs in each case.

11. Other results

There do exist further results on 1- and 2-designs admitting strong tactical
divisions. In this section we outline some of these results.

We first consider tactical decompositions of symmetric 2-designs (which ar¢
necessarily strong by Theorem 5.1). The following two results may be found in [20]-
Dembowski [19] showed:

THEOREM 11.1. Let T(D) be a regular tactical decomposition of a symmetric
2—(v, k, A) design D with v, point and block classes. If n is not a square, then v: i
odd.
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Hughes [22] proved the following.

THEOREM 11.2. Let T(D) be a regular tactical decomposition of a symmetric

2—(v, k, A) design D with v, point and block classes of | points and blocks each. If n is
not a square, then the equation

nx’+(—=1)“\y? = 22
has solutions in integers x, y, z not all zero.

Further results of this type may be found in [20, pp. 61-63].

Secondly, we examine the relationships between divisions and tactical divisions
of 1-designs established by Mitchell [31]. The following theorem generalizes an
earlier result due to Shrikhande and Raghavarao [41, corollary 6.1].

THEOREM 11.3. Let T(D) be a strong tactical division of a 1-design D with
point classes P,,...,P, and block classes B.,...,B,. then the following are
equivalent :

@) P,,...,P, is a singular division of D;

(i) P,..., P, are the classes of a resolution of D*;

(i) By,...,Bs, is a singular division of D*;

(iv) B.,..., By, are the classes of a resolution of D.

We also have the following.

THEOREM 11.4. Let D be a divisible 1-design. If D* is also divisible, then the
classes of the divisions of D and D* form a strong tactical division of D, and either:

(i) D, D* are singular divisible, B; = k/v., y; =r/b, for every i, j; or

(i) b =v; D, D* are nonsingular divisible and B; = v, for every i, .

As immediate corollaries we have results previously established by Bose and
Shrikhande [12] and [13] and Kageyama [27]:

COROLLARY 11.5. Let D be a symmetric divisible 1— (v, k, k) design such
that D* is divisible with the same parameters as D. Then the classes of the divisions of

D and D* form a strong tactical division and B; = v; for every i, j.

~ COROLLARY 11.6. Let D be a divisible 1-design with a divisible dual. Then D
s singular divisible if and only if D* is singular divisible.
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Mitchell also proved the following.

THEOREM 11.7. If D is a symmetric divisible 1-design, then the following are
equivalent:
(i) D admits a strong tactical division with point classes the classes of the division
of D;
(ii) D* is divisible with the same parameters as D;
(iii) D* is divisible.

Finally, we consider some further results on 2-designs having precisely three
intersection numbers, one of which is k — n. The result given here was established
by Beker and Haemers [6].

Suppose D is a 2 — (v, k, ) design with three intersection numbers k — n, p, and
p2 (p1> p»). Define the class graph G of D to be the graph whose vertices are the
classes of the maximal (k — n)-decomposition of D (in the sense of Section 7) and
where two vertices are adjacent if and only if two blocks, one from each of the
corresponding classes, have intersection number p,. Hence G has b, vertices, where
b, is the number of classes in the maximal (k — n)-decomposition.

THEOREM 11.8. G is strongly regular, and G is a complete d-partite graph (for
some d) if and only if p.= Av/b.

Beker and Haemers also calculate the eigenvalues of G, and show that D* must
be a PBIBD with three associate classes. Note that the families of designs of
Theorems 10.1 and 10.5 are all examples of Theorem 11.8.
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